1
|
Portugal MCS, Altafim GL, de Jesus SB, Alves AV, Rojas LAV, Zanardi-Lamardo E, Castro IB, Gallucci F, Choueri RB. Toxicity of PAHs-enriched sediments on meiobenthic communities under ocean warming and CO 2-driven acidification scenarios. MARINE POLLUTION BULLETIN 2025; 212:117489. [PMID: 39729829 DOI: 10.1016/j.marpolbul.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to assess the interactive effects of CO2-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.6), and PAH contamination (acenaphthene + benzo(a)pyrene spiked sediments and negative control). Temperature rise and CO2-driven acidification led to a decrease in the densities of Copepoda. The density of nematodes Pseudochromadora and Daptonema also decreased, while Sphaerotheristus and Sabatieria densities increased, particularly in the absence of CO2-driven acidification. Ostracoda densities increased in the acidified scenario. PAH contamination resulted in decreased Daptonema densities but increased Turbellaria and certain Nematoda genera (e.g. Pseudochromadora). Overall, the results indicate that the changes of meiobenthic communities caused by CO2 acidification, warming, and PAH contamination are shaped by the vulnerability and tolerance of each taxonomic group, alongside indirect effects observed in Nematoda assemblages.
Collapse
Affiliation(s)
| | - Giam Luca Altafim
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Simone Brito de Jesus
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Aline Vecchio Alves
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Lino Angel Valcárcel Rojas
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | | |
Collapse
|
2
|
de Juan C, Traboni C, Calbet A, Saiz E. Metabolic balance of a marine neritic copepod under chronic and acute warming scenarios. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106827. [PMID: 39561428 DOI: 10.1016/j.marenvres.2024.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024]
Abstract
We investigated the impact of sublethal thermal stress on physiological rates of the copepod Paracartia grani, and explored the influence of previous thermal history on this response. The copepods, originally reared at 19 °C, were raised for 23 generations at 22 °C and 25 °C, and posteriorly exposed for 7-d to stress temperature (28 °C). The copepod acclimation capacity was assessed by comparing metabolic balance at 28 °C against their respective rearing temperatures. There was an inverse relationship between rearing temperature and body size and carbon content for the reared copepod lines. Weight-specific rates, except respiration, increased with rearing temperature, whereas per capita rate differences were levelled, partly due to differences in copepod size. Heat stress impact, as weight-specific rate fold-change, appeared inversely related to rearing temperature. Carbon gains were overall sufficient and slightly in excess to account for carbon losses. Gross-growth efficiency across warming scenarios was conserved, emphasizing resilience to environmental change. Our findings underscore the importance of considering the species' thermal history when predicting the response of copepod populations to climate change associated phenomena such as gradual slow ocean warming or heatwave events.
Collapse
Affiliation(s)
- C de Juan
- Institut de Ciències del Mar (ICM), CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - C Traboni
- Institut de Ciències del Mar (ICM), CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - A Calbet
- Institut de Ciències del Mar (ICM), CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - E Saiz
- Institut de Ciències del Mar (ICM), CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Vu Q, Pham L, Truong O, Tran S, Bui C, Le M, Dang B, Dinh K. Extreme Temperatures Reduce Copepod Performance and Change the Relative Abundance of Internal Microbiota. Ecol Evol 2024; 14:e70408. [PMID: 39398636 PMCID: PMC11470155 DOI: 10.1002/ece3.70408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Copepods are one of the most abundant invertebrate groups in the seas and oceans and are a significant food source for marine animals. Copepods are also particularly sensitive to elevated temperatures. However, it is relatively unknown how the internal microbiome influences copepod susceptibility to warming. We addressed this fundamental knowledge gap by assessing key life history traits (survival, development, and reproduction) and changes in the internal microbiome in the tropical calanoid copepod Acartia sp. in response to warming (26°C, 30°C, and 34°C). Copepod microbiomes were analyzed using high throughput DNA sequencing of V1-V9 of 16S rRNA hypervariable regions. Copepod performance was better at 30°C than at 26°C, as indicated by faster development, a higher growth rate, and fecundity. However, these parameters strongly decreased at 34°C. We recorded 1,262,987 amplicon sequence reads, corresponding to 392 total operational taxonomic units (OTUs) at 97% similarity. Warming did not affect OTU numbers and the biodiversity indices, but it substantially changed the relative abundance of three major phyla: Proteobacteria, Actinobacteria, and Bacteroidota. The thermophilic and opportunistic Proteobacteria and Bacteroidota increased under extreme temperatures (34°C) while Actinobacteria abundance was strongly reduced. Changes in the relative abundance of these bacteria might be related to reduced copepod growth, survival, and reproduction under extreme temperatures. Profiling the functional role of all internal bacterial groups in response to the temperature change will fundamentally advance our mechanistic understanding of the performance of tropical copepods and, more generally, marine invertebrates to a warming climate.
Collapse
Affiliation(s)
- Quyen D. H. Vu
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Linh P. Pham
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
| | - Oanh T. Truong
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Sang Q. Tran
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Canh V. Bui
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
| | - Minh‐Hoang Le
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
| | - Binh T. Dang
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Khuong V. Dinh
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
4
|
Bai Z, Yin J, Cheng L, Song L, Zhang YY, Wang M. Multistress Interplay: Time and Duration of Ocean Acidification Modulate the Toxicity of Mercury and Other Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6487-6498. [PMID: 38579165 DOI: 10.1021/acs.est.3c09112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Luting Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Nowakowski K, Sługocki Ł. Contrasting responses of Thermocyclops crassus and T. oithonoides (Crustacea, Copepoda) to thermal stress. Sci Rep 2024; 14:7660. [PMID: 38561430 PMCID: PMC10984995 DOI: 10.1038/s41598-024-58230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Thermal tolerance is a critical factor influencing the survival of living organisms. This study focuses on the thermal resistance of copepod species, Thermocyclops crassus (Fischer, 1853) and T. oithonoides (Sars G.O., 1863), with overlapping distribution ranges in Europe. Short-term heat shock experiments were conducted to assess the thermal resistance of these copepods, considering various temperature increments and exposure durations. Additionally, the study explored the influence of heat shock on egg sac shedding, a vital indicator of population dynamics. Results indicate that widely distributed T. crassus exhibits higher thermal tolerance compared to narrowly distributed T. oithonoides, with survival rates varying under different heat shock conditions. Furthermore, T. crassus demonstrated a quicker response in dropping egg sacs in response to thermal stress, suggesting a potential adaptive mechanism for the survival of adults. However, rapid egg sac droppings pose high risks for eggs facing unfavorable conditions. T. crassus, inhabiting environments with greater temperature fluctuations such as the littoral and pelagial zones, exhibited better survival mechanisms compared to T. oithonoides, which predominantly resides in the pelagic zone. The findings have implications for understanding copepod responses to global warming and thermal pollution. This research contributes insights into the adaptive strategies of thermophilic copepod species and their ecological consequences.
Collapse
Affiliation(s)
- Kacper Nowakowski
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland.
- Center of Molecular Biology and Biotechnology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland.
| |
Collapse
|
6
|
Li AJ, Lai RWS, Zhou GJ, Leung PTY, Zeng EY, Leung KMY. Joint effects of temperature and copper exposure on developmental and gene-expression responses of the marine copepod Tigriopus japonicus. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:336-343. [PMID: 36964297 DOI: 10.1007/s10646-023-02643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
There is growing contamination of copper (Cu) in the marine environment, particularly after the ban of organotin compounds and the increase of the use of Cu-based antifouling paints. Although there are increasing research interests in temperature-dependent chemical toxicity to aquatic organisms, most existing studies focused on acute impacts of chemicals at high concentrations. This study aimed to investigate the interacting effect of temperature and copper exposure at environmentally relevant concentrations on survival and development in the marine copepod Tigriopus japonicus with a partial life-cycle toxicity test. Expressions of five stress response genes in the copepod, namely two glutathione S-transferases (GST-S and GST-O), two heat shock proteins (HSP70 and HSP90), and glutathione reductase (GR) were also investigated. The copepod's survival was significantly impaired at 15 °C after development to adult stage, while its developmental time reduced significantly with increasing temperature. Copper at the two environmentally relevant test concentrations had no significant impacts on these apical endpoints whereas the interaction between Cu and temperature was more significant in modulating gene expressions. GST-S, GST-O and HSP90 genes in copepods exposed to 100 µg Cu L-1 were significantly upregulated at 20 °C. At 32 °C, most genes were either insignificantly expressed or down-regulated, compared to the control, likely suggesting that thermal stress inhibited the copepod's antioxidative defense system. Overall, the results revealed that the joint Cu and thermal stresses have significantly elicited antioxidative system in the copepods. It clearly demonstrated the need for more fundamental studies about potential impacts of different environmental factors such as temperature on chemical toxicity under realistic scenario of marine pollution.
Collapse
Affiliation(s)
- Adela Jing Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Racliffe Weng Seng Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, 999078, China.
| | - Guang-Jie Zhou
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Priscilla To Yan Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Eddy Y Zeng
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
7
|
Truong KN, Vu N, Doan NX, Bui CV, Le M, Vu MTT, Dinh KV. Transgenerational exposure to marine heatwaves ameliorates the lethal effect on tropical copepods regardless of predation stress. Ecol Evol 2022; 12:e9149. [PMID: 35949526 PMCID: PMC9350982 DOI: 10.1002/ece3.9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Marine heatwaves (MHWs) are emerging as a severe stressor in marine ecosystems. Extreme warm sea surface temperatures during MHWs often exceed the optimal thermal range for more than one generation of tropical coastal zooplankton. However, it is relatively unknown whether transgenerational plasticity (TGP) to MHWs may shape the offspring's fitness, particularly in an ecologically relevant context with biotic interactions such as predation stress. We addressed these novel research questions by determining the survival, reproductive success, and grazing rate of the copepod Pseudodiaptomus incisus exposed to MHW and fish predator cues (FPC) for two generations (F1 and F2). The experiment was designed in a full orthogonal manner with 4 treatments in F1 and 16 treatments in F2 generation. In both generations, MHW reduced P. incisus survival, reproductive parameters, and grazing by 10%-62% in MHW, but these parameters increased by 2%-15% with exposure to FPC, particularly at control temperature. F2 reproductive success and grazing rate as indicated by cumulative fecal pellets were reduced by 20%-30% in F1-MHW, but increased by ~2% in F1-FPC. Strikingly, MHW exposure reduced 17%-18% survival, but transgenerational exposure to MHWs fully ameliorated its lethal effect and this transgenerational effect was independent of FPC. Increased survival came with a cost of reduced reproductive success, constrained by reduced grazing. The rapid transgenerational MHW acclimation and its associated costs are likely widespread and crucial mechanisms underlying the resilience of coastal tropical zooplankton to MHWs in tropical coastal marine ecosystems.
Collapse
Affiliation(s)
- Kiem N. Truong
- Department of EcologyUniversity of Science, Vietnam National UniversityHanoiVietnam
| | - Ngoc‐Anh Vu
- Department of EcologyUniversity of Science, Vietnam National UniversityHanoiVietnam
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Nam X. Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Canh V. Bui
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Minh‐Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Minh T. T. Vu
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Khuong V. Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
8
|
Dinh KV, Doan KLU, Doan NX, Pham HQ, Le THO, Le MH, Vu MTT, Dahms HU, Truong KN. Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117603. [PMID: 34147778 DOI: 10.1016/j.envpol.2021.117603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 05/09/2023]
Abstract
Extreme temperatures from marine heatwaves (MHWs) and pollution are dominant stressors in tropical marine ecosystems. However, we know little about the role of transgenerational effects of metals and MHWs in shaping the offspring's vulnerability to these stressors. We addressed this fundamental knowledge gap by exposing the planktonic copepod Pseudodiaptomus incisus to copper (Cu: control, 15 and 60 μg L-1) under 2 temperatures (30 and a simulated marine heatwave at 34 °C) in the first generation (F1) and 16 treatments in F2: offspring from each of 4 F1 conditions (control or 15 μg Cu L-1 × 30 or 34 °C) was reared in 4 F2 conditions (control or 15 μg Cu L-1 × 30 or 34 °C). We assessed changes in copepod performance, particularly survival, adult size, grazing, and reproduction. In F1, Cu or marine heatwave (MHW) exposures reduced all fitness traits of F1; the effects were particularly strong when both stressors were present. Transgenerational effects of Cu or MHW also strongly reduced F2 performance. Direct Cu and MHW effects on the offspring were further strengthened by transgenerational effects, resulting in more substantial reductions in F2 performance when both generations were exposed to these stressors. As copepods are major food resources for corals, shrimps, or fish larvae and juveniles, strong transgenerational and direct effects of Cu and MHW can have a cascading effect on entire coastal food webs. These results highlight the importance of considering the interaction of transgenerational and direct effects of multiple stressors, particularly relevant for short-lived organisms in tropical marine ecosystems.
Collapse
Affiliation(s)
- Khuong V Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam.
| | - Kha L U Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam; Department of Environmental Technology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| | - Nam X Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Hung Q Pham
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Thi Hoang Oanh Le
- Department of Environmental Technology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| | - Minh-Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Minh T T Vu
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Kiem N Truong
- Department of Ecology, Faculty of Biology, University of Science, Vietnam National University, VNU Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| |
Collapse
|
9
|
Dinh KV, Nguyen QTT, Vo TMC, Bui TB, Dao TS, Tran DM, Doan NX, Truong TSH, Wisz MS, Nielsen TG, Vu MTT, Le MH. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations. MARINE POLLUTION BULLETIN 2020; 159:111509. [PMID: 32763562 DOI: 10.1016/j.marpolbul.2020.111509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Tropical coastal areas are increasingly exposed to temperature extremes from marine heatwaves and contaminants from anthropogenic activities. The interactive effects of these environmental changes on marine life are understudied. We investigated the direct and cross-generational effects of copper (Cu) on F0 and F1 generations of the common tropical copepod Pseudodiaptomus annandalei under extreme temperatures (30 and 34 °C). In F0, Cu exposure reduced survival and nauplii production; these patterns were more pronounced at 34 °C and in females. F0 Copepods produced more faecal pellets at 34 °C than 30 °C, indicating a higher energetic demand. In F1, the number of F1 adults was lower in CuF0 and at 34 °C. Cu-exposed F0 produced larger adult F1, while exposure to 34 °C resulted in smaller adult F1. Our results show that tropical copepods are highly vulnerable to the interactive effects of contaminants and extreme temperatures.
Collapse
Affiliation(s)
- Khuong V Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam.
| | - Quyen T T Nguyen
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Thi-My-Chi Vo
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Trung Ba Bui
- Institute for Environment and Resources, Vietnam National University - Hochiminh City, 142 To Hien Thanh St., Dist. 10, Hochiminh City, Viet Nam
| | - Thanh-Son Dao
- Hochiminh City University of Technology, VNU - HCM, Hochiminh City, Viet Nam
| | - Duc M Tran
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Nam X Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Trinh S H Truong
- Institute of Oceanography, VAST, 01 Cau Da street, Nha Trang City, Viet Nam
| | - Mary S Wisz
- World Maritime University, Fiskehamnsgatan 1, Malmö, Sweden
| | | | - Minh T T Vu
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Minh-Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of Aquaculture, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| |
Collapse
|
10
|
Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci Rep 2019; 9:4550. [PMID: 30872725 PMCID: PMC6418224 DOI: 10.1038/s41598-019-40996-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Shallow, tropical marine ecosystems provide essential ecosystem goods and services, but it is unknown how these ecosystems will respond to the increased exposure to the temperature extremes that are likely to become more common as climate change progresses. To address this issue, we tracked the fitness and productivity of a key zooplankton species, the copepod Pseudodiaptomus annandalei, acclimated at two temperatures (30 and 34 °C) over three generations. 30 °C is the mean temperature in the shallow water of the coastal regions in Southeast Asia, while 34 °C simulated a temperature extreme that occurs frequently during the summer period. For each generation, we measured the size at maturity and reproductive success of individuals. In all three generations, we found strong negative effects of warming on all measured fitness-related parameters, including prolonged development time, reduced size at maturity, smaller clutch sizes, lower hatching success, and reduced naupliar production. Our results suggest that P. annandalei are already exposed to temperatures that exceed their upper thermal optimum. Increased exposure to extreme temperatures may reduce the abundance of these tropical marine copepods, and thus reduce the availability of resources to higher trophic levels.
Collapse
|