1
|
Nawaz A, Khalid A, Qayyum W, Bibi R, Qamar MA, Zahid M, Farhan A, Rayaroth MP, Cichocki Ł, Boczkaj G. FeS-based nanocomposites: A promising approach for sustainable environmental remediation - Focus on adsorption and photocatalysis - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123530. [PMID: 39700919 DOI: 10.1016/j.jenvman.2024.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Population expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental applications, more specifically the combined use of adsorption and photocatalysis. Pyrite and mackinawite structures outcompeted the other FeS configurations due to their large surface areas, numerous active sites, and enhanced conductivity, factors that enhance the adsorption and photovoltaic processes. To improve photocatalytic performance FeS requires modification with additional materials. Various fabrication strategies (including hydrothermal method, co-precipitation, electrochemical anodization, electrospinning, impregnation, green synthesis, mechanochemical approach/ball milling) of FeS-based composites and their efficacy and the mechanisms for removing organic and inorganic pollutants are reviewed in this paper. The structural characteristics of FeS scaffolds play a crucial role in the effective removal of heavy metals, such as Hg and Cr ions, primarily through ion exchange and surface complexation. Organic pollutants such as methylene blue and tetracycline were effectively degraded by advanced oxidation processes (AOPs). A large scale applications of FeS include industrial wastewater treatment, groundwater remediation towards trichloroethylene and other organic solvents removal, municipal wastewater, oil spills cleanup, pre-treatment for seawater desalination. Current challenges relate to catalysts stability, their removal after treatment stage, recycling, metals leaching and up-scaling as well as high effectiveness in real case-scenario and costs optimization. In summary, this review will help to advance research in the field of environmental remediation using FeS-based nanocomposites.
Collapse
Affiliation(s)
- Aqsa Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Aman Khalid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Wajeeha Qayyum
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Rabia Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; Department of Chemistry, Sub-campus Burewala, University of Agriculture Faisalabad, Pakistan.
| | - Manoj P Rayaroth
- Department of Chemistry, School of Sciences, GITAM (Deemed to Be) University, Visakhapatnam, 530045, India
| | - Łukasz Cichocki
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Jiang S, Sun B, Han Y, Yang C, Zhou T, Xiao K, Gong J. Low-toxicity natural pyrite on electro-Fenton catalytic reaction in a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175295. [PMID: 39111453 DOI: 10.1016/j.scitotenv.2024.175295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The resource utilization of natural pyrite not only reduces secondary pollution but also brings certain environmental benefits. However, the green and efficient use of pyrite presents certain challenges. In this study, a novel electro-Fenton (EF) system was constructed utilizing copper modified graphite felt (GF/Cu) as cathode and natural pyrite (com-FeS2) as catalyst. The results demonstrated that the system exhibited a remarkable stability over an extensive pH range (3.0-10.0) and remained effective even under adverse environmental conditions, such as high salinity or elevated antibiotic concentration. After optimizing the reaction conditions, 0.2 mM sulfamerazine (SMZ) was almost completely degraded within 1.5 h. The results highlighted the catalytic role of Fe(II) on the com-FeS2 surface. Combined with quenching experiments and quantitative analysis of reactive oxygen species (ROS), the removal of SMZ was primarily attributed to the generation of •OH, ordered by 1O2 > •O2- > •OHads, a possible degradation pathway was proposed by HR-LC-MS. The biological toxicity after the reaction was detected, and the introduction of polyvinylpyrrolidone (PVP) was beneficial to reduce the biological toxicity of iron dissolution. This work provides new insights into the green and efficient resource utilization of natural pyrite and significantly expands the pH applicability range of the Fenton process, demonstrating the large-scale industrial application potential of pyrite.
Collapse
Affiliation(s)
- Shan Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Benjian Sun
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yunuo Han
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Changzhu Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Tao Zhou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, 515063 Shantou, Guangdong, China
| | - Jianyu Gong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
3
|
Soufi A, Hajjaoui H, Abdennouri M, Qourzal S, Barka N. Fabrication of novel magnetic Mg 0.8Cu 0.2Fe 2O 4/SiO 2/CeO 2 nanocomposite synthesized by a simple ultrasonic-assisted route for organic dye removal using Fenton-like reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62080-62092. [PMID: 37227638 DOI: 10.1007/s11356-023-27838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Fenton-like degradation of contaminants is considered to be a feasible method for eliminating environmental pollution. In this study, a novel ternary Mg0.8Cu0.2Fe2O4/SiO2/CeO2 nanocomposite was fabricated using a novel ultrasonic-assisted technique, and investigated as a Fenton-like catalyst for the removal of tartrazine (TRZ) dye. The nanocomposite was synthesized by first coating the SiO2 shell around the Mg0.8Cu0.2Fe2O4 core via a Stöber-like process to form Mg0.8Cu0.2Fe2O4/SiO2. Then, a simple ultrasonic-assisted route was used to synthesize Mg0.8Cu0.2Fe2O4/SiO2/CeO2 nanocomposite. This approach provides a simple and environmentally friendly way to produce this material without the use of any additional reductants or organic surfactants. The fabricated sample demonstrated excellent Fenton-like activity. The efficiency of Mg0.8Cu0.2Fe2O4 was significantly enhanced by the incorporation of SiO2 and CeO2, and complete removal of TRZ (30 mg/L) was achieved within 120 min using 0.2 g/L of Mg0.8Cu0.2Fe2O4/SiO2/CeO2. The scavenger test shows that the main active species is the strong oxidizing of hydroxyl radicals (HO•). Consequently, the Fenton-like mechanism of Mg0.8Cu0.2Fe2O4/SiO2/CeO2 is explained based on the coexistence of Fe3+/Fe2+, Cu2+/Cu+, and Ce4+/Ce3+ redox couples. The removal efficiency of TRZ dye remained around 85% after the third recycling run, revealing that the nanocomposite could be employed to eliminate organic contaminants in water treatment. This research opened up a new avenue for expanding the practical application of new-generation Fenton-like catalysts.
Collapse
Affiliation(s)
- Amal Soufi
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Hind Hajjaoui
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Mohamed Abdennouri
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Samir Qourzal
- Equipe de Catalyse Et Environnement, Département de Chimie, Faculté Des Sciences, Université Ibn Zohr, B.P. 8106 Cité Dakhla, Agadir, Morocco
| | - Noureddine Barka
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco.
| |
Collapse
|
4
|
Chen K, Tang Q, Dong C, Zhang G, Zhao J, Chen Y, Xiao P. Carbon nanotube supported cobalt nickel sulphide nano-catalyst for degradation of chloroquine phosphate with peroxymonosulphate. ENVIRONMENTAL TECHNOLOGY 2024; 45:5465-5482. [PMID: 38158762 DOI: 10.1080/09593330.2023.2295829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Carbon nanotubes supported cobalt nickel sulphide nanoparticles (nano-NiCo2S4@CNTs) were successfully prepared by a hydrothermal method as heterogeneous catalyst which can be used as an activator of peroxymonosulphate (PMS) for the degradation of chloroquine phosphate (CQP). Based on characterisation techniques, the prepared catalyst has excellent surface properties and structural stability. When different concentrations of CQP were treated with 0.2 g/L nano-NiCo2S4@CNTs and 1.0 mM PMS, the highest degradation rate could reach 99.86% after 30 min. Under the interference of pH, common anions and humic acid in the water environment, the reaction system can still achieve high degradation efficiency, showing excellent anti-interference ability and practical applicability. Furthermore, in the nano-NiCo2S4@CNTs/PMS system, according to the identification results of reactive oxygen species, the free radical and non-free radical pathway are responsible for the degradation of CQP, and the PMS mechanism activation was comprehensively proposed. Twelve intermediate products were detected in the degradation process, and the possible degradation pathways of CQP were proposed. This toxicity analysis demonstrates that the intermediate products formed during CQP degradation pose lower environmental risks compared to the original pollutant. In addition, after using the catalyst four cycles, the removal efficiency of CQP remains above 80%, indicating the excellent reusability and low metal ion leaching characteristics. Therefore, the nano-NiCo2S4@CNTs synthesised in this research has broad application prospects in activating PMS for wastewater treatment.
Collapse
Affiliation(s)
- Keke Chen
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Qinyuan Tang
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Chunlin Dong
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Guosheng Zhang
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Jing Zhao
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Yan Chen
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Hu X, Tian Y, Liu J, Xu W, Niu Y, Zhang B, Sun C, Sun X. Efficient degradation of bisphenol A and amino black 10B by magnetic composite Fe 3O 4@MOF-74 as catalyst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116926. [PMID: 39205350 DOI: 10.1016/j.ecoenv.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Metal-organic frameworks (MOFs) exhibit high chemical stability and porosity, and have been widely applied in various fields including selective adsorption and separation, sensors, and catalysis. When combined with Fe3O4, they effectively address issues such as aggregation of Fe3O4 particles and the difficulty in recovering MOFs as catalysts. Therefore, in this study, we used a simple solvothermal method as a catalyst to synthesize a high specific surface area magnetic composite Fe3O4@MOF-74, which was used to catalyze the degradation of bisphenol A (BPA) and amino black 10B in wastewater. We activated Na2S2O8 to generate radicals for oxidizing and degrading BPA and amino black 10B. Experimental results showed that at 35 °C, with Fe3O4@MOF-74 (Fe3O4: MOF-74=1:1) concentration of 0.2 g/L and Na2S2O8 concentration of 2 g/L, the catalytic effect is efficient and economical. Meanwhile, removal rates of BPA and amino black 10B exceeded 95.58 % over a broad pH range (pH 3-9). Furthermore, even after multiple cycles of use, Fe3O4@MOF-74 maintained catalytic degradation rates of BPA and amino black 10B above 93.24 % and 95.01 %, respectively. Additionally, in water samples, removal rates of BPA and amino black 10B exceeded 91.55 %. This study provides a new and efficient catalyst material for wastewater treatment, which is expected to play an important role in environmental remediation.
Collapse
Affiliation(s)
- Xiaohan Hu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Ye Tian
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junshen Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xiyan Sun
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
6
|
Pan Z, Zeng B, Shen L, Teng J, Lai T, Zhao L, Yu G, Lin H. Innovative treatment of industrial effluents through combining ferric iron and attapulgite application. CHEMOSPHERE 2024; 358:142132. [PMID: 38670505 DOI: 10.1016/j.chemosphere.2024.142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored. Employing Fe3O4 as a heterogeneous catalyst and AMATP for adsorption, CODCr was reduced by 78.38-79.14%, total nitrogen by 71.53-77.43%, and phosphorus by 97.74-98.10% in pharmaceutical effluents. Similarly, for dyeing effluents, Fe(III)-AMATP achieved 79.87-80.94% CODCr, 68.59-70.93% total nitrogen, and 79.31-83.33% phosphorus reduction. Regeneration experiments revealed that Fe3O4 maintained 59.48% efficiency over three cycles, and Fe(III)-AMATP maintained 62.47% efficiency over four cycles. This work offers an economical, hybrid approach for effective pharmaceutical and dyeing effluent treatment, with broad application potential.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tongli Lai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Zhang L, Wang T, Zhang M, Liu Q, She Y, Wu S, Liu B. Synergistic degradation of Tris (2-Chloroethyl) Phosphate (TCEP) by US/Fenton system: Experimental, DFT calculation and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39120-39137. [PMID: 38809409 DOI: 10.1007/s11356-024-33815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Organophosphorus esters (OPEs), exemplified by tris (2-chloroethyl) phosphate (TCEP), find extensive application in diverse industries such as construction materials, textiles, chemical manufacturing, and electronics, consequently resulting in an increased concentration of these compounds in industrial wastewater. The fundamental objective of this investigation was to examine the degradation of TCEP through the implementation of US/Fenton oxidation techniques in a solution. The findings revealed that the US/Fenton system effectively facilitated the degradation of TCEP, with the Chan kinetic model precisely elucidating the degradation process. Under optimized reaction conditions, the degradation efficiency of TCEP reached an impressive 93.18%. However, the presence of common co-existing aqueous substrates such as Cl-, HCO3-, H2PO4-, and HA hindered the degradation process. Bursting tests and electron paramagnetic resonance (EPR) studies affirmed ∙OH oxidation as the principal mechanism underlying TCEP degradation. Detailed degradation pathways for TCEP were established through the utilization of density-functional theory (DFT) calculations and GC/MS tests. Moreover, the ecotoxicological evaluation of TCEP and its intermediates was conducted using the Toxicity Estimation Software Tool (T.E.S.T.).
Collapse
Affiliation(s)
- Lucheng Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Tingting Wang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Mingqing Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China.
| | - Qi Liu
- School of Low-Carbon Energy and Power Engineering, China University of Mining & Technology, Xuzhou, 221116, China
| | - Yi She
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Shilong Wu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - BingFeng Liu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| |
Collapse
|
8
|
Choudhary T, Ahlawat A, Khatri A, Rana PS. Synergistic effect in the structural, optical, and electrical properties of harnessing NiFe 2O 4/CuO nanocomposite for enhanced environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2907-2919. [PMID: 38082040 DOI: 10.1007/s11356-023-31376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
This study presents the synthesis and characterization of composite material comprised of NiFe2O4 and CuO. The preparation of this composites involves a facile and cost-effective co-precipitation method, followed by heat treatment. The aim of this study is to explore the potential of this composite material for various catalytic applications. The synthesized NiFe2O4/CuO composites were extensively characterized using various analytical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), impedance analyzer, UV-Visible spectroscopy (UV-Vis.), Brunner-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). These characterizations revealed the successful formation of a nanocomposite material with a well-defined structure and identified the oxygen vacancies/defects in the samples which might result in enhanced photocatalytic efficiency. Photocatalytic activity of 0.5NiFe2O4/0.5CuO composite showed degradation of methylene blue dye by 96.15% in 120 min. This work is not only to understand the photocatalytic mechanism but also to develop effective catalysts for the degradation of harmful organic pollutants.
Collapse
Affiliation(s)
- Tripta Choudhary
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131001, India
| | - Amit Ahlawat
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131001, India
| | - Amita Khatri
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131001, India
| | - Pawan S Rana
- Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131001, India.
| |
Collapse
|
9
|
Yan K, Yan L, Kuang W, Kaffash A, Mahdavi B, Baghayeri M, Liu W. Novel biosynthesis of gold nanoparticles for multifunctional applications: Electrochemical detection of hydrazine and treatment of gastric cancer. ENVIRONMENTAL RESEARCH 2023; 238:117081. [PMID: 37683794 DOI: 10.1016/j.envres.2023.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In this work, an environmentally friendly strategy was used to synthesize gold nanoparticles (Au NPs) using Olea europaea (olive) fruit. Transmission electron microscopy (TEM), UV-Vis spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) were used to characterize the physicochemical properties of the synthesized NPs. An Au NPs modified glassy carbon electrode was used to investigate the direct electrochemical oxidation of hydrazine. The suggested hydrazine sensor has good performance, such as a wide linear range (2.5-275 μM), low limit of detection (0.09 μM), notable selectivity and excellent reproducibility (RSD = 2.2%). The in-vitro cytotoxicity of three human cancer cell lines (KATOIII, NCI-N87, and SNU-16) was also explored with various concentrations of Au NPs prepared from olive fruit extract. Bio-synthesized Au NPs were found to have cytotoxic properties against gastric cancer in humans based on MTT assay protocol. The obtained results show that green synthesized Au NPs can be successfully employed in electrochemical sensing and cancer treatment applications.
Collapse
Affiliation(s)
- Kangpeng Yan
- Department of Abdominal Tumor Surgery, Jiangxi Cancer Hospital, No.519, Beijing East Road, Qingshanhu District, Nanchang City, 330000, China
| | - Lan Yan
- Department of Radiology, Jiangxi Cancer Hospital, No.519, Beijing East Road, Qingshanhu District, Nanchang City, 330000, China
| | - Weihua Kuang
- Department of Abdominal Tumor Surgery, Jiangxi Cancer Hospital, No.519, Beijing East Road, Qingshanhu District, Nanchang City, 330000, China
| | - Afsaneh Kaffash
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Weiwei Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Shandong University, No.11, Wuyingshan Middle Road, Jinan, 250031, China.
| |
Collapse
|
10
|
Sharma K, Sudhaik A, Raizada P, Thakur P, Pham XM, Van Le Q, Nguyen VH, Ahamad T, Thakur S, Singh P. Constructing α-Fe 2O 3/g-C 3N 4/SiO 2 S-scheme-based heterostructure for photo-Fenton like degradation of rhodamine B dye in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124902-124920. [PMID: 36607579 DOI: 10.1007/s11356-022-24940-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
This work successfully fabricated graphitic carbon nitride and magnetically recoverable α-Fe2O3/g-C3N4/SiO2 photo-Fenton catalysts using thermal polycondensation and in situ-simple precursor drying-calcination process, respectively, was examined for model synthetic rhodamine B (RhB) dye in the presence of H2O2 and acidic pH under simulated visible light irradiation. An aqueous suspension of the reaction mixture of dye-containing wastewater was fully degraded and reached 97% of photo-Fenton degradation efficiency within 120 min followed by the production of hydroxyl radical (•OH). The dominant hydroxyl radical position generated surface charge, electrostatic potential distribution, and average local ionization potential, which contributed to the complete mineralization of RhB dye, according to the density functional theory (DFT) calculations. HPLC and GCMS experiments were performed to examine the degradation fragments of RhB and draw a plausible mechanistic pathway which showed that RhB degradation generated a series of N-deethylated products, followed by a one-time ring-opening, which indicated that photosensitization induced a photocatalysis reaction mechanism.
Collapse
Affiliation(s)
- Kirti Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
- Department of Chemistry, Shoolini Institute of Life Sciences and Business Management, Himachal Pradesh University, Solan, HP, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Xuan Minh Pham
- Faculty of Natural Sciences Teacher Education, Dong Thap University, Pham Huu Lau Street, Ward 6, 783, Cao Lanh City, Dong Thap, Vietnam
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-Gu, Seoul, 02841, South Korea
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, Tamil Nadu, India.
| | - Tansir Ahamad
- Department of Chemistry College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP, India, 173229
| |
Collapse
|
11
|
Wang F, Zheng Y, Ning J. Biogenic preparation of copper oxide nanoparticles using table olive: Catalytic reduction, cytotoxicity, and burn wound healing activities. ENVIRONMENTAL RESEARCH 2023; 237:116995. [PMID: 37633630 DOI: 10.1016/j.envres.2023.116995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Green strategy for the preparation of copper oxide nanoparticles (CuO NPs) using table olive has been researched in the present work. Some characterization assays viz., transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) was used for evaluation of the crystal structure, size and morphology of the manufactured NPs. As a catalyst, the prepared material demonstrated remarkable catalytic capability (>99% in 4 min) for the reduction of rhodamine B using sodium borohydride. In addition, the treated cells with the CuO NPs were examined by regarding the cytotoxicity properties on normal (HUVEC) cell line. The results showed that the prepared CuO NPs did not have any cytotoxicity effects on HUVEC (up to 500 μg/mL). Furthermore, in vivo experiments on burn wounds in rats show that the synthesized CuO NPs ointment significantly diminished (p ≤ 0.01) the wound area. On the other hand, the wound contracture factor was increased in comparison with the control groups. Collectively, the CuO NPs prepared by biological method have potential applications in organic pollutants reduction and wound care applications. In this viewpoint, CuO NPs may be considered as an effective for treatment of different wounds including burn wounds or injuries from surgeries such as plastic surgery.
Collapse
Affiliation(s)
- Fuyong Wang
- Burn and Plastic Surgery, Kaifeng Central Hospital, No. 153 Wufu Road, Kaifeng City, Henan Province, 475000, China
| | - Yuhong Zheng
- Burn and Plastic Surgery, Kaifeng Central Hospital, No. 153 Wufu Road, Kaifeng City, Henan Province, 475000, China
| | - Jing Ning
- Department of Medical Cosmetic, Burn and Plastic Surgery,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Department of Medical Cosmetic, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Wu M, Li S, Zhou S, Li F, Li T, Li H. Fe/sponge structure peanut shell carbon composite preparation for efficient Fenton oxidation crystal violet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105457-105473. [PMID: 37715911 DOI: 10.1007/s11356-023-29828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
In order to obtain super synergy effect between adsorption and Fenton oxidation for crystal violet (CV) removement from water, in this study, Fe modified on a sponge structure peanut shell carbon (Fe/SPSC) nanocomposite was successfully synthesized by a wet impregnation method. In the Fe/SPSC sample, the prepared peanut shell carbon had a sponge-like structure, (002) crystal plane of graphite crystallite, and Fe/SPSC composite coexisted Fe2O3 and Fe3O4 crystalline, which could adsorb and enrich crystal violet molecule, decrease the concentration of CV solution rapidly. And also SPSC could do better for electrons transfer and further promote CV oxidation degradation. The removal efficiency results showed that the 7% Fe/SPSC (500 °C, 2 h) had the best CV removal activity. The composite prepared under the optimum conditions is 2.0 g/L, 0.1 mL 30% H2O2, pH = 7.0, 300 mg/L crystal violet water solution, and the CV degradation rate can reach 95.5%, and the CV degradation amount for Fe/SPSC was 143.25 mg/g. It was confirmed that hydroxyl radicals (•OH) is the active center of Fenton oxidation degradation reaction. XPS results showed that Fe, O, and C elements coexist in the 7% Fe/SPSC composite, and N element content increases after the reaction. Remarkable synergies between adsorption and Fenton oxidation, which could make Fe/SPSC, have quick CV abatement ability. The possible systematic effect mechanism of adsorption and Fenton-oxidation CV was also supplied. The present system has advantages on high CV dye degradation performance, no other Fe sludge formation, short reaction time, and better catalyst reusability.
Collapse
Affiliation(s)
- Minghui Wu
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Shuang Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Shiping Zhou
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Fengchuan Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Tao Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China
| | - Huijuan Li
- Key Laboratory of State Forestry and Grassland Administration On Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (Southwest Forestry University), Kunming, 650224, People's Republic of China.
| |
Collapse
|
13
|
Hu X, Li R, Xing Y. Photo-assisted degradation of Rhodamine B by a heterogeneous Fenton-like process: performance and kinetics. ENVIRONMENTAL TECHNOLOGY 2023; 44:3751-3762. [PMID: 35481459 DOI: 10.1080/09593330.2022.2071642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
This study presents the degradation of rhodamine B (RhB) by photo Fenton-like (PF-like) process under visible light irradiation (λ > 380 nm) using cobalt phosphate microparticles (CoP-MPs). The effects of the initial concentration of RhB, pH value, CoP-MPs dosage, hydrogen peroxide (H2O2) concentration, and salts found in textile wastewater (such as NaNO3, Na2SO4, and NaCl) were investigated in detail. It was found that CoP-MPs can maintain high catalytic activity with wide pH values varying from 4 to 8. This indicated that the use of CoP-MPs overcame the low efficiency of Fenton-like reaction at neutral and even weakly alkaline pH. The PF-like degradation of RhB followed pseudo-first order kinetics in various conditions. Moreover, a comparison of experimental results showed that the PF-like system has good degradation ability for RhB and methyl blue (MB) solution, but is poor for methyl orange (MO) solution. The repeat experiments indicated that the chemical structures of CoP-MPs were stable. Furthermore, the Co2+ ions leaching to the solutions were measured by an inductively coupled plasma mass spectrometer (ICP-MS). Analysis of UV-vis spectra suggested that RhB was degraded by the formation of a series of N-de-ethylated intermediates followed by cleavage of the whole conjugate chromophore structure.HighlightsRhB can be effectively degraded in the PF-like process under visible light irradiation by CoP-MPs.The PF-like process can maintain high catalytic activity at neutral and even weakly alkaline pH.Degradation kinetics exhibited pseudo-first-order kinetics and were influenced by the key parameters.The variation in the UV-vis spectra of RhB was analyzed in detail to infer a possible degradation pathway.
Collapse
Affiliation(s)
- Xiaoxia Hu
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, People's Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
- Longfu Recycling Energy Scientech Co., Ltd, Shangdong, People's Republic of China
| | - Rong Li
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai, People's Republic of China
| | - Yanjun Xing
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Li J, Mahdavi B, Baghayeri M, Rivandi B, Lotfi M, Mahdi Zangeneh M, Zangeneh A, Tayebee R. A new formulation of Ni/Zn bi-metallic nanocomposite and evaluation of its applications for pollution removal, photocatalytic, electrochemical sensing, and anti-breast cancer. ENVIRONMENTAL RESEARCH 2023; 233:116462. [PMID: 37352956 DOI: 10.1016/j.envres.2023.116462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nanocomposites have gained attention due to their variety of applications in different fields. In this research, we have reported a green synthesis of a bi-metallic nanocomposite of nickel and zinc using an aqueous extract of Citrus sinensis in the presence of chitosan (Ni/Zn@orange/chitosan). The nanocomposite was characterized using different techniques. We have examined various applications for Ni/Zn@orange/chitosan. The NPs were manufactured in spherical morphology with a particle range size of 17.34-90.51 nm. Ni/Zn@orange/chitosan showed an acceptable ability to remove dyes of Congo red and methyl orange from an aqueous solution after 80 min furthermore, it uptaking the drug mefenamic acid from a solution. Ni/Zn@orange/chitosan also exhibited great photocatalytic activity in synthesizing benzimidazole using benzyl alcohol and o-phenylenediamine. Ni/Zn@orange/chitosan was found as a potent electrochemical sensor to determine glucose. In the molecular and cellular section of the current research, the cells with composite nanoparticles were studied by MTT way about the anti-breast adenocarcinoma potentials malignant cell lines. The IC50 of composite nanoparticles were 320, 460, 328, 500, 325, 379, 350, and 396 μg/mL concering RBA, NMU, SK-BR-3, CAMA-1, MCF7, AU565, MDA-MB-468, and Hs 281.T breast adenocarcinoma cell lines, respectively. The results revealed the newly synthesized nanocomposite is a potent photocatalyst, dye pollution removal agent, and an acceptable new drug to treat breast cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, China.
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Behnaz Rivandi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Lotfi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
15
|
Hassan AF, Alshandoudi LM, Awad AM, Mustafa AA, Esmail G. Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo-Fenton degradation of Safranin-O: kinetic and thermodynamic studies. Macromol Res 2023. [DOI: 10.1007/s13233-023-00147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractIn the current study, a novel nanomaterial called nanomagnetite/copper oxide/potassium carrageenan nanocomposite (MKCO) was fabricated to include Fenton (nanomagnetite, NM) and Fenton-like reagent (copper oxide nanoparticles, NCO) in a matrix of potassium carrageenan biopolymer. The prepared solid materials were characterized by different physicochemical techniques, such as TGA, N2 adsorption/desorption, SEM, TEM, XRD, DRS, pHPZC, and FTIR. The prepared MKCO showed unique properties like higher specific surface area of 652.50 m2/g, pore radius of 1.19 nm, pHPZC equals 7.80, and the presence of different surface chemical functional groups. Under various application conditions, comparative experiments between Safranin-O dye (SO) adsorption and Photo-Fenton catalytic degradation were conducted. After 24 h, MKCO had a maximum adsorption capacity of 384.61 mg/g at 42 °C, while the Photo-Fenton oxidation process took only 10 min to totally decompose 93% of SO at 21 °C. Based on the higher values of correlation coefficients, Langmuir’s adsorption model is the best-fitted adsorption model for SO onto all the prepared solid materials. Studies on SO adsorption’s kinetics and thermodynamics show that it is physisorption and that it operates according to endothermic, spontaneous, and PFO model processes. While, PFO, endothermic, and non-spontaneous processes are satisfied by the catalytic decomposition of SO. After five application cycles, MKCO demonstrated good catalyst reusability with a 3.4% decrease in degrading efficiency. For lower contaminant concentrations and shorter application times, Photo-Fenton catalytic degradation of organic pollutants is more effective than adsorption.
Graphical abstract
Fenton and Photo-Fenton degradation of Safranin-O
Collapse
|
16
|
Monje DS, Mercado DF, Mesa GAP, Valencia GC. Carbon dots decorated magnetite nanocomposite obtained using yerba mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest-part 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3070-3087. [PMID: 35941506 DOI: 10.1007/s11356-022-22405-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Two carbon dots (CD) with diameters of 4.9 ± 1.5 and 4.1 ± 1.2 nm were successfully synthesized through an acid ablation route with HNO3 or H2SO4, respectively, using Ilex paraguariensis as raw material. The CD were used to produce magnetite-containing nanocomposites through two different routes: hydrothermal and in situ. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), dynamic light scattering (DLS), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) indicates that all nanomaterials have spherical-like morphology with a core-shell structure. The composition of this structure depends on the route used: with the hydrothermal route, the shell is composed of the CD, but with the in situ process, the CD act as nucleation centers, and so the iron oxide domains are in the shell. Regarding the photocatalytic mechanism for the degradation of methyl orange, the interaction between the CD and the magnetite plays an important role in the photo-Fenton reaction at pH 6.2, in which ligand-to-metal charge transfer processes (LTMCT) allow Fe2+ regeneration. All materials (100 ppm) showed catalytic activity in the elimination of methyl orange (8.5 ppm), achieving discoloration of up to 98% under visible irradiation over 400 nm in 7 h. This opens very interesting possibilities for the use of agro-industrial residues for sustainable synthesis of catalytic nanomaterials, and the role of the interaction of iron-based catalysts with organic matter in heterogeneous Fenton-based processes.
Collapse
Affiliation(s)
- Dany S Monje
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| | - D Fabio Mercado
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia.
- LMGP, Grenoble INP, CNRS, University Grenoble Alpes, 38000, Grenoble, France.
| | - Gustavo A Peñuela Mesa
- Grupo de Diagnóstico Y Control de La Contaminación (GDCON), Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Cl. 62 #52-59, Medellín, Colombia
| | - Gloria Cristina Valencia
- Grupo de Investigación Aplicaciones en Fotoquímica (GIAFOT), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Calle 59ª 63-020 Autopista Norte, P.O. Box 3840, Medellín, Colombia
| |
Collapse
|
17
|
Sun W, Hong Y, Li T, Chu H, Liu J, Feng L, Baghayeri M. Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants. CHEMOSPHERE 2023; 310:136759. [PMID: 36228729 DOI: 10.1016/j.chemosphere.2022.136759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In this work, graphene oxide (GO) sheets were prepared via a facile electrochemical exfoliation of graphite in acidic medium and subsequent oxidation with potassium permanganate. The GO sheets were employed for preparation of reduced GO adorned with nanosized silver (rGO/Ag NPs) using green reduction of GO and Ag(I) via olive fruit extract as a reducing and immobilizing agent. The crystal phase, morphology, and nanostructure of the prepared catalyst were characterized by XRD, SEM, EDX, UV-Vis and Raman spectroscopy techniques. The as-prepared rGO/Ag NPs showed superior catalytic performance towards the complete reduction (up to 99%) of 4-nitrophenol (4-NPH) to 4-aminophenol (4-APH) and rhodamine B (RhB) to Leuco RhB within 180 s using NaBH4 at ambient condition. The rate constant (k) values were found to be 0.021 and 0.022 s-1 for 4-NPH and RhB reduction, respectively. In addition, the regenerated catalyst could be reused after seven cycles without losing any apparent catalytic efficiency. Accounting for the excellent catalytic capability, chemical stability and environment-friendly synthesis protocol, the rGO/Ag NPs has great potential working as a heterogeneous catalyst in the transforming harmful organic contaminants into less harmful or harmless compounds.
Collapse
Affiliation(s)
- Wen Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mehidi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| |
Collapse
|
18
|
Sun W, Hong Y, Li T, Chu H, Liu J, Feng L. Application of sulfur-coated magnetic carbon nanotubes for extraction of some polycyclic aromatic hydrocarbons from water resources. CHEMOSPHERE 2022; 309:136632. [PMID: 36181857 DOI: 10.1016/j.chemosphere.2022.136632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
In the present work, novel sulfur-coated magnetic carbon nanotubes (MCNTs-S) material was fabricated by S coating on the MCNTs using a simple heating procedure. TGA, EDX, XRD, TEM, and VSM were employed to characterize the as-prepared composite. Using HPLC-UV system, the produced superparamagnetic sorbent was employed for the extraction and measurement of trace levels of five polycyclic aromatic hydrocarbons (PAHs) in environmental waters. The synergistic effect of the sulfur layer and CNTs substrate is primarily responsible for the remarkable extraction efficiency of the MCNTs-S sorbent towards PAHs. The experimental factors including MCNTs-S dosage, sorption time, elution solvent, ionic strength and solution pH were explored and optimized. Considering that the ionic strength and pH do not have any impact on the PAHs extraction, as a result, there is no need the unnecessary adjustment of the water samples. The linear dynamic ranges and detection limits under optimal conditions were in the range of 0.05-0.11 ng mL-1 and 0.2-150 ng mL-1, respectively. The analysis of PAHs in the real samples (sea water and river water) using this approach was successfully assessed with appropriate recovery values (94.6%-99.0%).
Collapse
Affiliation(s)
- Wen Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Zhao B, Gong J, Song B, Sang F, Zhou C, Zhang C, Cao W, Niu Q, Chen Z. Effects of activated carbon, biochar, and carbon nanotubes on the heterogeneous Fenton oxidation catalyzed by pyrite for ciprofloxacin degradation. CHEMOSPHERE 2022; 308:136427. [PMID: 36122753 DOI: 10.1016/j.chemosphere.2022.136427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Pyrite and engineering carbon materials have received increasing attention for their catalytic potential in Fenton reactions due to their extensive sources and low cost. However, effects of carbon materials on the degradation of pollutants by pyrite-catalyzed heterogeneous Fenton oxidation have not been fully understood. In this study, the performance of pyrite-catalyzed heterogeneous Fenton system on the degradation of ciprofloxacin (CIP) was investigated in the presence of activated carbon (AC), biochar (BC), and carbon nanotubes (CNTs). Synchronous and asynchronous experiments (adsorption and catalysis) were conducted to elucidate the roles of the carbon materials in pyrite-catalyzed Fenton reactions. The results demonstrated that all the three carbon materials accelerated the pyrite-catalyzed Fenton oxidation of CIP. Under the experimental conditions, the reaction rates, which were obtained by fitting the synchronous experimental results with the pseudo-first-order kinetic model, of pyrite/AC, pyrite/BC and pyrite/CNTs with H2O2 for the removal of CIP were 8.28, 3.40 and 3.37 times faster than that of pyrite alone. Adsorption experiments and characterization analysis showed that AC had a higher adsorption capacity than BC and CNTs for CIP, which enabled it to distinguish itself in assisting the pyrite-catalyzed Fenton oxidation. In the presence of the carbon materials, the adsorption effect should not be neglected when studying the catalytic performance of pyrite. Free radical quenching experiments and electron spin-resonance spectroscopy (ESR) were used to detect and identify free radical species in the reactions. The results showed that hydroxyl radicals (•OH) contributed significantly to the degradation of CIP. The addition of carbon materials promoted the production of •OH, which favored the degradation of CIP. The results of this study suggested that the synergistic effect of oxidation and adsorption promoted the removal of CIP in pyrite/carbon materials/H2O2 systems, and coupling pyrite and carbon materials shows great potential in treating antibiotic wastewater.
Collapse
Affiliation(s)
- Beichen Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Fan Sang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
20
|
Jiang H, Zahmatkesh S, Yang J, Wang H, Wang C. Ultrasound-enhanced catalytic degradation of simulated dye wastewater using waste printed circuit boards: catalytic performance and artificial neuron network-based simulation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:144. [PMID: 36418598 DOI: 10.1007/s10661-022-10744-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Recent developments of heterogeneous advanced oxidation for refractory organic contaminants and catalysts made of solid waste have attracted much attention. In this work, waste printed circuit board (wPCB) was used for catalytic degradation of simulated textile wastewater enhanced by ultrasound. Catalytic degradation of rhodamine B (RhB) and methylene blue (MB) was conducted in the presence of H2O2. Effect of ultrasound, wPCB, H2O2, pH, and dye concentration was investigated by single factor experiments. The growing catalytic efficiency was determined by ultrasound. The removal efficiency of MB and RhB are influenced by wPCB, H2O2, pH, and dye concentration. Degradation efficiency is accelerated with increasing wPCB dosage and H2O2 and decreasing dye concentration. Effective degradation of MB and RhB is obtained under broader pH region, attractively at neutral pH. Under optimal conditions, MB removal reaches 98.83% at 90 min while RhB removal reaches 99.57% at 80 min. Hydroxyl radicals play an important role in catalytic process. Tentative mechanism for catalytic degradation of MB and RhB are discussed based on multiple characterizations. Superior reusability of wPCB proves that wPCB is highly durable catalyst. Due to low cost and high efficiency, wPCB is attractive as effective catalyst for treatment of organic wastewater. Artificial neuron network-based (ANN) simulation, as a widely used artificial intelligence algorithm, was one of preferred methods for the wastewater treatment due to its unique properties in solving complex processes. An ANN model was designed for the prediction of the performance of ultrasound-enhanced catalytic degradation with a high R value (0.99).
Collapse
Affiliation(s)
- Hongru Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Jiapeng Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Liu X, Zhou Z, Wang L, Wang P, Zhang X, Luo K, Li J. A general and programmable preparation of α-MnO2/GO/CS aerogels used for efficient degradation of MB in wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Hassan AF, Mustafa AA, Esmail G, Awad AM. Adsorption and Photo-Fenton Degradation of Methylene Blue Using Nanomagnetite/Potassium Carrageenan Bio-Composite Beads. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe present study deals with the preparation of nanomagnetite (NM), potassium carrageenan (KC), and nanomagnetite/potassium carrageenan bio-composite beads (NC). Characterization of the prepared solid materials using different physicochemical techniques such as X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM), energy-disperse X-ray spectroscopy (EDX), diffuse reflectance spectrophotometer (DRS), swelling ratio (SR%), N2 adsorption, pH of point of zero charges (pHPZC), and Fourier transform infrared spectroscopy (FTIR). Comparing between adsorption and photo-Fenton degradation process for methylene blue (MB) on the surface of the prepared solid materials. Nanomagnetite/potassium carrageenan bio-composite (NC) exhibited high specific surface area (406 m2/g), mesoporosity (pore radius, 3.64 nm), point of zero charge around pH6.0, and the occurrence of abundant oxygen-containing functional groups. Comparison between adsorption and photo-Fenton oxidation process for methylene blue (MB) was carried out under different application conditions. NC exhibited the maximum adsorption capacity with 374.50 mg/g at 40 °C after 24 h of shaking time while 96.9% of MB was completely degraded after 20 min of photo-Fenton process. Langmuir's adsorption model for MB onto the investigated solid materials is the best-fitted adsorption model based on the higher correlation coefficient values (0.9771–0.9999). Kinetic and thermodynamic measurements prove that adsorption follows PSO, endothermic, and spontaneous process, while photo-Fenton degradation of MB achieves PFO, nonspontaneous, and endothermic process. Photo-Fenton degradation is a fast and simple technique at a lower concentration of dye (< 40 mg/L) while at higher dye concentration, the adsorption process is preferred in the removal of that dye.
Collapse
|
23
|
Yi Y, Wang X, Zhang Y, Ma J, Ning P. Adsorption properties and mechanism of Cr(VI) by Fe2(SO4)3 modified biochar derived from Egeria najas. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Peng H, Chen R, Tao N, Xiao Y, Li C, Zhang T, Ye M. MoS 2 boosts the Fe 2+/PMS process for carbamazepine degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49267-49278. [PMID: 35217952 DOI: 10.1007/s11356-022-19172-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Activation of peroxymonosulfate (PMS) by Fe2+ is a green oxidation process for degradation of organic contaminants. However, the formation of iron mud and low PMS utilization lead to the decreased oxidation efficiency. In this work, commercial MoS2 particles were used as the catalyst for boosting the Fe2+/PMS process for carbamazepine (CBZ) removal. The CBZ removal efficiency by the MoS2/Fe2+/PMS process was significantly enhanced, increasing to 6.5 times that of the Fe2+/PMS process. The Fe3+ was reduced to Fe2+ by the exposed Mo4+ on the surface of MoS2, leading to the enhanced PMS utilization rate and increased Fe2+ concentration. The relative intensity of DMPO-HO• and DMPO- SO4-• followed the order of MoS2/PMS < Fe2+/PMS < MoS2/Fe2+/PMS, also suggesting the enhanced oxidation activity with the addition of MoS2 in the process of Fe2+/PMS. The commercial MoS2 had good stability shown by the CBZ removal efficiency remaining almost unchanged during 8-time cycling use. Finally, a possible CBZ degradation pathway was proposed for helping understand the oxidation mechanism of the MoS2/Fe2+/PMS process.
Collapse
Affiliation(s)
- Huan Peng
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Daxueyuan Rd, WISDRI Engineering & Research Incorporation Limited. No.33, Donghu High-Tech Development Zone, Wuhan, Hubei Province, People's Republic of China
| | - Rong Chen
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ningyao Tao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yangyi Xiao
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chenxing Li
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Miaomiao Ye
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
25
|
Ke P, Zeng D, Wang R, Cui J, Li X, Fu Y. Magnetic carbon microspheres as a reusable catalyst in heterogeneous Fenton system for the efficient degradation of phenol in wastewater. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Chen Y, Yan X, Lin H, Wang C, Xu J. Enhanced Fenton-like degradation of Rhodamine B and Congo red by benzene and K+ co-doped carbon nitride with in situ-generated H2O2. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Koshki MS, Baghayeri M, Fayazi M. Application of sepiolite/FeS2 nanocomposite for highly selective detection of mercury(II) based on stripping voltammetric analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01097-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|