1
|
Chauhan A, Salwa, Shedgaonkar GG, Kumar L, Karmakar A, Khajuria S, Raghavendra AP, Verma R. Antioxidant and anticancer activities of hesperetin and its novel formulations in KB cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5213-5236. [PMID: 39531045 DOI: 10.1007/s00210-024-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to formulate the hesperetin nanostructured lipid carriers (NLCs) containing oro-mucosal gel for its activity assessment on the KB cell line. NLCs were prepared with glyceryl monostearate, oleic acid, and lecithin using a modified constant-temperature emulsification technique. The particle size analysis, in vitro drug release studies, etc., of prepared NLCs were evaluated. The formulated gels were analyzed with respect to spreadability, extrudability, swelling index, texture analysis, etc. The particle size, polydispersity index, zeta potential, and drug entrapment of nanocarriers were recorded to be 221.733 ± 61.536 nm, 0.381 ± 0.091, - 51.433 ± 4.143 mV, and 89.29%, respectively. The optimized NLCs in 24 h released 87.14 ± 6.62% of the drug. The round shape of NLCs was noticed with scanning electron microscopy. The pH, spreadability, extrudability, swelling index, content uniformity, and drug release studies of hesperetin NLCs-containing gel (HNG) were found to be 6.81 ± 0.04, 2.49 ± 0.04 cm.mg/s, 539.04 ± 32.88 g/cm2, 4.27 ± 0.47, 107.98 ± 1.93%, and 90.17 ± 6.67% (in 48 h), respectively. The developed formulations showed promising in vitro anticancer and antioxidant activities. HNP results authorize that the formulation may be beneficial for the treatment of oral cancer.
Collapse
Affiliation(s)
- Arunima Chauhan
- Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gayatri Gopal Shedgaonkar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India.
| | - Arka Karmakar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | | | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Jeong J, Kim J, Lee B, Park C, Kim M. Effects of Low and High Doses of Deoxynivalenol on Growth Performance, Blood Biochemistry, Histology, Metabolites, and Microbial Community in Adult Rats. BIOLOGY 2025; 14:429. [PMID: 40282294 PMCID: PMC12024641 DOI: 10.3390/biology14040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Deoxynivalenol (DON) is a widespread mycotoxin which contaminates several crops, including maize, wheat, and barley. In this study, we investigated the effects of orally administered DON on growth performance, blood biochemistry, histology, the gut microbiome, and metabolism in rats. Six-week-old rats, acclimatized for one week, were subjected to different dietary treatments for 42 days, as follows: CON (control): 0.9% saline; T1: 0.5 ppm DON; T2: 50 ppm DON; and T3: 100 ppm DON. The T3 group had the lowest final body weight (298.5 ± 3.69 g) and average daily gain compared with the control group (338.9 ± 6.43 g, p < 0.05). The feed conversion ratio was highest in the T3 group (4.28 ± 0.28) compared with that in the control group (3.12 ± 0.13, p < 0.05). DON treatment significantly reduced serum levels of creatinine, amylase, urea nitrogen, and alkaline phosphatase, but not alanine aminotransferase. Fibrosis and apoptosis were exacerbated in various tissues with increasing DON concentration. The metabolite profiles of several tissues were significantly different in the DON-treated and control groups. In the cecum, DON treatment increased the abundance of Desulfobacteria, while decreasing that of Firmicutes. Our results indicate that DON levels above the maximum residue limit have serious health consequences for animals.
Collapse
Affiliation(s)
- Jinyoung Jeong
- Precision Animal Nutrition Division, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Junsik Kim
- Precision Animal Nutrition Division, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Boram Lee
- Animal Biotechnology and Genomics Division, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseok Kim
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Jeong J, Kim J, Kim M, Lee B, Park C, Kim M. Effects of Deoxynivalenol Contamination on Growth Performance, Blood Biochemistry, Histology, Metabolomics, and the Microbiota: A Subacute Dose Oral Toxicity Study in Rats. Int J Mol Sci 2025; 26:3086. [PMID: 40243812 PMCID: PMC11988895 DOI: 10.3390/ijms26073086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Deoxynivalenol (DON), one of the most common mycotoxins, is frequently found in foods. This study investigated the effects of orally administered DON on the blood biochemical parameters, growth performance, histology, microbial composition, and metabolism of rats. After a 1-week adaptation period, 4-week-old rats were administered 0.9% saline (control), 1 mg/L DON (T1), 10 mg/L DON (T2), or 50 mg/L DON (T3) by gavage for 49 days. The DON-treated groups had significantly lower body weights than the control group (p < 0.05). Blood alkaline phosphatase, phosphate, cholesterol, amylase, and creatinine levels differed significantly between the DON-treated and control groups (p < 0.05). With increasing DON doses, fibrosis and apoptosis were observed in several tissues. In terms of metabolites, the bile acid biosynthesis pathway emerged as a potential biomarker, while the tryptophan metabolism pathway was found to be the most affected. The fecal microbiota showed significant differences in both alpha and beta diversity between the DON-treated and control groups (p < 0.05). In the cecal and fecal microbiota, the relative abundance of Firmicutes increased in the control and T1 groups, whereas Bacteroidota and Campylobacterota were more abundant in the T2 and T3 groups. In conclusion, our results showed that high DON exposure induces several dose-dependent adverse effects on rats.
Collapse
Affiliation(s)
- Jinyoung Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Junsik Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Boram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea;
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (M.K.)
| | - Minseok Kim
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (M.K.)
| |
Collapse
|
4
|
Yuan Z, Liu H, Diao Z, Yuan W, Wu Y, Xue S, Gao X, Qiao H. CCR2 Regulates Referred Somatic Hyperalgesia by Mediating T-Type Ca 2+ Channel Currents of Small-Diameter DRG Neurons in Gastric Ulcer Mice. Brain Sci 2025; 15:255. [PMID: 40149778 PMCID: PMC11940306 DOI: 10.3390/brainsci15030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Referred pain frequently co-exists with visceral pain. However, the exact mechanism governing referred somatic hyperalgesia remains elusive. Methods: By injecting 20% acetic acid into the stomach, we established a mouse model of gastric ulcer (GU). Hematoxylin and eosin (H&E) staining was used as the evaluation criterion for the gastric ulcer model. Evan's blue (EB) and von Frey tests detected the somatic sensitized area. The DRG neurons distributed among the spinal segments of the sensitized area were prepared for biochemical and electrophysiological experiments. The CCR2 antagonist was intraperitoneally (i.p.) injected into GU mice to test the effect of blocking CCR2 on somatic neurogenic inflammation. Results: GU not only instigated neurogenic plasma extravasation and referred somatic allodynia in the upper back regions spanning the T9 to T11 segments but also augmented the co-expression of T-type Ca2+ channels and CCR2 and led to the gating properties of T-type Ca2+ channel alteration in T9-T11 small-diameter DRG neurons. Moreover, the administration of the CCR2 antagonist inhibited the T-type Ca2+ channel activation, consequently mitigating neurogenic inflammation and referred somatic hyperalgesia. The application of the CCR2 agonist to normal T9-T11 small-diameter DRG neurons simulates the changes in the gating properties of T-type Ca2+ channel that occur in the GU group. Conclusions: Therefore, these findings indicate that CCR2 may function as a critical regulator in the generation of neurogenic inflammation and mechanical allodynia by modulating the gating properties of the T-type Ca2+ channels.
Collapse
Affiliation(s)
- Ziyan Yuan
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Y.); (H.L.); (Z.D.); (S.X.)
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (W.Y.); (Y.W.)
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Y.); (H.L.); (Z.D.); (S.X.)
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (W.Y.); (Y.W.)
| | - Zhijun Diao
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Y.); (H.L.); (Z.D.); (S.X.)
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Wei Yuan
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (W.Y.); (Y.W.)
| | - Yuwei Wu
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (W.Y.); (Y.W.)
| | - Simeng Xue
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Y.); (H.L.); (Z.D.); (S.X.)
| | - Xinyan Gao
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (W.Y.); (Y.W.)
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haifa Qiao
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (Z.Y.); (H.L.); (Z.D.); (S.X.)
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
5
|
Zhong M, Sun Q, Ren B, Yu C, Zhou S, Gao Q, Wang X, Yuan C, Lu J, Peng Q, Zeng M, Song H. A comparison of the efficacy and safety of Chinese patent medicine combined with Western medicine for Helicobacter pylori-related gastric ulcer: A systematic review and network meta-analysis. Medicine (Baltimore) 2025; 104:e41137. [PMID: 39928778 PMCID: PMC11813025 DOI: 10.1097/md.0000000000041137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 07/26/2024] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND The aim of this network meta-analysis (NMA) was to compare the effectiveness and safety of different Chinese patent medicines (CPMs) combined with Western medicines (WMs) regimen versus WMs alone in the treatment of Helicobacter pylori-related gastric ulcer (GU). METHODS A comprehensive search was conducted on databases from their inception to May 31, 2023, to identify all randomized controlled trials (RCTs) that investigated the efficacy of CPMs in combination with conventional WMs in the treatment of patients with H pylori-related GU. Using Cochrane risk of bias assessment tool, we evaluated the methodological quality of RCTs. R version 4.2.3 and Stata version 15.1 software were cross-merged to conduct pairwise NMA. RESULTS A total of 35 studies involving 4667 patients and 11 CPMs were identified. Eleven CPMs were analyzed, including Pingwei Capsule (PWC), Kangfuxin Solution (KFXS), Shugan Jieyu Capsule (SGJYC), Weisu Granule (WSG), Qiwei Weitong Capsule (QWWTC), Beiling Weitong Granule (BLWTG), Anweiyang Capsule (AWYC), Jinghua Weikang Capsule (JHWKC), Weifuchun Tablet (WFCT), Wenweishu Capsule (WWSC), and Weidean Capsule (WDAC). Results showed that the combination of CPM and WM was more effective relative to the WM regimen alone. NMA revealed that WWSC combined with the WM yielded superior results in enhancing clinical outcomes and mitigating GU recurrence rates. PWC combined with the WM showed the best performance in improving the H pylori eradication rate. WFCT combined with the WM had the most optimal performance in controlling gastrin (GAS) and motilin (MTL) levels. KFXS combined with the WM showed the best results in terms of reducing the incidence of adverse events. CONCLUSION Our NMA findings indicate that the combination of WWSC, PWC, WFCT, and KFXS with WM may be more effective and advantageous outcomes compared to other CPMs. Due to the limitations of this study, future research should employ larger sample sizes and multicenter RCTs to conduct real-world clinical studies.
Collapse
Affiliation(s)
- Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shunhua Zhou
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Gao
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaojuan Wang
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Lu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Firehun B, Nedi T. Gastroprotective Activities of Aqueous and 80% Methanol Leaf Extracts of Stephania abyssinica (Quart.-Dill. and A. Rich.) Walp. (Menispermaceae) in Rats. J Exp Pharmacol 2023; 15:497-512. [PMID: 38033453 PMCID: PMC10683649 DOI: 10.2147/jep.s437707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Background An ethnobotanical study showed that the leaf of Stephania abyssinica (S. abyssinica) is used for the treatment of gastritis, but there is no scientific investigation. Objective The aim of this study was to evaluate the gastroprotective activities of both aqueous and 80% methanol leaf extracts of S. abyssinica in experimental rats. Methods Decoction and maceration techniques were used to prepare aqueous and 80% methanol leaf extracts, respectively. The extracts were evaluated against pyloric ligation, indomethacin, and ethanol-induced gastric ulcer models at doses of 100, 200, and 400 mg/kg. Negative control received 2% tween 80, while positive controls received 20 mg/kg of omeprazole and 100 µg/kg of misoprostol. Parameters, such as ulcer index, gastric mucin content, gastric juice volume, pH, and free and total acidity were measured. Results In the pyloric ligation induced gastric ulcer model, all doses of both extracts significantly reduced the ulcer index and gastric juice volume, while doses of 200 and 400 mg/kg exhibited a significant increment in mucus content and gastric juice pH as well as decrease in free and total acidity as compared to negative control. In indomethacin and ethanol induced gastric ulcer models, pretreatment with both extracts significantly reduced the ulcer index and enhanced gastric mucin content in a dose-dependent manner. Phytochemical screening of both extracts showed the existence of flavonoids, phenols, tannins, saponins, alkaloids, and coumarins with high contents of phenols, flavonoids, and alkaloids in 80% methanol extract. Conclusion This study revealed that aqueous and 80% methanol leaf extracts of S. abyssinica possessed remarkable gastroprotective activities against experimentally induced gastric ulcer models, and this possibly justify the traditional use of S. abyssinica leaves to treat gastritis.
Collapse
Affiliation(s)
- Banchayehu Firehun
- School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Nedi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
El-Gendy ZA, Taher RF, Elgamal AM, Serag A, Hassan A, Jaleel GAA, Farag MA, Elshamy AI. Metabolites Profiling and Bioassays Reveal Bassia indica Ethanol Extract Protective Effect against Stomach Ulcers Development via HMGB1/TLR-4/NF-κB Pathway. Antioxidants (Basel) 2023; 12:1263. [PMID: 37371993 DOI: 10.3390/antiox12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical manifestation of gastric ulcers is frequent, in addition to their costly drug regimens, warranting the development of novel drugs at lower costs. Although Bassia indica is well characterized for its anti-inflammatory and antioxidant potential, capacity of its ethanol extract (BIEE) to prevent stomach ulcers' progression has not been reported. A nuclear protein termed high-mobility group box 1 (HMGB1) plays a key role in the formation of stomach ulcers by triggering a number of inflammatory responses. The main purpose of the current investigation was to evaluate the in vivo anti-inflammatory and anti-ulcerogenic capabilities of BIEE against ethanol-induced gastric ulcers in rats via the HMGB1/TLR-4/NF-B signaling pathway. HMGB1 and Nuclear factor kappa (NF-B) expression, IL-1β and Nrf2 contents showed an increase along with ulcer development, concurrent with an increase in immunohistochemical TLR-4 level. In contrast, pre-treatment with BIEE significantly reduced HMGB1 and Nuclear factor kappa (NF-B) expression levels, IL-1β and Nrf2 contents and ulcer index value. Such protective action was further confirmed based on histological and immunohistochemical TLR-4 assays. Untargeted analysis via UPLC-ESI-Qtof-MS has allowed for the comprehensive characterization of 40 metabolites in BIEE mostly belonged to two main chemical classes, viz., flavonoids and lipids. These key metabolites, particularly flavonoids, suggesting a mediation for the anti-inflammatory and anti-ulcerogenic properties of BIEE, pose it as a promising natural drug regimen for treatment of stomach ulcers.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Rehab F Taher
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Gehad A Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
9
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Zhuang K, Tang H, Guo H, Yuan S. Geraniol prevents Helicobacterium pylori-induced human gastric cancer signalling by enhancing peroxiredoxin-1 expression in GES-1 cells. Microb Pathog 2023; 174:105937. [PMID: 36496058 DOI: 10.1016/j.micpath.2022.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori (H. pylori), a gram-negative bacterial microbiological carcinogen, has been identified as the leading jeopardy feature for developing human gastric cancer (GC). As a result, inhibiting H. pylori growth has been identified as an effective and critical technique for preventing GC development. In this study, geraniol inhibits H. pylori-induced gastric carcinogen signalling in human gastric epithelial cells (GES-1). Geraniol prevents cytotoxicity, ROS and apoptosis in H. pylori-induced GES-1 cells. Furthermore, geraniol protects against H. -induced antioxidant depletion caused by malondialdehyde, damage of reactive DNA and nuclear fragmentation. Geraniol significantly reduced the expression of phosphorylated mitogen activated protein kinases (MAPKs) proteins such as p38 MAPK, extracellular signal-regulated kinase-1 (ERK1), c-Jun N-terminal kinase (c-JNK), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) in GES-1 infected with H. pylori. Furthermore, geraniol increased the antioxidant protein peroxiredoxin-1 (Prdx-1) in H. pylori-infected cells. Geraniol thus protects H. pylori-concomitant infection, and its resistance may be a possible method in preventing gastric cancer caused by H. pylori.
Collapse
Affiliation(s)
- Kun Zhuang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China.
| | - Hailing Tang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China
| | - Hanqing Guo
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China
| | - Shanshan Yuan
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, China
| |
Collapse
|
12
|
Venzon L, Meurer MC, Dos Santos França TC, Longo B, Mariott M, Somensi LB, Mariano LNB, Boeing T, Cazarin CA, Pereira LN, de Souza MM, da Silva LM. Geraniol accelerates the gastric healing, minimizes ulcers recurrence, and reduces anxiolytic-like behavior in ulcerated rodents by oral or inhaled route. Inflammopharmacology 2022; 30:2331-2344. [PMID: 36121588 DOI: 10.1007/s10787-022-01068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Geraniol (GE) is dietary acyclic monoterpene alcohol found in essential oils from aromatic plants with therapeutic value against gastric ulcers already described. HYPOTHESIS/PURPOSE To assess whether oral GE accelerates gastric healing or prevents ulcer recurrence, and to evaluate the hypothesis that GE promotes antiulcer effects by the inhaled route and that promotes changes in the behavior of ulcerated rodents. METHODS Gastric healing effects, underlining mechanisms, and behavioral changes were measured in80% acetic acid-induced gastric ulcer model in rats receiving GE by oral (30 mg/kg) or inhaled route (1 mg/L of air/min); whereas the effects of GE to avoid ulcer recurrence was evaluated in mice submitted to 10% acetic acid plus IL-1β ulcer. RESULTS GE administered by both routes accelerates gastric healing, increasing mucin and GSH levels, CAT, and GST activities, and reducing MPO activity. Moreover, oral, and inhaled GE minimized ulcer recurrence reducing gastric TNF and IL-6 levels and preserving mucin levels. Interestingly, the inhalation or oral intake of GE promotes anxiolytic-like effects in ulcerated rats. CONCLUSION Data altogether suggest that the GE accelerates gastric healing through the strengthening of protective factors of the gastric mucosa, promoting a quality healing that reduces the recurrence of the lesion. Besides, the anxiolytic-like effect of GE may also contribute to its gastric healing action since anxiety is recognized as one of the etiologic agents of ulcers.
Collapse
Affiliation(s)
- Larissa Venzon
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | | | | | - Bruna Longo
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | - Marihá Mariott
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | | | | | - Thaise Boeing
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | - Camila André Cazarin
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | - Lucas Natã Pereira
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | - Marcia Maria de Souza
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil
| | - Luisa Mota da Silva
- Pharmaceutical Sciences Graduate Program, University of Itajai Valley, Itajai, SC, Brazil.
| |
Collapse
|
13
|
Arismendi Sosa AC, Mariani ML, Vega AE, Penissi AB. Extra virgin olive oil inhibits Helicobacter pylori growth in vitro and the development of mice gastric mucosa lesions in vivo. Front Microbiol 2022; 13:961597. [PMID: 35992644 PMCID: PMC9389160 DOI: 10.3389/fmicb.2022.961597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Helicobacter pylori infection is widespread worldwide, with more than a half of the world population infected. H. pylori antibiotic-resistant strains and non-compliance to therapy are the major causes of H. pylori eradication failure. The search for new therapies based on plant extracts is a scientific interest field. The present study was conducted to evaluate the effect in vitro of extra virgin olive oil (EVOO), hydroxytyrosol (HT), and oleuropein (Olp) against two H. pylori strains and the effect in vivo of the oral administration of EVOO on the gastric mucosa of BALB/c mice infected with this microorganism. The broth microdilution method assayed the antibacterial in vitro activity of EVOO, HT, and Olp against H. pylori strains. For in vivo studies, male BALB/c mice were infected orally with an H. pylori suspension every 72 h. Four groups were used: (1) Control, (2) H. pylori-infected (HP), (3) EVOO, and (4) HP + EVOO. Mice were sacrificed at 7, 15, and 30 days. The stomachs were removed and observed under a microscope. Scoring of the degree of erosion was determined. Samples were processed by histological techniques for light microscopy. Macroscopic analysis showed that the presence of small erosions increased, both in number and size, in the infected group. Animals infected and treated with EVOO exhibited the presence of fewer erosions, which decreased in number as the treatment progressed. The mucosa of the control and EVOO groups showed normal histological characteristics at the three times studied. The mucosa of animals infected with H. pylori showed disruptions of the lining epithelium, damage to gastric glands, and vasodilation. The mucosa of animals infected with H. pylori and treated with EVOO showed morphological characteristics similar to those of normal and EVOO mucosa. For the first time, the current study showed the effect in vitro and in vivo of EVOO and combined administration of HT and Olp against H. pylori using an animal model. Future studies are needed to establish the mechanism of EVOO’s action at the gastric mucosa level to propose this product as a natural antimicrobial agent for the treatment of gastric H. pylori infections.
Collapse
Affiliation(s)
- Andrea Celeste Arismendi Sosa
- Área de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - María Laura Mariani
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alba Edith Vega
- Área de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Alicia Beatriz Penissi,
| |
Collapse
|
14
|
Cheng KK, Nadri MH, Othman NZ, Rashid SNAA, Lim YC, Leong HY. Phytochemistry, Bioactivities and Traditional Uses of Michelia × alba. Molecules 2022; 27:molecules27113450. [PMID: 35684387 PMCID: PMC9182571 DOI: 10.3390/molecules27113450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Michelia × alba (M. alba) is a flowering tree best known for its essential oil, which has long been used as a fragrance ingredient for perfume and cosmetics. In addition, the plant has been used in traditional medicine in Asia and dates back hundreds of years. To date, there is a limited number of publications on the bioactivities of M. alba, which focused on its tyrosinase inhibition, antimicrobial, antidiabetic, anti-inflammatory, and antioxidant activities. Nevertheless, M. alba may have additional unexplored bioactivities associated with its bioactive compounds such as linalool (72.8% in flower oil and 80.1% in leaf oil), α-terpineol (6.04% flower oil), phenylethyl alcohol (2.58% flower oil), β-pinene (2.39% flower oil), and geraniol (1.23% flower oil). Notably, these compounds have previously been reported to exhibit therapeutic activities such as anti-cancer, anti-inflammation, anti-depression, anti-ulcer, anti-hypertriglyceridemia, and anti-hypertensive activities. In this review paper, we examine and discuss the scientific evidence on the phytochemistry, bioactivities, and traditional uses of M. alba. Here, we report a total of 168 M. alba biological compounds and highlight the therapeutic potential of its key bioactive compounds. This review may provide insights into the therapeutic potential of M. alba and its biologically active components for the prevention and treatment of diseases and management of human health and wellness.
Collapse
Affiliation(s)
- Kian-Kai Cheng
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Muhammad Helmi Nadri
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Nor Zalina Othman
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Siti Nor Azlina Abd Rashid
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Ying-Chin Lim
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Hong-Yeng Leong
- Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, Muar 84600, Malaysia; (K.-K.C.); (M.H.N.); (N.Z.O.); (S.N.A.A.R.)
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
- Correspondence:
| |
Collapse
|
15
|
Geraniol Averts Methotrexate-Induced Acute Kidney Injury via Keap1/Nrf2/HO-1 and MAPK/NF-κB Pathways. Curr Issues Mol Biol 2021; 43:1741-1755. [PMID: 34889889 PMCID: PMC8929074 DOI: 10.3390/cimb43030123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Objectives: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. Methods: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). Results: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1β, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. Conclusion: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.
Collapse
|
16
|
Evaluation of antioxidant and anti-ulcerogenic effects of Eremurus persicus (Jaub & Spach) Boiss leaf hydroalcoholic extract on ethanol-induced gastric ulcer in rats. Inflammopharmacology 2021; 29:1503-1518. [PMID: 34435283 DOI: 10.1007/s10787-021-00868-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the antioxidant and protective effect of E. persicus leaf hydroalcoholic extract (EPE) in preventing gastric ulcers induced by ethanol in rats. Wistar rats weighing 180-220 g were randomly divided into five groups. These groups included negative control (normal) group, positive control (ethanolic) group, comparative control (ranitidine recipient) group, group recipient the dose of 250 mg/kg plant extract, and group recipient the dose of 500 mg/kg plant extract. One hour after gavage of the drug and extract, the gastric ulcer was induced by feeding 1 ml of 96% ethanol to each animal except the rats of the negative control group. After one hour, the rats were killed, and their stomachs were separated. Then, the gastric Ulcer index (UI), pH, oxidative stress parameters, and histopathological changes in the stomach of all groups were measured. Pre-treatment of ethanol-induced rats with the EPE reduced (P < 0.05) the ulcer index and gastric juice pH, compared to ethanolic group rats. Furthermore, pre-treatment with EPE at a dose-dependent manner, alleviated the gastric oxidative stress injury in rats through increase the activity of CAT, tissue NO· and GSH levels. EPE also was able to decrease the levels of ROS, MDA, PCO and serum NO·. According to the results, it can be concluded that pre-treatment with EPE prevents the formation of gastric ulcers caused by ethanol, which can be attributed to the antioxidant activity of plant polyphenols compounds.
Collapse
|
17
|
Zatorski H, Salaga M, Zielińska M, Majchrzak K, Binienda A, Kordek R, Małecka-Panas E, Fichna J. AdipoRon, an Orally Active, Synthetic Agonist of AdipoR1 and AdipoR2 Receptors Has Gastroprotective Effect in Experimentally Induced Gastric Ulcers in Mice. Molecules 2021; 26:molecules26102946. [PMID: 34063466 PMCID: PMC8156685 DOI: 10.3390/molecules26102946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction: Adiponectin is a hormone secreted by adipocytes, which exhibits insulin-sensitizing and anti-inflammatory properties and acts through adiponectin receptors: AdipoR1 and AdipoR2. The aim of the study was to evaluate whether activation of adiponectin receptors AdipoR1 and AdipoR2 with an orally active agonist AdipoRon has gastroprotective effect and to investigate the possible underlying mechanism. Methods: We used two well-established mouse models of gastric ulcer (GU) induced by oral administration of EtOH (80% solution in water) or diclofenac (30 mg/kg, p.o.). Gastroprotective effect of AdipoRon (dose 5 and 50 mg/kg p.o.) was compared to omeprazole (20 mg/kg p.o.) or 5% DMSO solution (control). Clinical parameters of gastroprotection were assessed using macroscopic (gastric lesion area) and microscopic (evaluation of the gastric mucosa damage) scoring. To establish the molecular mechanism, we measured: myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities; glutathione (GSH) level; and IL-1β, adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated AMPK expression in gastric tissue. Results: AdipoRon produced a gastroprotective effect in both GU mouse models as evidenced by significantly lower macroscopic and microscopic damage scores. AdipoRon exhibited anti-inflammatory effect by reduction in MPO activity and IL-1β expression in the gastric tissue. Moreover, AdipoRon induced antioxidative action, as demonstrated with higher GSH levels, and increased SOD and GPX activity. Conclusions: Activation of AdipoR1 and AdipoR2 using AdipoRon reduced gastric lesions and enhanced cell response to oxidative stress. Our data suggest that AdipoR1 and AdipoR2 activation may be an attractive therapeutic strategy to inhibit development of gastric ulcers.
Collapse
Affiliation(s)
- Hubert Zatorski
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
- Department of Digestive Tract Diseases, Medical University of Lodz, 93-281 Lodz, Poland;
| | - Maciej Salaga
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Marta Zielińska
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Kinga Majchrzak
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Agata Binienda
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, 93-281 Lodz, Poland;
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-57-07
| |
Collapse
|
18
|
Hmed MB, Alimi H, Guesmi F, Elatrech F, Zouari N, Chtourou Y, Salem RB, Rigane G, Cherif S. Pistacia atlantica Desf. roots extract: LC-ESI-MS Analysis, antioxidant activity and gastroprotective effect on experimentally-induced ultrastructural gastric ulcers in mice. Ultrastruct Pathol 2021; 45:102-111. [PMID: 33688798 DOI: 10.1080/01913123.2021.1896612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pistacia atlantica Desf. (Atlas Pistachio) is an Anacardiaceae tree traditionally used in Tunisia for the treatment of ophthalmic, stomatitis, and digestive tract diseases. In the present study, the Pistacia atlantica Desf. roots extract (PR) was phytochemically analyzed, for the first time, by LC-ESI-MS for phenolic and flavonoid contents, in vitro tested for its potential antioxidant activity based on the 2.2-diphenyl-1-picrylhydrazyl (DPPH) and the reduced power essays (FRAP), and in vivo tested for its ability to shield against ethanol-induced gastric ulcer in mice. The LC-ESI-MS analysis proved the identification of 12 compounds, including Quinic, Gallic, and Protocatechuic, as major phenolic acids and high levels of flavonoids, such as Catechin, Epicatechin, and Cirsiliol. PR also exhibited a mild in vitro antioxidant activity when compared with ascorbic acid. In vivo pretreatment of ethanol-ulcerated mice with PR doses 50 mg/kg and 100 mg/kg body weight (b.w) significantly reduced (P< .05) gastric lesions at a rate of 20.10% and a rate of 40.90%, respectively, when compared with 60.70% rate of sucralfate (50 mg/kg b.w) evidenced by a dose-dependent manner increase in the gastric mucosa enzymatic (SOD, CAT, GPx) antioxidant levels, the decline of the lipid peroxidation, and the preservation of normal gastric superficial epithelium. The underlying mechanism of PR antiulcerogenic activity could be due to a synergistic effect of phenolic acids and flavonoid contents which enhances the gastric antioxidant defense system.Abbreviations: BHT: butylated hydroxytoluene, b.w: body weight, CAT: catalase, DPPH:1-Diphenyl-2-picrylhydrazyl, DW: dry weight, EtOH: ethanol, FRAP: Ferric reducing antioxidant power, GAE: gallic acid equivalents, GPx: Glutathione peroxidase, QE: quercetin equivalents, LC-ESI-MS: Liquid chromatography-Electrospray Ionization-Tandem Mass Spectrometry, MDA: malondialdehyde, PR: Pistacia root, TBA: thiobarbituric acid reagent, TBARS: thiobarbituric acid reactive substances, TCA: trichloroacetic acid, SOD: Superoxide dismutase.
Collapse
Affiliation(s)
- Marwa Ben Hmed
- Research Unit of Macromolecular Biochemistry and Genetic, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Hichem Alimi
- Research Unit of Macromolecular Biochemistry and Genetic, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Fatma Guesmi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Feriel Elatrech
- Research Unit of Macromolecular Biochemistry and Genetic, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Nacim Zouari
- Department of Biological Engineering, Higher Institute of Applied Biology ISBAM Medenine 4119, University of Gabes, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology and Environmental Health LR11ES06, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Ridha Ben Salem
- Laboratory of Organic Chemistry LR17ES08, Sciences Faculty of Sfax, Sfax, University of Sfax, Tunisia
| | - Ghayth Rigane
- Laboratory of Organic Chemistry LR17ES08, Sciences Faculty of Sfax, Sfax, University of Sfax, Tunisia.,Chemistry-Physics Department, Sciences and Technology Faculty, University of Kairouan, Kairouan, Tunisia
| | - Slim Cherif
- Department of Biological Engineering, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, ENIS, University of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Pereira Júnior LC, Nascimento FG, Oliveira SRBD, Lima GC, Chagas FDS, Sombra VG, Feitosa JPA, Soriano EM, Souza MHLP, Zocolo GJ, Silva LMA, de Paula RCM, Damasceno ROS, Freitas ALP. Protective effect against gastric mucosa injury of a sulfated agaran from Acanthophora spicifera. Carbohydr Polym 2021; 261:117829. [PMID: 33766334 DOI: 10.1016/j.carbpol.2021.117829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, a polysaccharide from marine alga Acanthophora spicifera (PAs) was isolated and structurally characterized. Its protective potential against chemically-induced gastric mucosa injury was evaluated. The gel permeation chromatography experiments and spectroscopy spectrum showed that PAs is a sulfated polysaccharide with a high molecular mass (6.98 × 105g/mol) and degree of sulfation of 1.23, exhibiting structural characteristic typical of an agar-type polysaccharide. Experimental results demonstrated that PAs reduced the hemorrhagic gastric injury, in a dose-dependent manner. Additionally, PAs reduced the intense gastric oxidative stress, measured by glutathione (GSH) and malondialdehyde (MDA) levels. PAs also prevented the reduction of mucus levels adhered to the gastric mucosa, promoted by the aggressive effect of ethanol. In summary, the sulfated polysaccharide from A. spicifera protected the gastric mucosa through the prevention of lipid peroxidation and enhanced the defense mechanisms of the gastric mucosa, suggesting as a promising functional food as gastroprotective agent.
Collapse
Affiliation(s)
- Lindauro C Pereira Júnior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | | | - Samara R B D Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Glauber C Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil; Centro Universitário INTA (UNINTA), 62500-000, Itapipoca, CE, Brazil
| | - Francisco Diego S Chagas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Venicios G Sombra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Judith P A Feitosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Eliane M Soriano
- Departamento de Oceanografia e Limnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Marcellus H L P Souza
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | | | - Lorena M A Silva
- Embrapa Agroindústria Tropical, 60511-110, Fortaleza, CE, Brazil
| | - Regina C M de Paula
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| | - Renan O S Damasceno
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, 50670-420, Recife, PE, Brazil.
| | - Ana Lúcia P Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60455-760, Fortaleza, CE, Brazil
| |
Collapse
|
20
|
Beiranvand M, Bahramikia S. Ameliorating and protective effects mesalazine on ethanol-induced gastric ulcers in experimental rats. Eur J Pharmacol 2020; 888:173573. [PMID: 32956646 DOI: 10.1016/j.ejphar.2020.173573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
|
21
|
Mączka W, Wińska K, Grabarczyk M. One Hundred Faces of Geraniol. Molecules 2020; 25:molecules25143303. [PMID: 32708169 PMCID: PMC7397177 DOI: 10.3390/molecules25143303] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Geraniol is a monoterpenic alcohol with a pleasant rose-like aroma, known as an important ingredient in many essential oils, and is used commercially as a fragrance compound in cosmetic and household products. However, geraniol has a number of biological activities, such as antioxidant and anti-inflammatory properties. In addition, numerous in vitro and in vivo studies have shown the activity of geraniol against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins. The synergy of this with other drugs may further increase the range of chemotherapeutic agents. The antibacterial activity of this compound was also observed on respiratory pathogens, skin and food-derived strains. This review discusses some of the most important uses of geraniol.
Collapse
Affiliation(s)
- Wanda Mączka
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | - Katarzyna Wińska
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | | |
Collapse
|
22
|
Yulizal OK, Lelo A, Ilyas S, Kusumawati RL. The effect of snakehead fish extract supplementation to first-line eradication regimen on macrophage migration inhibitory factor (MIF) expression in rats induced by Helicobacter pylori infection. J Adv Vet Anim Res 2020; 7:209-217. [PMID: 32607351 PMCID: PMC7320804 DOI: 10.5455/javar.2020.g411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: This work was organized to assess macrophage migration inhibitory factor (MIF) expression in snakehead fish extract supplementation to first-line eradication regimen in rats induced by Helicobacter pylori infection. Materials and methods: A total of 28 manly rats were haphazardly isolated equally into four groups. Group-1 was the control negative, and groups-2–4 were H. pylori-infected groups. Group-2 was the control positive. Groups-3 and 4 were treated with first-line eradication regimen and first-line eradication regimen supplemented with snakehead fish extract, respectively. Immunoreactive scores (IRS) of MIF expression and eradication testing procedure were carried out. The comparison and difference between groups were analyzed by Kruskal–Wallis and post hoc Mann–Whitney U-test. A value of p < 0.05 was considered to be a limit of significance. Results: The average IRS of MIF expression in group-2 was the highest among other groups (p < 0.05). Group-4 (supplemented by snakehead fish extract) had a lower median value IRS of MIF expression compared to group-3 [1.0 (0.0–2.0) vs. 3.5 (2.0–6.0), p = 0.004]. Conclusion: MIF expression was higher in rats induced by H. pylori infection. Snakehead fish extract supplementation to first-line eradication regimen significantly reduces more MIF expression compared to a single administration of first-line eradication regimen in rats induced by H. pylori infection.
Collapse
Affiliation(s)
- O K Yulizal
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aznan Lelo
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Raden Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, H. Adam Malik General Hospital, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
23
|
Nemidkanam V, Kato Y, Kubota T, Chaichanawongsaroj N. Ethyl acetate extract of Kaempferia parviflora inhibits Helicobacter pylori-associated mammalian cell inflammation by regulating proinflammatory cytokine expression and leukocyte chemotaxis. BMC Complement Med Ther 2020; 20:124. [PMID: 32321502 PMCID: PMC7179042 DOI: 10.1186/s12906-020-02927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/14/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Kaempferia parviflora (KP) has been used in traditional Thai medicine to cure gastrointestinal disorders since ancient times. Helicobacter pylori is an initiating factor in gastric pathogenesis via activation of massive inflammation, the cumulative effect of which leads to gastric disease progression, including gastric carcinogenesis. Accordingly, the effect of a crude ethyl acetate extract of KP (CEAE-KP) on proinflammatory cytokine production and cell chemotaxis was the focus of this study. METHODS The cytotoxicity of CEAE-KP (8-128 μg/ml) on AGS (gastric adenocarcinoma) cells was determined at 6, 12 and 24 h using an MTT assay. The effect of CEAE-KP on H. pylori-induced interleukin (IL)-8 production by AGS cells was evaluated by ELISA and RT-PCR. The effect of CEAE-KP on monocyte and neutrophil chemotaxis to H. pylori soluble protein (sHP) and IL-8, respectively, was determined using a Boyden chamber assay with THP-1 or HL-60 cells. RESULTS CEAE-KP reduced AGS cell viability in a concentration- and time-dependent manner, but at 8-16 μg/ml, it was not cytotoxic after 6-24 h of exposure. Coculture of AGS cells with CEAE-KP at a noncytotoxic concentration of 16 μg/ml and H. pylori reduced IL-8 secretion by ~ 60% at 12 h, which was consistent with the decreased level of mRNA expression, and inhibited neutrophil chemotaxis to IL-8. sHP (100 ng/ml) induced marked monocyte chemoattraction, and this was decreased by ~ 60% by CEAE-KP. CONCLUSION CEAE-KP might serve as a potent alternative medicine to ameliorate the inflammation mediated by H. pylori infection.
Collapse
Affiliation(s)
- Variya Nemidkanam
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Yuko Kato
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan
| | - Tetsuo Kubota
- Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan
| | - Nuntaree Chaichanawongsaroj
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
24
|
Hu B, Hu J, Cai L, Yao Z, Zhang Z, Zhang M, Zhang Y, Jiang L. Fisetin attenuates gastric mucosal lesions through modulating nuclear factor-kappa B and peroxisome proliferator-activated receptor-γ in rats. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Badr AM, EL- Orabi NF, Ali RA. The implication of the crosstalk of Nrf2 with NOXs, and HMGB1 in ethanol-induced gastric ulcer: Potential protective effect is afforded by Raspberry Ketone. PLoS One 2019; 14:e0220548. [PMID: 31404064 PMCID: PMC6690542 DOI: 10.1371/journal.pone.0220548] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Ethanol consumption is one of the common causative agents implicated in gastric ulcer development. Oxidative stress plays a major role in the induction and development of gastric ulceration. NADPH oxidases (NOXs) and Nuclear factor erythroid 2-related factor 2 (Nrf2) are key players in ethanol-induced ulcers. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. However, the role of HMGB1 in ethanol-induced gastric ulcer is not yet elucidated. Raspberry Ketone (RK) is a natural phenolic compound with antioxidant and anti-inflammatory properties. In the present study, absolute ethanol (7.5 ml/kg) was used to induce gastric ulceration in rats. Raspberry Ketone (RK) (50 mg/kg) was given orally one hour before the administration of absolute ethanol. Interestingly, ethanol-induced gastric ulcer was associated with Nrf2 downregulation, which was correlated with NOX-1, 2 NOX-4, and HMGB1 upregulation, and was significantly reversed by RK pre-treatment. RK pre-treatment provided 80% gastroprotection. Gastroprotective properties of RK were mediated via antioxidant, anti-inflammatory (suppression of NF-kB and tumor necrosis factor-α), and antiapoptotic activities (reduction of Bax/Bcl2 ratio). Gastroprotective properties of RK were confirmed by histopathological examination. In conclusion, this study is the first to provide evidence to the role of HMGB1 in ethanol-induced gastric ulcer, and the crosstalk of Nrf2, NOXs and HMGB1. It also demonstrates that RK represents a promising gastroprotective activity comparable to omeprazole.
Collapse
Affiliation(s)
- Amira M. Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt
| | - Naglaa F. EL- Orabi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Rehab A. Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Bhattamisra S, Hooi L, Shyan L, Chieh L, Candasamy M, Sahu P. Effect of geraniol and clarithromycin combination against gastric ulcers induced by acetic acid and Helicobacter pylori in rats. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_21_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|