1
|
Sentis A, Bazin S, Boukal DS, Stoks R. Ecological consequences of body size reduction under warming. Proc Biol Sci 2024; 291:20241250. [PMID: 39166384 PMCID: PMC11337126 DOI: 10.1098/rspb.2024.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
Body size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio. Using this framework, we synthesize key consequences of warming-induced body size reductions at multiple levels of biological organization. We outline how this trait-based framework can improve our understanding, detection and generalization of the ecological impacts of warming.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne-CS 40061, Aix-en-Provence Cedex 513182, France
| | - Simon Bazin
- INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne-CS 40061, Aix-en-Provence Cedex 513182, France
| | - David S. Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice37005, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice37005, Czech Republic
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, Leuven3000, Belgium
| |
Collapse
|
2
|
Martínez-De León G, Fahrni M, Thakur MP. Temperature-size responses during ontogeny are independent of progenitors' thermal environments. PeerJ 2024; 12:e17432. [PMID: 38799056 PMCID: PMC11127640 DOI: 10.7717/peerj.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Warming generally induces faster developmental and growth rates, resulting in smaller asymptotic sizes of adults in warmer environments (a pattern known as the temperature-size rule). However, whether temperature-size responses are affected across generations, especially when thermal environments differ from one generation to the next, is unclear. Here, we tested temperature-size responses at different ontogenetic stages and in two consecutive generations using two soil-living Collembola species from the family Isotomidae: Folsomia candida (asexual) and Proisotoma minuta (sexually reproducing). Methods We used individuals (progenitors; F0) from cultures maintained during several generations at 15 °C or 20 °C, and exposed their offspring in cohorts (F1) to various thermal environments (15 °C, 20 °C, 25 °C and 30 °C) during their ontogenetic development (from egg laying to first reproduction; i.e., maturity). We measured development and size traits in the cohorts (egg diameter and body length at maturity), as well as the egg diameters of their progeny (F2). We predicted that temperature-size responses would be predominantly determined by within-generation plasticity, given the quick responsiveness of growth and developmental rates to changing thermal environments. However, we also expected that mismatches in thermal environments across generations would constrain temperature-size responses in offspring, possibly due to transgenerational plasticity. Results We found that temperature-size responses were generally weak in the two Collembola species, both for within- and transgenerational plasticity. However, egg and juvenile development were especially responsive at higher temperatures and were slightly affected by transgenerational plasticity. Interestingly, plastic responses among traits varied non-consistently in both Collembola species, with some traits showing plastic responses in one species but not in the other and vice versa. Therefore, our results do not support the view that the mode of reproduction can be used to explain the degree of phenotypic plasticity at the species level, at least between the two Collembola species used in our study. Our findings provide evidence for a general reset of temperature-size responses at the start of each generation and highlight the importance of measuring multiple traits across ontogenetic stages to fully understand species' thermal responses.
Collapse
Affiliation(s)
| | - Micha Fahrni
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Madhav P. Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Skeeles MR, Scheuffele H, Clark TD. Supplemental oxygen does not improve growth but can enhance reproductive capacity of fish. Proc Biol Sci 2023; 290:20231779. [PMID: 37909085 PMCID: PMC10618859 DOI: 10.1098/rspb.2023.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
Fish tend to grow faster as the climate warms but attain a smaller adult body size following an earlier age at sexual maturation. Despite the apparent ubiquity of this phenomenon, termed the temperature-size rule (TSR), heated scientific debates have revealed a poor understanding of the underlying mechanisms. At the centre of these debates are prominent but marginally tested hypotheses which implicate some form of 'oxygen limitation' as the proximate cause. Here, we test the role of oxygen limitation in the TSR by rearing juvenile Galaxias maculatus for a full year in current-day (15°C) and forecasted (20°C) summer temperatures while providing half of each temperature group with supplemental oxygen (hyperoxia). True to the TSR, fish in the warm treatments grew faster and reached sexual maturation earlier than their cooler conspecifics. Yet, despite supplemental oxygen significantly increasing maximum oxygen uptake rate, our findings contradict leading hypotheses by showing that the average size at sexual maturation and the adult body size did not differ between normoxia and hyperoxia groups. We did, however, discover that hyperoxia extended the reproductive window, independent of fish size and temperature. We conclude that the intense resource investment in reproduction could expose a bottleneck where oxygen becomes a limiting factor.
Collapse
Affiliation(s)
- Michael R. Skeeles
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Timothy D. Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
4
|
Niu J, Huss M, Vasemägi A, Gårdmark A. Decades of warming alters maturation and reproductive investment in fish. Ecosphere 2023. [DOI: 10.1002/ecs2.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jingyao Niu
- Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Huss
- Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden
| | - Anti Vasemägi
- Department of Aquatic Resources Institute of Freshwater Research, Swedish University of Agricultural Sciences Drottningholm Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
5
|
Thunell V, Gårdmark A, Huss M, Vindenes Y. Optimal energy allocation trade-off driven by size-dependent physiological and demographic responses to warming. Ecology 2022; 104:e3967. [PMID: 36565169 DOI: 10.1002/ecy.3967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022]
Abstract
Body size-dependent physiological effects of temperature influence individual growth, reproduction, and survival, which govern animal population responses to global warming. Considerable knowledge has been established on how such effects can affect population growth and size structure, but less is known of their potential role in temperature-driven adaptation in life-history traits. In this study, we ask how warming affects the optimal allocation of energy between growth and reproduction and disentangle the underlying fitness trade-offs. To this end, we develop a novel dynamic energy budget integral projection model (DEB-IPM), linking individuals' size- and temperature-dependent consumption and maintenance via somatic growth, reproduction, and size-dependent energy allocation to emergent population responses. At the population level, we calculate the long-term population growth rate (fitness) and stable size structure emerging from demographic processes. Applying the model to an example of pike (Esox lucius), we find that optimal energy allocation to growth decreases with warming. Furthermore, we demonstrate how growth, fecundity, and survival contribute to this change in optimal allocation. Higher energy allocation to somatic growth at low temperatures increases fitness through survival of small individuals and through the reproduction of larger individuals. In contrast, at high temperatures, increased allocation to reproduction is favored because warming induces faster somatic growth of small individuals and increased fecundity but reduced growth and higher mortality of larger individuals. Reduced optimum allocation to growth leads to further reductions in body size and an increasingly truncated population size structure with warming. Our study demonstrates how, by incorporating general physiological mechanisms driving the temperature dependence of life-history traits, the DEB-IPM framework is useful for investigating the adaptation of size-structured organisms to warming.
Collapse
Affiliation(s)
- Viktor Thunell
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Temperature effects on mormon cricket Anabrus simplex embryo development, hatching and nymphal growth: Thermal performance curves change with ontogeny. J Therm Biol 2022; 110:103356. [DOI: 10.1016/j.jtherbio.2022.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
|
7
|
Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature-dependent manner. GLOBAL CHANGE BIOLOGY 2022; 28:5695-5707. [PMID: 35876025 DOI: 10.5281/zenodo.6123770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 05/22/2022] [Indexed: 05/20/2023]
Abstract
Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jeroen F Sandker
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Iris L E van de Pol
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | | | - David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Félix P Leiva
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature-dependent manner. GLOBAL CHANGE BIOLOGY 2022; 28:5695-5707. [PMID: 35876025 PMCID: PMC9542040 DOI: 10.1111/gcb.16319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 05/22/2022] [Indexed: 05/04/2023]
Abstract
Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Wilco C. E. P. Verberk
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Jeroen F. Sandker
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Iris L. E. van de Pol
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Mauricio A. Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto Milenio de Oceanografía (IMO)Universidad de ConcepciónConcepciónChile
| | | | - David J. McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRDMontpellierFrance
| | - Félix P. Leiva
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|
9
|
Blasco FR, Taylor EW, Leite CAC, Monteiro DA, Rantin FT, McKenzie DJ. Tolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptake. J Exp Biol 2022; 225:276171. [PMID: 35909333 DOI: 10.1242/jeb.244287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
It has been proposed that larger individuals within fish species may be more sensitive to global warming, due to limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21 - 313g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26 °C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.
Collapse
Affiliation(s)
- F R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, 14801-903, Araraquara SP, Brazil
| | - E W Taylor
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,School of Biosciences, University of Birmingham, B15 2TT, UK
| | - C A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France
| |
Collapse
|
10
|
Agiadi K, Nawrot R, Albano PG, Koskeridou E, Zuschin M. Potential and limitations of applying the mean temperature approach to fossil otolith assemblages. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 105:1269-1286. [PMID: 36313612 PMCID: PMC9592634 DOI: 10.1007/s10641-022-01252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 06/16/2023]
Abstract
Evaluation of the impact of climatic changes on the composition of fish assemblages requires quantitative measures that can be compared across space and time. In this respect, the mean temperature of the catch (MTC) approach has been proven to be a very useful tool for monitoring the effect of climate change on fisheries catch. Lack of baseline data and deep-time analogues, however, prevent a more comprehensive evaluation. In this study, we explore the applicability of the mean temperature approach to fossil fish faunas by using otolith assemblage data from the eastern Mediterranean and the northern Adriatic coastal environments corresponding to the last 8000 years (Holocene) and the interval 2.58-1.80 Ma B. P. (Early Pleistocene). The calculated mean temperatures of the otolith assemblage (MTO) range from 13.5 to 17.3 °C. This case study shows that the MTO can successfully capture compositional shifts in marine fish faunas based on variations in their climatic affinity driven by regional climate differences. However, the index is sensitive to methodological choices and thus requires standardized sampling. Even though theoretical and methodological issues prevent direct comparisons between MTO and MTC values, the MTO offers a useful quantitative proxy for reconstructing spatial and temporal trends in the biogeographic affinity of fossil otolith assemblages.
Collapse
Affiliation(s)
- Konstantina Agiadi
- Department of Palaeontology, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| | - Paolo G. Albano
- Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Efterpi Koskeridou
- National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| |
Collapse
|
11
|
Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol Lett 2022; 25:1177-1188. [PMID: 35266600 PMCID: PMC9545254 DOI: 10.1111/ele.13989] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Fish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature‐size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade‐offs across temperatures. We tested these hypotheses by measuring growth, maturation, metabolism and reproductive allocation from zebrafish populations kept at 26 and 30°C across six generations. Zebrafish growth and maturation followed TSR expectations but were not explained by baseline metabolic rate, which converged between temperature treatments after a few generations. Rather, we found that females at 30°C allocated more to reproduction, especially when maturing at the smallest sizes. We show that elevated temperatures do not necessarily increase baseline metabolism if sufficient acclimation is allowed and call for an urgent revision of modelling assumptions used to predict population and ecosystem responses to warming.
Collapse
Affiliation(s)
- Henry F Wootton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Schmitt
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Asta Audzijonyte
- IMAS, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Marine Socioecology, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Baur J, Jagusch D, Michalak P, Koppik M, Berger D. The mating system affects the temperature sensitivity of male and female fertility. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Dorian Jagusch
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
- Organismal and Evolutionary Biology Research Program Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Piotr Michalak
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - David Berger
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
13
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
14
|
Verberk WC, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biol Rev Camb Philos Soc 2021; 96:247-268. [PMID: 32959989 PMCID: PMC7821163 DOI: 10.1111/brv.12653] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature-size (T-S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature-size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T-S responses can be explained by the 'Ghost of Oxygen-limitation Past', whereby the resulting (evolved) T-S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T-S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T-S responses but also variation in T-S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
Collapse
Affiliation(s)
- Wilco C.E.P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - David Atkinson
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| | - K. Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
- Faculty of Science and Engineering, Ocean Ecosystems — Energy and Sustainability Research Institute GroningenUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
- Centre for Ocean Life, DTU AquaTechnical University of DenmarkLyngbyDenmark
| | - Curtis R. Horne
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
15
|
Alix M, Kjesbu OS, Anderson KC. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. JOURNAL OF FISH BIOLOGY 2020; 97:607-632. [PMID: 32564350 DOI: 10.1111/jfb.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 05/17/2023]
Abstract
Ambient temperature modulates reproductive processes, especially in poikilotherms such as teleosts. Consequently, global warming is expected to impact the reproductive function of fish, which has implications for wild population dynamics, fisheries and aquaculture. In this extensive review spanning tropical and cold-water environments, we examine the impact of higher-than-optimal temperatures on teleost reproductive development and physiology across reproductive stages, species, generations and sexes. In doing so, we demonstrate that warmer-than-optimal temperatures can affect every stage of reproductive development from puberty through to the act of spawning, and these responses are mediated by age at spawning and are associated with changes in physiology at multiple levels of the brain-pituitary-gonad axis. Response to temperature is often species-specific and changes with environmental history/transgenerational conditioning, and the amplitude, timing and duration of thermal exposure within a generation. Thermally driven changes to physiology, gamete development and maturation typically culminate in poor sperm and oocyte quality, and/or advancement/delay/inhibition of ovulation/spermiation and spawning. Although the field of teleost reproduction and temperature is advanced in many respects, we identify areas where research is lacking, especially for males and egg quality from "omics" perspectives. Climate-driven warming will continue to disturb teleost reproductive performance and therefore guide future research, especially in the emerging areas of transgenerational acclimation and epigenetic studies, which will help to understand and project climate change impacts on wild populations and could also have implications for aquaculture.
Collapse
Affiliation(s)
- Maud Alix
- Institute of Marine Research, Bergen, Norway
| | | | - Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Newnham, Tasmania, Australia
| |
Collapse
|