1
|
Dufficy AL, Eaton BC, Moore RD. Quantifying Hydraulic Geometry and Whitewater Coverage for Steep Proglacial Streams to Support Process-Based Stream Temperature Modelling. HYDROLOGICAL PROCESSES 2024; 38:e70003. [PMID: 39610712 PMCID: PMC11598200 DOI: 10.1002/hyp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
At-a-station hydraulic geometry (AASHG) relationships describe the dependence of a river's width, mean depth and mean velocity on discharge at a given location, and are typically modelled as power-law functions. They are often used when modelling stream temperature under unsteady flow conditions. Deriving AASHG relationships is challenging for steep proglacial streams due to the combination of complex morphology and velocity distributions, and rapidly varying flow. The objective of this study was to combine tracer injections with drone-based photogrammetry to derive AASHG relationships for a steep proglacial channel and to quantify whitewater coverage and its relationship with discharge to support process-based stream temperature modelling. Velocity-discharge and width-discharge relationships were reasonably well characterised using power-law functions, but varied amongst sub-reaches. Whitewater coverage as a fraction of total stream surface area generally exceeded 50% for the range of flows sampled, and exhibited a statistically significant positive relationship with discharge, which varied amongst sub-reaches. For the range of flows captured during drone flights, the relationship could be represented by a linear function. However, an asymptotic model would be required to extend the relationship to higher flows. The magnitude of whitewater coverage indicates that the albedo of the stream should be substantially higher than values typically used in stream temperature models, and the relationship with discharge means that ongoing glacier retreat, and the associated reduction in summer discharge, should result in lower albedo and higher downstream warming rates, reinforcing the effects of decreasing velocity and mean depth as flows decline.
Collapse
Affiliation(s)
- A. L. Dufficy
- Northwest Hydraulic Consultants Ltd.SeattleWashingtonUSA
- Department of GeographyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - B. C. Eaton
- Department of GeographyThe University of British ColumbiaVancouverBritish ColumbiaCanada
- BGC Engineering Inc.VancouverBritish ColumbiaCanada
| | - R. D. Moore
- Department of GeographyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Mejia FH, Ouellet V, Briggs MA, Carlson SM, Casas-Mulet R, Chapman M, Collins MJ, Dugdale SJ, Ebersole JL, Frechette DM, Fullerton AH, Gillis CA, Johnson ZC, Kelleher C, Kurylyk BL, Lave R, Letcher BH, Myrvold KM, Nadeau TL, Neville H, Piégay H, Smith KA, Tonolla D, Torgersen CE. Closing the gap between science and management of cold-water refuges in rivers and streams. GLOBAL CHANGE BIOLOGY 2023; 29:5482-5508. [PMID: 37466251 PMCID: PMC10615108 DOI: 10.1111/gcb.16844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change.
Collapse
Affiliation(s)
- Francine H. Mejia
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, Seattle, Washington, USA
| | - Valerie Ouellet
- National Oceanic and Atmospheric Administration, Northeast Fisheries Science Center, Orono, Maine, USA
| | - Martin A. Briggs
- Observing Systems Division, U.S. Geological Survey, Hydrologic Remote Sensing Branch, Storrs, Connecticut, USA
| | - Stephanie M. Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Roser Casas-Mulet
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Infrastructure Engineering, School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Mollie Chapman
- Department of Geography, URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Mathias J. Collins
- National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, USA
| | | | - Joseph L. Ebersole
- Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, Oregon, USA
| | - Danielle M. Frechette
- Maine Department of Marine Resources, Bureau of Sea Run Fisheries and Habitat, Augusta, Maine, USA
| | - Aimee H. Fullerton
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Association, Seattle, Washington, USA
| | | | - Zachary C. Johnson
- U.S. Geological Survey, Washington Water Science Center, Tacoma, Washington, USA
| | - Christa Kelleher
- Department of Civil and Environmental Engineering, Lafayette College, Easton, Pennsylvania, USA
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, New York, USA
| | - Barret L. Kurylyk
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rebecca Lave
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Benjamin H. Letcher
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Fish Research Center, Turners Falls, Massachusetts, USA
| | - Knut M. Myrvold
- Norwegian Institute for Nature Research, Lillehammer, Norway
| | - Tracie-Lynn Nadeau
- Region 10, Water Division, Oregon Operations Office, U.S. Environmental Protection Agency, Portland, Oregon, USA
| | | | - Herve Piégay
- UMR 5600 CNRS EVS, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Kathryn A. Smith
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Diego Tonolla
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Christian E. Torgersen
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, Seattle, Washington, USA
| |
Collapse
|