1
|
Fan F, Guo R, Pan K, Xu H, Chu X. Mucus and mucin: changes in the mucus barrier in disease states. Tissue Barriers 2025:2499752. [PMID: 40338015 DOI: 10.1080/21688370.2025.2499752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that covers and protects all non-keratinized wet epithelial surfaces. In addition to the surface of organs directly contacting with the external environment such as the eyes, this layer provides protection to the underlying gastrointestinal, respiratory and female reproductive tracts by trapping pathogens, irritants, environmental fine particles and potentially harmful foreign substances. Mucins, the primary structural components of mucus, form structurally different mucus layers at different sites in a process regulated by a variety of factors. Currently, more and more studies have shown that the mucus barrier is not only closely related to various intestinal mucus diseases, but also involved in the occurrence and development of various airway diseases and mucus-related diseases, thus it may become a new target for the treatment of various related diseases in the future. Since the dysfunction of the mucous layer is closely related to various pathological processes, in-depth understanding of its molecular mechanism and physiological role is of great theoretical and practical significance for disease prevention and treatment. Here, we discuss different aspects of the mucus layer by focusing on its chemical composition, synthetic pathways, and some of the characteristics of the mucus layer in physiological and pathological situations.
Collapse
Affiliation(s)
- Fangfang Fan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Kun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongye Xu
- Quality Assurance department, Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Chen KY, Chan HC, Chan CM. Is Botulinum toxin A effective in treating dry eye disease? A systematic review and meta-analysis. Eye (Lond) 2025:10.1038/s41433-025-03790-6. [PMID: 40204900 DOI: 10.1038/s41433-025-03790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Dry eye disease (DED) is a complex condition characterized by tear film instability, inflammation, and neurosensory abnormalities. The efficacy of Botulinum toxin A (BTX-A) in treating DED is unknown. A systematic search was conducted across PubMed, the Cochrane Library, Scopus, Web of Science, and Embase databases for studies published until December 2024. Inclusion criteria encompassed randomized controlled trials (RCTs) and non-RCTs examining BTX-A's effects on DED, with TBUT, Schirmer test scores, tear meniscus height (TMH), and OSDI as primary outcomes. Data were synthesized using fixed and random-effects models, accounting for heterogeneity. Fourteen studies (total n = 634 patients) were included. This meta-analysis evaluates the effectiveness of BTX-A in improving outcomes for DED. In 10 studies with 513 participants, BTX-A significantly improved TBUT by 1.79 s (95% CI: 1.48 to 2.10, p < 0.00001), Schirmer test scores by 3.72 mm (95% CI: 3.50 to 3.95, p < 0.00001), and OSDI scores by -7.51 (95% CI: -10.76 to -4.26, p < 0.00001). TMH increased by 0.10 mm (95% CI: 0.08 to 0.11, p < 0.00001). This meta-analysis demonstrates that BTX-A effectively improves clinical outcomes in DED. Post-treatment, TBUT increased by 1.79 s, Schirmer test scores improved by 3.72 mm, OSDI scores decreased by -7.51 points, and TMH increased by 0.10 mm, reflecting enhanced tear stability, production, and symptom relief. These findings support the use of BTX-A in clinical practice as a promising treatment for DED.
Collapse
Affiliation(s)
- Kai-Yang Chen
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hoi-Chun Chan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Xiong WW, Ouyang ZJ, Tan Y, Xu LW, Peng XW. MUC4 O-GlcNAcylation Regulates the Epithelial Phenotype in Conjunctival Epithelial Cells. Biochem Genet 2025; 63:1780-1790. [PMID: 38627316 DOI: 10.1007/s10528-024-10791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2025]
Abstract
In the present study, our aim was to explore the role of MUC4 in IL-4-stimulated conjunctival epithelial cells and the underlying mechanisms. Human recombinant IL-4 was employed in human conjunctival epithelial cells (HConEpic) cells, and MUC4 shRNA (sh-MUC4) was constructed to explore the functional role of MUC4. The protein level of MUC4, O-GlcNAc transferase (OGT), O-GlcNAc hydrolase (OGA), zonula occludens 1 (ZO-1), gap junction protein beta 2 (GJB2), claudin-8 (CLDN8), and E-cadherin were detected by Western blot in HConEpic cells, the interaction between MUC4 and OGT/OGA was assessed by co-immunoprecipitation (IP) and Western blot in 293T cells. Our results showed that IL-4 significantly up-regulated MUC4 and OGT protein levels in HConEpic cells, while down-regulated OGA protein level. Also, IL-4 down-regulated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while which was markedly reversed by sh-MUC4. Additionally, OGT inhibitor significantly reduced MUC4 protein level, and elevated ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, while OGA inhibitor resulted in the opposite results. Furthermore, in addition to the interaction between OGT/OGA and MUC4, Co-IP and Western blot also revealed the alteration of MUC4 O-GlcNAcylation in 293T cells treated with OGT/OGA inhibitor. Above findings suggested that OGT/OGA inhibitor regulated MUC4 protein level by affecting MUC4 O-GlcNAcylation to regulate ZO-1, GJB2, CLDN8, and E-cadherin protein levels in HConEpic cells, which was achieved via inhibiting the interaction between OGT/OGA and MUC4. This study may provide a better understanding of the pathogenesis of allergic conjunctivitis (AC).
Collapse
Affiliation(s)
- Wei-Wei Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zi-Jing Ouyang
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yi Tan
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Li-Wen Xu
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiao-Wei Peng
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Ma W, Huang C, Fang W, Liu S, Li Y, Zhong Y, Zuo D, Lu X. Mucin1 N-domain variant contributes to dry eye syndrome in diabetes by increasing immature mucus secretory granules. Life Sci 2025; 363:123412. [PMID: 39848599 DOI: 10.1016/j.lfs.2025.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Diabetes-associated dry eye syndrome (DMDES) affects 20-54 % of diabetes, leading to ocular irritation and blurry vision. Decreased conjunctival goblet cell mucus secretion is one of the major pathological processes of DMDES. This study aims to investigate the mechanism of mucus granule maturation and secretion disturbance in DMDES. METHODS Tear samples from diabetic patients with and without dry eye syndrome were analyzed by mass spectrometry to identify proteins associated with ocular mucous layer reduction. The N-terminal domain fragment of Mucin1 (MUC1-ND) was transfected into the mouse conjunctiva to investigate alterations in goblet cell mucus secretion. Protein localization and granule morphology were explored through transmission electron microscopy with colloidal gold labeling and immunohistochemistry. Immunofluorescence, co-immunoprecipitation, and integrative computational modeling of protein interactions were employed to explore protein-protein interactions. RESULTS Tear proteomic analysis revealed significantly elevated MUC1-ND levels in tears from DMDES patients, which correlated with reduced goblet cell mucus secretion and tear film instability. Upregulation of MUC1-ND in mice conjunctiva inhibited the maturation of secretory mucus granules, contributing to tear mucous layer reduction. Protein docking and co-immunoprecipitation analysis demonstrated that the binding of MUC1-ND and Syntaxin6 prevents granule fusion and maintains the immature state of secretory granules, which leads to reduced mucus secretion. CONCLUSION In DMDES, MUC1-ND binds with Syntaxin6 to disrupt the fusion and maturation of secretory mucus granules in conjunctival goblet cells, which provides a new insight into DMDES pathophysiology.
Collapse
Affiliation(s)
- Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chunling Huang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wanyi Fang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingli Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
5
|
Chen X, Zhang C, Peng F, Wu L, Zhuo D, Wang L, Zhang M, Li Z, Tian L, Jie Y, Huang Y, Yang X, Li X, Lei F, Cheng Y. Identification of glutamine as a potential therapeutic target in dry eye disease. Signal Transduct Target Ther 2025; 10:27. [PMID: 39837870 PMCID: PMC11751114 DOI: 10.1038/s41392-024-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes. In situ metabolomics through matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased glutamine levels in cornea following MSC + Tβ4 combined therapy. Inhibition of glutamine reversed the anti-inflammatory, anti-apoptotic, and homeostasis-preserving effects observed with combined therapy, highlighting the critical role of glutamine in dry eye therapy. Clinical cases and rodent model showed elevated expression of glutaminase (GLS1), an upstream enzyme in glutamine metabolism, following dry eye injury. Mechanistic studies indicated that overexpression and inhibition of GLS1 counteracted and enhanced, respectively, the anti-inflammatory effects of combined therapy, underscoring GLS1's pivotal role in regulating glutamine metabolism. Furthermore, single-cell sequencing revealed a distinct subset of pro-inflammatory and pro-fibrotic corneal epithelial cells in the dry eye model, while glutamine treatment downregulated those subclusters, thereby reducing their inflammatory cytokine secretion. In summary, glutamine effectively ameliorated inflammation and the occurrence of apoptosis by downregulating the pro-inflammatory and pro-fibrotic corneal epithelial cells subclusters and the related IκBα/NF-κB signaling. The present study suggests that glutamine metabolism plays a critical, previously unrecognized role in DED and proposes an attractive strategy to enhance glutamine metabolism by inhibiting the enzyme GLS1 and thus alleviating inflammation-driven DED progression.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chuyue Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Fei Peng
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Min Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Li H, Zhang Y, Chen Y, Zhu R, Zou W, Chen H, Hu J, Feng S, Zhong Y, Lu X. MUC1‑ND interacts with TRPV1 to promote corneal epithelial cell proliferation in diabetic dry eye mice by partly activating the AKT signaling pathway. Mol Med Rep 2024; 30:213. [PMID: 39370807 PMCID: PMC11450431 DOI: 10.3892/mmr.2024.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Although both mucin1 (MUC1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) have been reported to be associated with dry eye (DE) disease, whether they interact and their regulatory roles in diabetic DE disease are unknown. Diabetic DE model mice were generated by streptozotocin induction and assessed by corneal fluorescein staining, tear ferning (TF) tests, phenol red thread tests, hematoxylin and eosin staining of corneal sections and periodic acid Schiff staining of conjunctival sections. Cell proliferation was measured by CCK8 assay. Western blotting was performed to measure protein expression. Primary mouse corneal epithelial cells (MCECs) were cultured after enzymatic digestion. Immunofluorescence staining of MCECs and frozen corneal sections was conducted to assess protein expression and colocalization. Coimmunoprecipitation was performed to detect protein‑protein interactions. It was found that, compared with control mice, diabetic DE mice exhibited increased corneal epithelial defects, reduced tear production, poorer TF pattern grades and impaired corneal and conjunctival tissues. In vivo and in vitro experiments showed that hyperglycemia impaired cell proliferation, accompanied by decreased levels of the MUC1 extracellular domain (MUC1‑ND) and TRPV1. Additionally, it was found that capsazepine (a TRPV1 antagonist) inhibited the proliferation of MCECs. Notably, MUC1‑ND was shown to interact with the TRPV1 protein in the control group but not in the diabetic DE group. It was also found that the AKT signaling pathway was attenuated in the diabetic DE mice and downstream of TRPV1. MUC1‑ND interacted with TRPV1, partly activating the AKT signaling pathway to promote MCEC proliferation. The present study found that the interaction of MUC1‑ND with TRPV1 promotes MCEC proliferation by partly activating the AKT signaling pathway, providing new insight into the pathogenesis of corneal epithelial dysfunction in diabetic DE disease.
Collapse
Affiliation(s)
- Haiqiong Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yu Zhang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yuting Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Rong Zhu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Weikang Zou
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Jia Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
7
|
Chen Z, Wang A, Qin Y, Chen X, Feng X, He G, Zhu X, Xiao Y, Yu X, Zhong T, Zhang K. Preparation of a thermosensitive and antibacterial in situ gel using poloxamer-quaternized chitosan for sustained ocular delivery of Levofloxacin hydrochloride. Int J Biol Macromol 2024; 283:137479. [PMID: 39537073 DOI: 10.1016/j.ijbiomac.2024.137479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, a thermosensitive in situ gel with porous structure was developed using poloxamer (Po) and N-(2-hydroxy-3-trimethyl ammonium) propyl chitosan chloride (HTCC). The poloxamer-quaternized chitosan (Po-HTCC) in situ gel exhibited superior rheological property, water absorption capacity and antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes, making it well-suited for ocular applications. Scanning electron microscope revealed a macroporous architecture with pore sizes ranging from 1 to 2 μm, suggesting that the gel has desirable breathability, corneal adhesion capability, and overall conformability. In vitro drug release assay was conducted with levofloxacin hydrochloride, demonstrating that sustained release over 48 h could be achieved at 34 °C, with approximately 80 % of the drug released within this timeframe. Computational simulations revealed substantial binding affinity between the material and the Escherichia coli outer membrane lipopolysaccharide-associated protein and corneal mucin. The protein showing the strongest binding energy to N-(2-hydroxy-3-trimethyl ammonium) propyl chitosan chloride (HTCC), as calculated by the Molecular Mechanics Generalized Born Surface Area Method (MM-GBSA), was LptD-LptE, with a binding energy of -61.14 ± 4.72 kcal/mol. These results underscore the potential of this system for effective and convenient ocular delivery with sustained drug release.
Collapse
Affiliation(s)
- Zihan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Anyu Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Yiming Qin
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau.
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau.
| | - Kang Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| |
Collapse
|
8
|
Fang Z, Liu K, Pazo EE, Li F, Chang L, Zhang Z, Zhang C, Huang Y, Yang R, Liu H, Zhang C, Zhao S. Clinical ocular surface characteristics and expression of MUC5AC in diabetics: a population-based study. Eye (Lond) 2024; 38:3145-3152. [PMID: 39069550 PMCID: PMC11543803 DOI: 10.1038/s41433-024-03252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES To investigate the clinical characteristics and the expression of mucin 5AC (MUC5AC) in in diabetic and non-diabetic subjects with or without dry eye disease. METHODS A total of 399 participants (796 eyes) aged 50-80 years were enrolled in this study. Participants were divided into 4 groups: non-diabetic without dry eye group (normal group), non-diabetic with dry eye group, diabetic without dry eye group and diabetic with dry eye group. Demographic information, fasting plasma glucose (FBG), and glycated haemoglobin A1C (HbA1C) data were collected. Additionally, ocular surface disease index (OSDI) questionnaire, signs of dry eye, tear osmolarity, and meibomian glands were evaluated. Tear MUC5AC expression and conjunctival goblet cells density (GCD) were tested. RESULTS Compared with non-diabetic with dry eye group, diabetic with dry eye group showed significantly lower tear film osmolarity (TFO), but higher corneal fluorescein and conjunctival lissamine green staining scores. In comparison with diabetic without dry eye group, diabetic with dry eye group showed significantly higher TFO, corneal fluorescein and conjunctival lissamine green staining scorers. The MUC5AC concentration and GCD of diabetic with dry eye group was significantly lower than those of the non-diabetic with dry eye group. Diabetic subjects with higher HbA1c levels (≥7.8%) showed higher TFO and shorter fluorescein tear break time. CONCLUSION Diabetics with dry eye exhibited notably higher corneal fluorescein and conjunctival lissamine green staining scores. Conjunctival goblet cells and MUC5AC were significantly reduced in diabetics. Higher TFO was associated with the duration of diabetes and HbA1c levels.
Collapse
Affiliation(s)
- Zijie Fang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ke Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fei Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lianqing Chang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - ZhongFang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Caijie Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruibo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chen Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
9
|
Dai Y, Zhang J, Zhang S, Li L, Qu C, Chen J, Lu L. Ag/Cu nanoparticles-loaded glycocalyx biomimetic corneal bandage lenses for combatting bacterial keratitis. J Control Release 2024; 376:382-394. [PMID: 39419448 DOI: 10.1016/j.jconrel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Bacterial keratitis is a major cause of blindness, hindered by the rising threat of antibiotic resistance. Although corneal bandage lenses (CBLs) are widely utilized in ophthalmic treatment, their effectiveness in treating bacterial keratitis remains limited due to risks of secondary infections, patient discomfort, and complications. In this study, we developed a novel biomimetic coating on CBLs by grafting Ag/Cu bimetallic nanoparticles (Ag/Cu-NPs) and thiol-functionalized heparin (Hep-SH) using a rapid polydopamine (PDA) deposition technique, effectively mimicking the ocular surface glycocalyx structure. The resulting Ag/Cu-NPs/Hep-SH coated CBLs (PNH-CBLs) exhibited significant antibacterial activity, with over 80 % reduction in Staphylococcus aureus (S. aureus) and 70 % in Escherichia coli (E. coli) due to the sustained release of Ag+ and Cu2+, along with displaying favorable in vitro biocompatibility. Animal experiments conducted on New Zealand white rabbits with bacterial keratitis demonstrated successful treatment therapeutic outcomes, with PNH-CBLs leading to a significant decrease in clinical score. These biomimetic lenses also exhibited selective anti-protein adsorption properties, minimizing inflammation and promoting surface lubrication. Overall, this innovative approach addresses critical challenges in antibiotic resistance and offers a promising therapeutic strategy for managing ophthalmic infectious diseases.
Collapse
Affiliation(s)
- Yan Dai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiali Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Shimeng Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chao Qu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
10
|
Choi H, Lee HE, Lee SV, Joo JS, Baek H, Kim S, Park M, Lee SW, Yang SW, Hwang HS, Kim JY, Kang YS. Sialylated IVIg promotes clinical improvements in a rabbit dry eye model by regulating inflammatory cytokines. Exp Eye Res 2024; 240:109782. [PMID: 38199260 DOI: 10.1016/j.exer.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Dry eye disease (DED) is caused by a loss of homeostasis of the tear film, which results in visual disturbance, ocular surface inflammation and damage, and neurosensory abnormalities. Although it is prevalent in 5-50% of the global population, there are limited clinical options for its treatment. This study explored the potential use of human intravenous immunoglobulin (IVIg) and its enriched fractions of sialylation, sialylated IVIg (sIVIg), as a treatment for DED. Fifteen female New Zealand white rabbits were topically instilled with 0.2% benzalkonium chloride (BAC) twice daily for five consecutive days to induce experimental dry eye. Saline, 0.4% IVIg, or 0.04% sIVIg eye drops were instilled twice daily for 20 consecutive days. Clinical evaluations, such as non-invasive tear break-up time (NIBUT) and corneal fluorescein staining (CFS), were conducted. mRNA levels of mucin 4, mucin 16, TNF-α, IL-1β, MMP9, IL-10, TGF-β, and CD209 in rabbit conjunctival tissues were examined using reverse transcription polymerase chain reaction (RT-PCR) or quantitative RT-PCR (qRT-PCR). The relationships between CD209 family members in rabbits and various mammalian species were analyzed using a phylogenetic tree. IVIg or sIVIg treatment resulted in clinical improvements in the rabbit DED model. The inflammatory cytokines, TNF-α and IL-1β, were increased and mucin 4 and mucin 16, cell surface-associated mucins, were decreased in BAC-induced dry eye. Following IVIg or sIVIg treatment, inflammatory cytokines decreased, whereas the anti-inflammatory cytokine, IL-10, increased substantially. Moreover, a 10-fold lower sIVIg treatment dose resulted in prolonged IL-10 production, representing a significantly improved DED compared to IVIg. Furthermore, the expression of rabbit CD209 mRNA in the rabbit conjunctiva and its close relationship with primate homologs suggest that it may interact with IVIg or sIVIg to promote IL-10 expression, as previously described in humans. At a lower dosage, sIVIg showed a more efficient improvement in DED, making it a promising new candidate medication for DED.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ha-Eun Lee
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sung-Vin Lee
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin-Soo Joo
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hayeon Baek
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seulki Kim
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine, 1342 Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Min Park
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Veterinary Science Research Institute, KU Research Center for Zoonosis, KU Center for Animal Blood Medical Science Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine, 1342 Dongil-ro, Nowon-gu, Seoul, 01757, Republic of Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joon-Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - Young-Sun Kang
- Konkuk-KIST Biomedical Science & Technology, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Veterinary Science Research Institute, KU Research Center for Zoonosis, KU Center for Animal Blood Medical Science Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
12
|
Choi M, Tichenor AA. Regional Conjunctival Differences in Glycocalyx Mucin Expression in Dry Eye and Normal Subjects. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38334701 PMCID: PMC10860684 DOI: 10.1167/iovs.65.2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Purpose To compare regional conjunctival expression of membrane-associated mucins (MAMs) MUC1, MUC4, and MUC16 in normal and dry eye (DE) subjects. Methods Adults with and without signs and symptoms of DE were recruited. Impression cytology was performed to collect MAMs from four bulbar and upper eyelid palpebral conjunctival regions of both eyes. After protein extraction, samples from both eyes of a single subject were pooled by region, and expression was analyzed using a capillary electrophoresis nano-immunoassay system. The chemiluminescence intensity of each antigen binding signal was calculated after normalization to the total protein amount. Statistical analyses were conducted using GraphPad Prime 9. Results Samples from thirteen to sixteen DE and seven to eleven normal subjects were analyzed. In normal samples, MUC1 expression from the nasal bulbar conjunctiva was significantly greater than superior (P = 0.004) and inferior (P = 0.005). In DE samples, MUC1 expression was highest superiorly. Significant differences in MUC4 and MUC16 expression were not seen in normal samples. MUC4 and MUC16 expression was upregulated superiorly (P < 0.0001) and inferiorly (P < 0.0001) in DE compared with those regions in normal samples. Conclusions Although MAMs form a hydrophilic barrier called the glycocalyx, each mucin may have unique functions that are currently unexplored. All MAMs were expressed in the upper palpebral conjunctiva. Increased MUC1 expression nasally in healthy subjects suggests a functional need for increased protection. When comparing DE with normal eyes, upregulation of MUC1 superiorly, and in both MUC4 and MUC16 both superiorly and inferiorly, may indicate a need to decrease eyelid friction during blinking, especially in DE.
Collapse
Affiliation(s)
- Moonjung Choi
- New England College of Optometry, Boston, Massachusetts, United States
| | | |
Collapse
|
13
|
Shoji J, Yamagami S. Assessment of Mucin-Associated Gene Expression Levels on the Ocular Surface. Methods Mol Biol 2024; 2763:251-257. [PMID: 38347416 DOI: 10.1007/978-1-0716-3670-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The ocular surface is covered with a mucus layer. The mucin-associated genes expressed in the ocular surface cells include MUC1, MUC4, MUC5AC, and MUC16. Impression cytology is useful for collecting specimens from the ocular surface, their histological examination, and measuring mucin-associated gene expression levels. The expression of mucin-associated gene levels was assessed by quantitative polymerase chain reaction. The expression levels of these mucin-associated genes are potential biomarkers for ocular surface diseases, including dry eye disease.
Collapse
Affiliation(s)
- Jun Shoji
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Yokoi N, Kusada N, Kato H, Furusawa Y, Sotozono C, Georgiev GA. Dry Eye Subtype Classification Using Videokeratography and Deep Learning. Diagnostics (Basel) 2023; 14:52. [PMID: 38201361 PMCID: PMC10802766 DOI: 10.3390/diagnostics14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported on 'Tear Film Oriented Diagnosis' (TFOD), a method for the dry eye (DE) subtype classification using fluorescein staining and an examination of fluorescein breakup patterns via slit-lamp biomicroscopy. Here, we report 'AI-supported TFOD', a novel non-invasive method for DE subtype classification using videokeratography (VK) and "Blur Value" (BV), a new VK indicator of the extent of blur in Meyer-ring images and deep learning (DL). This study involved 243 eyes of 243 DE cases (23 males and 220 females; mean age: 64.4 ± 13.9 (SD) years)-i.e., 31 severe aqueous-deficient DE (sADDE) cases, 73 mild-to-moderate ADDE (m/mADDE) cases, 84 decreased wettability DE (DWDE) cases, and 55 increased evaporation DE (IEDE) cases diagnosed via the fluorescein-supported TFOD pathway. For DL, a 3D convolutional neural network classification model was used (i.e., the original image and BV data of eyes kept open for 7 s were randomly divided into training data (146 cases) and the test data (97 cases), with the training data increased via data augmentation and corresponding to 2628 cases). Overall, the DE classification accuracy was 78.40%, and the accuracies for the subtypes sADDE, m/mADDE, DWDE, and IEDE were 92.3%, 79.3%, 75.8%, and 72.7%, respectively. 'AI-supported TFOD' may become a useful tool for DE subtype classification.
Collapse
Affiliation(s)
- Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (N.K.); (H.K.); (Y.F.); (C.S.)
| | - Natsuki Kusada
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (N.K.); (H.K.); (Y.F.); (C.S.)
| | - Hiroaki Kato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (N.K.); (H.K.); (Y.F.); (C.S.)
| | - Yuki Furusawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (N.K.); (H.K.); (Y.F.); (C.S.)
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (N.K.); (H.K.); (Y.F.); (C.S.)
| | - Georgi As. Georgiev
- Department of Optics and Spectroscopy, Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria;
| |
Collapse
|
15
|
Ballesteros-Sánchez A, Sánchez-González MC, De-Hita-Cantalejo C, Gutiérrez-Sánchez E, Rocha-de-Lossada C, Sánchez-González JM. The Efficacy and Safety of Rebamipide Ophthalmic Suspension (OPC-12759) in Patients with Dry Eye Disease: A Systematic Review of Randomized Controlled Trials. J Clin Med 2023; 12:7155. [PMID: 38002767 PMCID: PMC10672675 DOI: 10.3390/jcm12227155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this paper is to evaluate the efficacy and safety of Rebamipide (REB) ophthalmic suspension in dry eye disease (DED). A systematic review that only included full-length randomized controlled studies (RCTs) reporting the effects of REB ophthalmic suspension in three databases, PubMed, Scopus and Web of Science, was performed according to the PRISMA statement. The Cochrane risk of bias tool was used to analyze the quality of the studies selected. A total of seven studies were included in this systematic review. Although the overall risk of bias was low, most studies were sponsored by the manufacturer. REB ophthalmic suspension treatment achieved higher improvement than the control group in all reported variables. The mean differences between both groups were in favor of the REB group and were as follows: dry eye-related quality of life score (DEQS) -3.5 ± 2.9 points, tear film break-up time (TBUT) of 0.7 ± 0.6 s, Schirmer test (ST) without anesthesia of 0.3 ± 0.6 mm and total corneal fluorescein staining (tCFS) of -1.2 ± 0.7 points. Adverse events (AEs) were 5.2 ± 7.6% superior in the REB group, with an overall compliance > 95%. Therefore, REB ophthalmic suspension is a safe and effective treatment that could be recommended in patients with DED.
Collapse
Affiliation(s)
- Antonio Ballesteros-Sánchez
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
- Department of Ophthalmology, Ophthalmologic Novovision Clinic, 30008 Murcia, Spain
| | - María Carmen Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
| | - Concepción De-Hita-Cantalejo
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
| | | | - Carlos Rocha-de-Lossada
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain; (E.G.-S.); (C.R.-d.-L.)
- Qvision, Ophthalmology Department, VITHAS Almeria Hospital, 04120 Almeria, Spain
- Ophthalmology Department, VITHAS Malaga, 29016 Malaga, Spain
- Regional University Hospital of Malaga, Hospital Civil Square, 29009 Malaga, Spain
| | - José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain; (M.C.S.-G.); (C.D.-H.-C.); (J.-M.S.-G.)
| |
Collapse
|
16
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
17
|
Guo R, Jiang J, Zhang Y, Liang Q, Liu J, Hu K. The effects of chalazion and the excision surgery on the ocular surface. Heliyon 2023; 9:e19971. [PMID: 37809549 PMCID: PMC10559556 DOI: 10.1016/j.heliyon.2023.e19971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/16/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose To evaluate the effects of chalazion excision on the ocular surface, taking into account the subjective symptoms and the objective parameters of the tear film. Methods This prospective, interventional clinical study included 52 eyes from 26 patients with eyelid chalazion who underwent excision of the lesions between March and August 2022. Chalazion excision was performed on the patient's chalazion eye, and the contralateral eye served as the control. The following parameters were investigated both preoperatively and 1 week, 1 month, and 3 months postoperatively: the Ocular Surface Disease Index (OSDI), Schirmer I test, corneal fluorescein stain (CFS), tear meniscus height (TMH), noninvasive first breakup time (NifBUT), noninvasive average breakup time (NiaBUT), bulbar conjunctival redness score, the thickness of the lipid layer, and meibomian gland loss. Results Before surgery, the OSDI score of the chalazion eye was significantly higher than the contralateral eye. The bulbar conjunctival redness score (p = 0.043) and the OSDI score (p = 0.004) improved significantly in the first month after surgery. In the third month after surgery, the objective parameters showed significant improvements, including TMH (p = 0.032), NiaBUT (p = 0.028), bulbar conjunctival redness score (p < 0.001), the thickness of the lipid layer (p = 0.021), and meibomian gland loss (p = 0.005). Conclusions Our study revealed that chalazion excision can significantly improve the subjective symptoms and the objective tear film parameters of the ocular surface.
Collapse
Affiliation(s)
- Rongjie Guo
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanan Zhang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Liang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiao Liu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Martinez-Carrasco R, Rachagani S, Batra SK, Argüeso P, Fini ME. Roles unveiled for membrane-associated mucins at the ocular surface using a Muc4 knockout mouse model. Sci Rep 2023; 13:13558. [PMID: 37604830 PMCID: PMC10442421 DOI: 10.1038/s41598-023-40491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Membrane-associated mucins (MAMs) are proposed to play critical roles at the ocular surface; however, in vivo evidence has been lacking. Here we investigate these roles by phenotyping of a Muc4 KO mouse. Histochemical analysis for expression of the beta-galactosidase transgene replacing Muc4 revealed a spiraling ribbon pattern across the corneal epithelium, consistent with centripetal cell migration from the limbus. Depletion of Muc4 compromised transcellular barrier function, as evidenced by an increase in rose bengal staining. In addition, the corneal surface was less smooth, consistent with disruption of tear film stability. While surface cells presented with well-developed microprojections, an increase in the number of cells with fewer microprojections was observed. Moreover, an increase in skin-type keratin K10 and a decrease in transcription factor Pax6 was observed, suggesting an incipient transdifferentiation. Despite this, no evidence of inflammatory dry eye disease was apparent. In addition, Muc4 had no effect on signaling by toll-like receptor Tlr4, unlike reports for MUC1 and MUC16. Results of this study provide the first in vivo evidence for the role of MAMs in transcellular barrier function, tear film stability, apical epithelial cell architecture, and epithelial mucosal differentiation at the ocular surface.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Satyanarayan Rachagani
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pablo Argüeso
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Program in Immunology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
- Program in Pharmacology & Drug Development, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
- Program in Pharmacology & Drug Development, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
19
|
Liu X, Cui Z, Chen X, Li Y, Qiu J, Huang Y, Wang X, Chen S, Luo Q, Chen P, Zhuang J, Yu K. Ferroptosis in the Lacrimal Gland Is Involved in Dry Eye Syndrome Induced by Corneal Nerve Severing. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37326593 DOI: 10.1167/iovs.64.7.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Purpose Dry eye syndrome (DES) is a prevalent postoperative complication after myopic corneal refractive surgeries and the main cause of postoperative dissatisfaction. Although great efforts have been made in recent decades, the molecular mechanism of postoperative DES remains poorly understood. Here, we used a series of bioinformatics approaches and experimental methods to investigate the potential mechanism involved in postoperative DES. Methods BALB/c mice were randomly divided into sham, unilateral corneal nerve cutting (UCNV) + saline, UCNV + vasoactive intestinal peptide (VIP), and UCNV + ferrostatin-1 (Fer-1, inhibitor of ferroptosis) groups. Corneal lissamine green dye and tear volume were measured before and two weeks after the surgery in all groups. Lacrimal glands were collected for secretory function testing, RNA sequencing, ferroptosis verification, and inflammatory factor detection. Results UCNV significantly induced bilateral decreases in tear secretion. Inhibition of the maturation and release of secretory vesicles was observed in bilateral lacrimal glands. More importantly, UCNV induced ferroptosis in bilateral lacrimal glands. Furthermore, UCNV significantly decreased VIP, a neural transmitter, in bilateral lacrimal glands, which increased Hif1a, the dominant transcription factor of transferrin receptor protein 1 (TfR1). Supplementary VIP inhibited ferroptosis, which decreased the inflammatory reaction and promoted the maturation and release of secretory vesicles. Supplementary VIP and Fer-1 improved tear secretion. Conclusions Our data suggest a novel mechanism by which UCNV induces bilateral ferroptosis through the VIP/Hif1a/TfR1 pathway, which might be a promising therapeutic target for DES-induced by corneal refractive surgeries.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
20
|
Weston A, Vladescu SC, Reddyhoff T, Griffiths A, Crouzier T, Fielden M, Garnett JA, Carpenter GH. The influence of ions on the lubricative abilities of mucin and the role of sialic acids. Colloids Surf B Biointerfaces 2023; 227:113327. [PMID: 37172419 DOI: 10.1016/j.colsurfb.2023.113327] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Mucus reduces friction between epithelial surfaces by providing lubrication in the boundary and mixed regime. Mucins, the main macromolecule, are heavily glycosylated proteins that polymerise and retain water molecules, resulting in a hydrated biogel. It is assumed that positively charged ions can influence mucin film structure by screening the electrostatic repulsions between the negatively charged glycans on mucin moieties and draw in water molecules via hydration shells. The ionic concentration can vary significantly in different mucus systems and here we show that increasing the ionic concentration in mucin films leads to an increase in lubrication between two polydimethylsiloxane surfaces at sliding contact in a compliant oral mimic. Mucins were found to bind sodium ions in a concentration-dependent manner and increased ionic concentration appears to cause mucin films to swell when assessed by Quartz Crystal hiMicrobalance with Dissipation (QCM-D) analysis. Furthermore, we determined that the removal of negatively charged sialic acid moieties by sialidase digestion resulted in reduced adsorption to hydrophilic surfaces but did not affect the swelling of mucin films with increasing ionic concentrations. Moreover, the coefficient of friction was increased with sialic acid removal, but lubrication was still increased with increasing ionic concentrations. Taken together this suggests that sialic acids are important for lubrication and may exert this through the sacrificial layer mechanism. Ionic concentration appears to influence mucin films and their lubrication, and sialic acids, at least partly, may be important for ion binding.
Collapse
Affiliation(s)
- Abby Weston
- Centre for Host Microbiome Interactions, Salivary Research, Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK.
| | - Sorin-Cristian Vladescu
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Alex Griffiths
- London Metallomics Facility, King's College London, Waterloo Campus, London, UK
| | - Thomas Crouzier
- Division of Glycoscience, KTH Royal Institute of Technology, Albanova Unversity Centre, Stockholm, Sweden
| | - Matthew Fielden
- Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Albanova University Centre, Stockholm, Sweden
| | - James A Garnett
- Centre for Host Microbiome Interactions, Salivary Research, Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host Microbiome Interactions, Salivary Research, Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| |
Collapse
|
21
|
Itah S, Elad D, Jaffa AJ, Grisaru D, Rosner M. Transmembrane Mucin Response in Conjunctival Epithelial Cells Exposed to Wall Shear Stresses. Int J Mol Sci 2023; 24:ijms24076589. [PMID: 37047561 PMCID: PMC10095083 DOI: 10.3390/ijms24076589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Human conjunctival epithelium cells (HCEC) line the inner surface of the eyelid and cover the sclera and are continuously subjected to wall shear stresses (WSS). The effects of external forces on the conjunctival epithelium are not fully known. The conjunctival epithelium contains stratified squamous cells that synthesize the membrane-spanning mucins MUC1 and MUC16, which play important roles in protecting the ocular surface. Alterations in both gel-forming and membrane-tethered mucins occur in drying ocular surface diseases. The aim of this study was to explore the mechanobiological characteristics of transmembrane mucin secretion and cellular alterations of primary HCEC exposed to airflow-induced WSS perturbations. We exposed the HCEC to a steady WSS of 0.5 dyne/cm2 for durations of 15 and 30 min. Cytoskeletal alterations and MUC1 secretions were studied using immunohistochemically fluorescent staining with specific antibodies. We investigated for the first time an in vitro model of membrane-tethered mucin secretion by HCEC in response to WSS. The exposure of HCEC to WSS increased the polymerization of F-actin, altered the cytoskeletal shape and reduced the secretion of membrane-tethered MUC1.
Collapse
Affiliation(s)
- Shir Itah
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Ariel J. Jaffa
- Department of Obstetrics and Gynecology, Tel-Aviv University, Tel-Aviv 69978, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Dan Grisaru
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
- Department of Gynecological Oncology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel-Aviv 64239, Israel
| | - Mordechai Rosner
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
- Department of Ophthalmology, Sheba Medical Center, Ramat-Gan 52620, Israel
- Assuta Medical Centers, Tel-Aviv 69710, Israel
| |
Collapse
|
22
|
Yokoi N, Kusada N, Kato H, Furusawa Y, Sotozono C, Georgiev GA. Successful Detection of the Characteristics of Tear Film Breakup Appearing Immediately after Eye Opening by Videokeratography with a Newly-Developed Indicator. Diagnostics (Basel) 2023; 13:diagnostics13020240. [PMID: 36673051 PMCID: PMC9858532 DOI: 10.3390/diagnostics13020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Spot break (SB), a tear film breakup (TFBU) subtype seen in decreased wettability dry eye (DE), is characterized by a spot-like TFBU that appears immediately after eye opening. It is sometimes difficult to detect using currently available devices for evaluating non-invasive TFBU. The purpose of this study was to investigate the effectiveness of using a newly developed videokeratography indicator for detecting SB. The study involved 44 eyes of 44 DE patients (21 eyes with SB (SB group) and 23 eyes with random break in which fluorescein breakup time was ≤ 5 s (s) (RB group)). All eyes were examined using videokeratography, with digital Meyer-ring images being obtained. By calculation of the degree of luminance blur on the cornea in the Meyer-ring images, termed ‘disturbance value’ (DV), DVs at 0 s (DV(0)]), 2 s (DV(2)), and 5 s (DV(5)) after eye opening, and the changes of DV between each time, were compared between the SB and RB groups. Results: No significant differences in DV(2) and DV(5) and the rate of change between DV(2) and DV(5) were found between the two groups. However, DV(0) and rate of change between DV(0) and DV(2) in the SB group were significantly greater (p < 0.001) than those in the RB group. SB characteristics were successfully detected by videokeratography using a new videokeratography DV indicator.
Collapse
Affiliation(s)
- Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: ; Tel.: +81-75-251-5578
| | - Natsuki Kusada
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroaki Kato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuki Furusawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Georgi As. Georgiev
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| |
Collapse
|
23
|
Katagiri A, Tsubota K, Mikuzuki L, Nakamura S, Toyofuku A, Kato T, Bereiter DA, Iwata K. Diquafosol sodium reduces neuronal activity in trigeminal subnucleus caudalis in a rat model of chronic dry eye disease. Neurosci Lett 2023; 792:136939. [PMID: 36341926 DOI: 10.1016/j.neulet.2022.136939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Patients with persistent and severe dry eye disease (DED) have corneal hypersensitivity, resulting in ocular pain, and diquafosol sodium, a potent P2Y2 receptor agonist, is commonly used to improve the resultant tear film stability. This study determined the effects of diquafosol instillation on the suppression of trigeminal subnucleus caudalis (Vc) neuronal activity and ocular pain by enhancing tear film stability in the model for chronic DED. The effects of diquafosol on the ocular surface were assessed by the topical application for 28 days, starting from the 14th day since unilateral exorbital gland removal (chronic DED). Loss of tear volume secretion in chronic DED rats was significantly reversed by diquafosol instillation after 28 days, compared with saline treatment. The number of eyeblinks and pERK-IR neurons in the superficial laminae of Vc following hypertonic saline administration to the ocular surface was lower in diquafosol-treated chronic DED rats than in saline-treated rats. The neuronal activity evoked by hypertonic saline and mechanical stimulation along with the spontaneous neuronal activity in the superficial laminae of the Vc were suppressed in diquafosol-treated chronic DED rats. These findings suggest that ocular surface instillation of diquafosol for 28 days attenuates the neuronal hyperactivity in the Vc and the ocular pain that often occurs in chronic DED.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan.
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Tsubota Laboratory, Inc., 34 Shinanomachi, Shinjuku-ku, Tokyo 160-0016 Japan
| | - Lou Mikuzuki
- Division of Geriatric Dentistry, Department of Critical Care Dentistry, Kanagawa Dental University, 82 Inaoka-cho Yokosuka-shi Kanagawa, 238-8580, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| |
Collapse
|
24
|
Cui KW, Myung DJ, Fuller GG. Tear Film Stability as a Function of Tunable Mucin Concentration Attached to Supported Lipid Bilayers. J Phys Chem B 2022; 126:6338-6344. [PMID: 35972346 PMCID: PMC9421887 DOI: 10.1021/acs.jpcb.2c04154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, we describe the development of a tunable,
acellular in vitro model of the mucin layer of the
human tear film.
First, supported lipid bilayers (SLBs) comprised of the phospholipid
DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and
biotinyl cap PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap
biotinyl)) are created on the surface of a glass dome with radius
of curvature comparable to the human eye. Next, biotinylated bovine
submaxillary mucins (BSM) are tethered onto the SLB using streptavidin
protein. The mucin presentation can be tuned by altering the concentration
of biotinylated BSM, which we confirm using fluorescence microscopy.
Due to the optically smooth surface that results, this model is compatible
with interferometry for monitoring film thickness. Below a certain
level of mucin coverage, we observe short model tear film breakup
times, mimicking a deficiency in membrane-associated mucins. In contrast,
the breakup time is significantly delayed for SLBs with high mucin
coverage. Because no differences in mobility or wettability were observed,
we hypothesize that higher mucin coverage provides a thicker hydrated
layer that can protect against external disturbances to thin film
stability. This advance paves the way for a more physiological, interferometry-based in vitro model for investigating tear film breakup.
Collapse
Affiliation(s)
- Kiara W Cui
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - David J Myung
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.,Byers Eye Institute at the School of Medicine, Stanford, California 94305, United States
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Alterations in the ocular surface and tear film following keratoplasty. Sci Rep 2022; 12:11991. [PMID: 35835841 PMCID: PMC9283544 DOI: 10.1038/s41598-022-16191-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to evaluate any alterations in the tear film and ocular surface beyond the early postoperative period following penetrating keratoplasty (PK) and deep anterior lamellar keratoplasty (DALK). This cross-sectional, contralateral-eye study compared ocular surface and tear film parameters of eyes with a previous PK or DALK in one eye and no prior surgery in the contralateral eye. Overall, 14 (87.5%) participants underwent PK, and 2 (12.5%) underwent DALK using a mechanical dissection. The median time from surgery was 3.4 years (range 1.5 to 38.7 years). The indication for unilateral keratoplasty was keratoconus in 15 (94%) participants, and corneal scarring in 1 (6%) eye, secondary to microbial keratitis. Operated eyes exhibited poorer non-invasive tear film breakup time, lower corneal sensitivity, lower sub-basal nerve density and more severe fluorescein staining scores than unoperated fellow eyes (all Q < 0.05). There were no significant differences in tear film lipid layer quality, tear meniscus height, conjunctival hyperaemia, lissamine green staining score, or meibography grade between operated and fellow eyes (all Q ≥ 0.20). Higher corneal esthesiometry threshold (lower corneal sensitivity) was correlated with shorter non-invasive tear film breakup time (Spearman’s rho = − 0.361, p = 0.04) and increased fluorescein staining score (Spearman’s rho = 0.417, p = 0.02). Keratoplasty can induce persistent changes in the ocular surface and tear film, including: increased fluorescein staining, decreased tear film breakup time, decreased corneal sub-basal nerve plexus density, and reduced corneal sensitivity.
Collapse
|
26
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
27
|
Shi K, Yin Q, Tang X, Yu X, Zheng S, Shentu X. Necroptosis Contributes to Airborne Particulate Matter-Induced Ocular Surface Injury. Toxicology 2022; 470:153140. [PMID: 35247514 DOI: 10.1016/j.tox.2022.153140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022]
Abstract
In this study, we explored the role of necroptosis in the pathogenesis of ocular surface injury caused by airborne particulate matter (PM). Human corneal epithelial (HCE) cells and mouse ocular surface were treated with PM exposure and compared with non-exposed groups. The expression of necroptosis-related proteins was measured by immunoblotting in HCE cell groups. Cell damages were detected using CCK-8, flow cytometry, and immunofluorescence staining. In the mouse model, hematoxylin and eosin (H&E) staining and corneal fluorescein sodium staining were assessed. In addition, the expression of inflammatory cytokines and mucin were examined via Enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining and/or quantitative RT -PCR (qRT-PCR), both in vitro and in vivo. Our research showed that PM exposure may trigger HCE cell damage via necroptosis. Necrostatin-1(Nec-1), one of the specific inhibitors of necroptosis, can markedly reduce PM-induced HCE cell damage. HCE cell damage markers included decreased cell viability, increased intracellular reactive oxygen species (ROS) levels, and loss of mitochondrial membrane potential. At the same time, Nec-1 inhibited the increased inflammatory cytokines and the decreased mucin expression caused by PM exposure in HCE cells. Nec-1 also reduced corneal inflammation and mucin underproduction in mouse ocular surface after PM exposure. Our study demonstrated that necroptosis is involved in the pathogenesis of PM exposure-related ocular surface injury, including inflammation and insufficient mucin production in the cornea, which can be rescued by inhibitor Nec-1. This suggests Nec-1 could be a novel therapeutic target for ocular surface disorders, especially dry eye disease, which is caused by the exacerbation of airborne PM pollution.
Collapse
Affiliation(s)
- Kexin Shi
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qichuan Yin
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiajing Tang
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaoning Yu
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London, SE1 1UL, England
| | - Xingchao Shentu
- The Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
28
|
Liu H, Han X, Li H, Tao Q, Hu J, Liu S, Liu H, Zhou J, Li W, Yang F, Ping Q, Wei S, Liu H, Lin H, Hou D. Wettability and contact angle affect precorneal retention and pharmacodynamic behavior of microspheres. Drug Deliv 2021; 28:2011-2023. [PMID: 34569888 PMCID: PMC8480260 DOI: 10.1080/10717544.2021.1981493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the present study, we describe the development of betaxolol hydrochloride and montmorillonite with ion exchange in a single formulation to create a novel micro-interactive dual-functioning sustained-release delivery system (MIDFDS) for the treatment of glaucoma. Betaxolol hydrochloride molecule was loaded onto the montmorillonite by ion exchange and MIDFDS formation was confirmed by XPS data. MIDFDS showed similar physicochemical properties to those of Betoptic, such as particle size, pH, osmotic pressure, and rheological properties. Nevertheless, the microdialysis and intraocular pressure test revealed better in vivo performance of MIDFDS, such as pharmacokinetics and pharmacodynamics. With regards to wettability, MIDFDS had a larger contact angle (54.66 ± 5.35°) than Betoptic (36.68 ± 1.77°), enabling the MIDFDS (2.93 s) to spread slower on the cornea than Betoptic (2.50 s). Moderate spreading behavior and oppositely charged electrostatic micro-interactions had a comprehensive influence on micro-interactions with the tear film residue, resulting in a longer precorneal retention time. Furthermore, MIDFDS had a significant sustained-release effect, with complete release near the cornea. The dual-functioning sustained-release carrier together with prolonged pre-corneal retention time (80 min) provided sufficiently high drug concentrations in the aqueous humor to achieve a more stable and long-term IOP reduction for 10 h. In addition, cytotoxicity and hemolysis tests showed that MIDFDS had better biocompatibility than Betoptic. The dual-functioning microspheres presented in this study provide the possibility for improved compliance due to low cytotoxicity and hemolysis, which suggests promising clinical implications.
Collapse
Affiliation(s)
- Hanyu Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyue Han
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huamei Li
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Tao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Jie Hu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuo Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaixin Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Zhou
- Department of English Language and Literature, University College London, London, UK
| | - Wei Li
- Guangzhou Institute For Drug Control, Guangzhou, China
| | - Fan Yang
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qineng Ping
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shijie Wei
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongmei Liu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Huaqing Lin
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongzhi Hou
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
29
|
Rush SW, Chain J, Das H. Corneal Epithelial Stem Cell Supernatant in the Treatment of Severe Dry Eye Disease: A Pilot Study. Clin Ophthalmol 2021; 15:3097-3107. [PMID: 34295148 PMCID: PMC8291803 DOI: 10.2147/opth.s322079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To report the subjective assessment of topical self-administered, cadaver-derived corneal epithelial stem cell supernatant for treatment of severe dry eye disease (DED). METHODS Thirty-four eyes of 17 patients with advanced DED as defined by Standardized Patient Evaluation of Eye Dryness (SPEEDTM) questionnaire ≥14, Ocular Surface Disease Index (OSDI©) score ≥40 and documented attempt of at least six conventional dry eye therapies were enrolled into a prospective clinical trial at a single private practice institution. Treatment consisted of patient self-administered topical instillation of the corneal epithelial stem cell-derived product four times daily in both eyes for 12 weeks. Patient-reported outcome measures (PROMs) were taken with the SPEEDTM questionnaire (the main outcome variable), OSDI© score and visual analog score (VAS; UNC Dry Eye Management Scale©), and objective clinical measurements were taken with best-corrected visual acuity (BCVA), corneal topographic index measurements and tear film osmolarity. These measurements were compared at baseline versus the endpoint at completion of the 12-week treatment. RESULTS All 34 eyes tolerated the treatment without any adverse events or significant side effects. Compared with baseline, both the SPEEDTM questionnaire and the VAS significantly improved at the conclusion of the 12-week treatment (p = 0.0054 and p = 0.0202, respectively). The OSDI© improved by an average of 10.9 points after the treatment but was not statistically significant (p = 0.1409). There were no significant changes in any of the objective clinical measurements. None of the study subjects failed to complete the treatment course, experienced decrease in any of the PROMs or lost one or more lines of BCVA during the follow-up period. CONCLUSION Topical corneal epithelial stem cell-derived supernatant that can be self-administered by the patient shows promise at improving patient symptoms and quality of life in the setting of severe DED that is unresponsive to conventional therapies.
Collapse
Affiliation(s)
- Sloan W Rush
- Panhandle Eye Group, Amarillo, TX, 79106, USA
- Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | | | - Hiranmoy Das
- Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| |
Collapse
|
30
|
Mechanobiology of conjunctival epithelial cells exposed to wall shear stresses. Biomech Model Mechanobiol 2021; 20:1903-1917. [PMID: 34228228 DOI: 10.1007/s10237-021-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The human conjunctival epithelial cells (HCEC) line the inner sides of the eyelids and the anterior part of the sclera. They include goblet cells that secret mucus into the tear film that protects the ocular surface. The conjunctival epithelium is subjected to mechano-physical stimuli due to eyelid movement during blinking, during wiping and rubbing the eyes, and when exposed to wind and air currents. We cultured primary HCEC under air-liquid interface (ALI) conditions in custom-designed wells that can be disassembled for installation of the in vitro model in a flow chamber. We exposed the HCEC after ALI culture of 8-10 days to steady and oscillatory airflows. The in vitro model of HCEC was exposed to steady wall shear stresses (sWSS) of 0.5 and 1.0 dyne/cm2 for lengths of 30 and 60 min and to oscillatory wall shear stresses (oWSS) of 0.5 and 0.77 dyne/cm2 amplitudes for a length of 10 min. Cytoskeletal alterations and MUC5AC mucin secretion in response to WSS were investigated using immunohistochemically fluorescent staining and enzyme-linked lectin assay (ELLA), respectively. The results revealed that both exposure times and sWSS values increased the polymerization of F-actin filaments while mucin secretion decreased. However, after a recovery of 24 h in the incubator we observed a decrease of F-actin fibers and mucin secretion only for exposure of 30 min. The length of exposure was more influential on cytoskeletal alterations than the level of sWSS. The very small effect of sWSS on mucin secretion is most likely related to the much smaller amount of goblet cell than in other mucus-secreting tissue. The results for both oWSS amplitudes revealed similar trends regarding F-actin and mucin secretion. Immediately post-exposure we observed an increase in polymerization of F-actin filaments while mucin secretion decreased. However, after 24-h recovery we observed that both F-actin and mucin secretion returned to the same values as for unexposed cultures. The results of this study suggest that WSS should be considered while exploring the physiological characteristics of HCEC.
Collapse
|
31
|
Martinez-Carrasco R, Argüeso P, Fini ME. Membrane-associated mucins of the human ocular surface in health and disease. Ocul Surf 2021; 21:313-330. [PMID: 33775913 PMCID: PMC8328898 DOI: 10.1016/j.jtos.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Mucins are a family of high molecular weight, heavily-glycosylated proteins produced by wet epithelial tissues, including the ocular surface epithelia. Densely-packed O-linked glycan chains added post-translationally confer the biophysical properties of hydration, lubrication, anti-adhesion and repulsion. Membrane-associated mucins (MAMs) are the distinguishing components of the mucosal glycocalyx. At the ocular surface, MAMs maintain wetness, lubricate the blink, stabilize the tear film, and create a physical barrier to the outside world. In addition, it is increasingly appreciated that MAMs function as cell surface receptors that transduce information from the outside to the inside of the cell. Recently, our team published a comprehensive review/perspectives article for molecular scientists on ocular surface MAMs, including previously unpublished data and analyses on two new genes MUC21 and MUC22, as well as new MAM functions and biological roles, comparing human and mouse (PMID: 31493487). The current article is a refocus for the audience of The Ocular Surface. First, we update the gene and protein information in a more concise form, and include a new section on glycosylation. Next, we discuss biological roles, with some new sections and further updating from our previous review. Finally, we provide a new chapter on MAM involvement in ocular surface disease. We end this with discussion of an emerging mechanism responsible for damage to the epithelia and their mucosal glycocalyces: the unfolded protein response (UPR). The UPR offers a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Rafael Martinez-Carrasco
- Department of Ophthalmology, Tufts University School of Medicine at New England Eye Center, Tufts Medical Center, Boston, MA, 02111, USA.
| | - Pablo Argüeso
- Department of Ophthalmology, Harvard Medical School at Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, 02114, USA.
| | - M Elizabeth Fini
- Department of Ophthalmology, Tufts University School of Medicine at New England Eye Center, Tufts Medical Center: Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, O2111, USA.
| |
Collapse
|
32
|
Shamloo K, Mistry P, Barbarino A, Ross C, Jhanji V, Sharma A. Differential Effect of Proinflammatory Cytokines on Corneal and Conjunctival Epithelial Cell Mucins and Glycocalyx. Transl Vis Sci Technol 2021; 10:17. [PMID: 34128966 PMCID: PMC8212448 DOI: 10.1167/tvst.10.7.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Ocular surface mucins and glycocalyx are critical for providing ocular hydration as well lubrication and repelling pathogens or allergens. Elevated levels of tear proinflammatory cytokines in dry eye may have detrimental effect on mucins and glycocalyx. The present study tested the effect of proinflammatory cytokines IL-6, TNF-α, and IFN-γ on membrane-tethered mucins expression, glycocalyx, and viability of ocular surface epithelial cells. Methods Stratified cultures of human corneal and conjunctival epithelial cells were exposed to different concentrations of IL-6, TNF-α, and IFN-γ for 24 hours. The mucins gene and protein expressions were quantified by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). The glycocalyx was imaged using confocal microscopy after staining with Alexa 488-conjugated wheat germ agglutinin lectin. Apoptotic and necrotic cell death was quantified using flow cytometry. Results IL-6, TNF-α, and IFN-γ treatment resulted in a significant increase in mucins (MUC)1 and MUC4 gene and protein expression in human corneal epithelial cells but caused no significant changes in the levels of these mucins in conjunctival epithelial cells. Further, these cytokines decreased MUC16 expression in both corneal and conjunctival epithelial cells. Moreover, no notable change in glycocalyx or apoptotic cell death in corneal and conjunctival epithelial cells was noted with any of the tested cytokines, but IL-6 and TNF-α exposure increased necrotic cell death in corneal and conjunctival epithelial cells, respectively. Conclusions Our results demonstrate that proinflammatory cytokines have differential effects on human corneal and conjunctival epithelial cell mucins expression, but do not cause any damage to ocular surface epithelial cell glycocalyx.
Collapse
Affiliation(s)
- Kiumars Shamloo
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Priya Mistry
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Ashley Barbarino
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Christopher Ross
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| |
Collapse
|
33
|
Joseph LB, Gordon MK, Kang J, Croutch CR, Zhou P, Heck DE, Laskin DL, Laskin JD. Characterization of the rabbit conjunctiva: Effects of sulfur mustard. Exp Mol Pathol 2021; 121:104656. [PMID: 34081961 DOI: 10.1016/j.yexmp.2021.104656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022]
Abstract
Sulfur mustard (SM; bis (2-chloroethyl) sulfide) is a potent vesicant which causes irritation of the conjunctiva and damage to the cornea. In the present studies, we characterized the ocular effects of SM in New Zealand white rabbits. Within one day of exposure to SM, edema and hazing of the cornea were observed, followed by neovascularization which persisted for at least 28 days. This was associated with upper and lower eyelid edema and conjunctival inflammation. The conjunctiva is composed of a proliferating epithelium largely consisting of stratified columnar epithelial cells overlying a well-defined dermis. Superficial layers of the conjunctival epithelium were found to express keratin 1, a marker of differentiating squamous epithelium, while in cells overlying the basement membrane expressed keratin 17, a marker of stratified squamous epithelium. SM exposure upregulated keratin 17 expression. Mucin 5 ac producing goblet cells were interspersed within the conjunctiva. These cells generated both acidic and neutral mucins. Increased numbers of goblet cells producing neutral mucins were evident after SM exposure; upregulation of expression of membrane-associated mucin 1 and mucin 4 in the superficial layers of the conjunctival epithelium were also noted. These data demonstrate that ocular exposure of rabbits to SM causes significant damage not only to the cornea, but to the eyelid and conjunctiva, suggesting multiple targets within the eye that should be assessed when evaluating the efficacy of potential countermeasures.
Collapse
Affiliation(s)
- Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States.
| | - Marion K Gordon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jieun Kang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | | | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Diane E Heck
- Department of Public Health, New York Medical College, Valhalla, NY 10595, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, United States
| |
Collapse
|
34
|
Miao W, Zheng S, Zhou J, Zhang B, Fang R, Hao D, Sun L, Wang D, Zhu Z, Jin X, Tian Y, Jiang L. Microchannel and Nanofiber Array Morphology Enhanced Rapid Superspreading on Animals' Corneas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007152. [PMID: 33891341 DOI: 10.1002/adma.202007152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The dynamic spreading phenomenon of liquids is vital for both understanding wetting mechanisms and visual reaction time-related applications. However, how to control and accelerate the spreading process is still an enormous challenge. Here, a unique microchannel and nanofiber array morphology enhanced rapid superspreading (RSS) effect on animals' corneas with a superspreading time (ST) of 830 ms is found, and the respective roles of the nanofiber array and the microchannel in the RSS effect are explicitly demonstrated. Specifically, the superspreading is induced by in-/out-of-plane nanocapillary forces among the nanofiber array; the microchannel is responsible for tremendously speeding up the superspreading process. Inspired by the RSS strategy, not only is an RSS surface fabricated with an ST of only 450 ms, which is, respectively, more than 26 and 1.8 times faster than conventional superamphiphilic surfaces and animal's corneas and can be applied as RSS surfaces on video monitors to record clear videos, but also it is demonstrated that the RSS effect has tremendous potential as advanced ophthalmic material surfaces to enhance its biocompatibility for clear vision.
Collapse
Affiliation(s)
- Weining Miao
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zheng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiajia Zhou
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Bo Zhang
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruochen Fang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Dezhao Hao
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Sun
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Dianyu Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zhongpeng Zhu
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xu Jin
- Research Institute of Petroleum Exploration and Development PetroChina, Beijing, 100191, China
| | - Ye Tian
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
35
|
Bacteriostatic Effect of Multidose Preservative-free Buffered Saline Used in Scleral Lens Wear. Optom Vis Sci 2021; 97:162-168. [PMID: 32168238 DOI: 10.1097/opx.0000000000001492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Scleral lenses have become an increasingly common treatment for ocular surface disease and irregular corneas. Multidose, preservative-free saline solutions are frequently used off-label to fill scleral lenses. Because the fluid resides over the ocular surface during lens wear, contaminated solutions may increase the risk of infectious complications. PURPOSE We sought to assess the viability of skin microorganisms and pathogens associated with keratitis once introduced into a multidose preservative-free saline (MDPFS) solution containing the bacteriostatic agent boric acid (PuriLens Plus; The Lifestyle Co., Inc., Freehold, NJ). METHODS Eleven bacterial and one yeast isolate were each inoculated to three lots of MDPFS as well as to sterile normal saline for comparison. Microorganism concentrations were enumerated at baseline and days 1, 3, 7, 14, 21, and 28. Persistence of microorganism viability was compared between MDPFS lots and between MDPFS and normal saline for each organism. RESULTS Duration of microorganism viability was ≥24 hours in MDPFS with no significant difference in the distribution of survival duration of microorganisms in MDPFS versus normal saline (P = .15). Candida albicans concentrations declined 14 days earlier in MDPFS, whereas concentrations of viable organisms in MDPFS remained within 1 log of baseline for the longest durations for Pseudomonas aeruginosa (7 days), Escherichia coli (14 days), and Achromobacter xylosoxidans (≥28 days). Gram-positive organism concentrations remained within 1 log of baseline for no more than 3 days. Mild lot-to-lot variation in organism concentrations was noted near the end points of viability. Bacteriostasis was demonstrated in that concentrations of all organisms remained at or below baseline levels throughout the 28-day period. CONCLUSIONS After microbial contamination, persistence of organism viability was similar in PuriLens and normal saline. Environmental gram-negative organisms, many of which can contribute to infectious keratitis, can persist for weeks once introduced into saline solutions.
Collapse
|
36
|
Shoari A, Kanavi MR, Rasaee MJ. Inhibition of matrix metalloproteinase-9 for the treatment of dry eye syndrome; a review study. Exp Eye Res 2021; 205:108523. [PMID: 33662353 DOI: 10.1016/j.exer.2021.108523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome (DES) and tear dysfunction are multifactorial conditions affecting meibomian glands, lacrimal glands, and ocular surface. This ocular disorder can cause eye irritation, irregular cornea, corneal barrier disruption, and blurred vision. Uncontrolled increase in matrix metalloproteinase-9 (MMP-9) level and activity has been detected in the tears and ocular surface in the patients with DES, which has been proved to be related to disruption of tight junctions in apical corneal epithelium associated with severe signs of DES. These uncontrolled activities of MMP-9 lead to desquamation of ocular surface epithelia. Therefore, this review study was conducted to summarize the evidence regarding MMP-9 contribution in DES, and inhibition of MMP-9, as a therapeutic target for treatment of DES. For this purpose, herein, the related studies designed novel pharmaceutical compounds for direct and indirect inhibition of MMP-9 as treatment approaches for DES were reviewed. These compounds were designed to improve corneal barrier function, reduce inflammation on ocular surface, and restore tear production.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
37
|
Clinical Implication of Patchy Pattern Corneal Staining in Dry Eye Disease. Diagnostics (Basel) 2021; 11:diagnostics11020232. [PMID: 33546422 PMCID: PMC7913618 DOI: 10.3390/diagnostics11020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/04/2022] Open
Abstract
Corneal fluorescein staining in a form that is commonly called a “patchy pattern (PP)” is sometimes seen with or without superficial punctate keratopathy (SPK) in dry-eye diseases (DEDs). Here, we investigated the differences in the clinical features of DED patients with and without PP corneal staining (PPCS). This study involved 35 DEDs with PPCS (PPCS group) and 30 DEDs with SPK and without PPCS (non-PPCS group). The tear meniscus radius (TMR, mm), spread grade (SG) of the tear-film lipid layer (i.e., SG 1–5, 1 being best), noninvasive breakup time (NIBUT, seconds), fluorescein breakup time (FBUT, seconds), corneal epithelial damage (CED, 15 points maximum), conjunctival epithelial damage (CjED, six points maximum), the Schirmer’s 1 test (ST1, mm), and the prevalence of Sjögren’s syndrome (SS) were examined, and then compared between the two groups. Our findings revealed that between the groups (PPCS vs. non-PPCS), there was a statistically significant difference (p < 0.05) in CjED (3.1 ± 1.9 vs. 1.3 ± 1.6), ST1 (5.6 ± 7.4 vs. 14.8 ± 11.4), and the prevalence of SS (60.0% vs. 16.7%). Our findings suggest that DEDs and dry-eye patients with PPCS may indicate not only SS itself, but also the ophthalmological characteristics compatible with SS.
Collapse
|
38
|
Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel) 2021; 10:antiox10020190. [PMID: 33525721 PMCID: PMC7911148 DOI: 10.3390/antiox10020190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease is a multifactorial pathology compromising the quality of life of patients, resulting in significant damage of the ocular surface and discomfort. The current therapeutical strategies are not able to definitively resolve the underlying causes and stop the symptoms. Polyphenols are promising natural molecules that are receiving increasing attention for their activity/effects in counteracting the main pathologic mechanisms of dry eye disease and reducing its symptoms. In the present review, a deep literature search focusing on the main polyphenols tested against dry eye disease was conducted, analyzing related in vitro, in vivo, and clinical studies to provide a comprehensive and current review on the state of the art. Polyphenols present multiple effects against dry eye diseases-related ocular surface injury. In particular, the observed beneficial effects of polyphenols on corneal cells are the reduction of the pathological processes of inflammation, oxidative stress, and apoptosis and modulation of the tear film. Due to numerous studies reporting that polyphenols are effective and safe for treating the pathological mechanisms of this ocular surface disease, we believe that future studies should confirm and extend the evidence of polyphenols efficacy in clinical practice against dry eye disease and help to develop new ophthalmic drug(s).
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
39
|
Tear Proteases and Protease Inhibitors: Potential Biomarkers and Disease Drivers in Ocular Surface Disease. Eye Contact Lens 2021; 46 Suppl 2:S70-S83. [PMID: 31369467 DOI: 10.1097/icl.0000000000000641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tears are highly concentrated in proteins relative to other biofluids, and a notable fraction of tear proteins are proteases and protease inhibitors. These components are present in a delicate equilibrium that maintains ocular surface homeostasis in response to physiological and temporal cues. Dysregulation of the activity of protease and protease inhibitors in tears occurs in ocular surface diseases including dry eye and infection, and ocular surface conditions including wound healing after refractive surgery and contact lens (CL) wear. Measurement of these changes can provide general information regarding ocular surface health and, increasingly, has the potential to give specific clues regarding disease diagnosis and guidance for treatment. Here, we review three major categories of tear proteases (matrix metalloproteinases, cathepsins, and plasminogen activators [PAs]) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, cystatins, and PA inhibitors), and the changes in these factors associated with dry eye, infection and allergy, refractive surgery, and CLs. We highlight suggestions for development of these and other protease/protease inhibitor biomarkers in this promising field.
Collapse
|
40
|
Sex and age differences in symptoms and signs of dry eye disease in a Norwegian cohort of patients. Ocul Surf 2020; 19:68-73. [PMID: 33246035 DOI: 10.1016/j.jtos.2020.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate sex and age differences in symptoms and signs in a Norwegian clinic-based cohort of patients with dry eye disease (DED). METHODS Visitors at the Norwegian Dry Eye Clinic were examined using Ocular Surface Disease Index (OSDI) questionnaire score, tear osmolarity, tear break-up time (TFBUT), ocular surface staining, corneal sensitivity, Schirmer I test, and meibum expressibility (ME) and quality (MQ). A diagnosis of DED was made by an ophthalmologist based on symptoms and signs, and only DED patients were enrolled in the study: 1823 patients (338 males; mean age 51.2 ± 16.2 years; 1485 females; mean age 52.5 ± 16.0 years). The patients were divided into age subgroups: 20-39 years, 40-59 years and ≥60 years. Sex differences in the aforementioned tests were analyzed. Values were reported as mean ± standard deviation (SD), and intergroup comparisons were performed using Mann-Whitney U test. Multiple regression was used to analyze sex and age influences on symptoms and signs. RESULTS When patients of all ages were analyzed, females had increased osmolarity, shorter TFBUT, reduced MQ and ME and higher corneal sensitivity. OSDI, Schirmer I test, ocular surface staining and corneal staining were not significantly different between the sexes. Only with TFBUT and ME were the sex difference present in all age subgroups. Multiple regression showed that all parameters were influenced by either sex or age, but only TFBUT and ME were influenced by both sex and age. (all p < 0.05). CONCLUSIONS Sex and age differences in dry eye were most consistent in TFBUT and ME, that indicate differences in meibomian gland functionality. Sex and age subgroup stratification is important in future studies investigating DED in other populations.
Collapse
|
41
|
|
42
|
Wu N, Yan C, Chen J, Yao Q, Lu Y, Yu F, Sun H, Fu Y. Conjunctival reconstruction via enrichment of human conjunctival epithelial stem cells by p75 through the NGF-p75-SALL2 signaling axis. Stem Cells Transl Med 2020; 9:1448-1461. [PMID: 32602639 PMCID: PMC7581450 DOI: 10.1002/sctm.19-0449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Severe conjunctival diseases can cause significant conjunctival scarring, which seriously limits eye movement and affects patients' vision. Conjunctival reconstruction remains challenging due to the lack of efficient methods for stem cells enrichment. This study indicated that p75 positive conjunctival epithelial cells (CjECs) were mainly located in the basal layer of human conjunctival epithelium and showed an immature differentiation state in vivo. The p75 strongly positive (p75++) CjECs enriched by immuno-magnetic beads exhibited high expression of stem cell markers and low expression of differentiated keratins. During continuous cell passage cultivation, p75++ CjECs showed the strongest proliferation potential and were able to reconstruct the conjunctiva in vivo with the most complete structure and function. Exogenous addition of NGF promoted the differentiation of CjECs by increasing nuclear localization of SALL2 in p75++ CjECs while proNGF played an opposite role. Altogether, p75++ CjECs present stem cell characteristics and exhibit the strongest proliferation potential so can be used as seed cells for conjunctival reconstruction, and NGF-p75-SALL2 signaling pathway was involved in regulating the differentiation of CjECs.
Collapse
Affiliation(s)
- Nianxuan Wu
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Chenxi Yan
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Junzhao Chen
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Qinke Yao
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Yang Lu
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Fei Yu
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Hao Sun
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| | - Yao Fu
- Department of OphthalmologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiPeople's Republic of China
| |
Collapse
|
43
|
Hyun SW, Song SJ, Park B, Lee TG, Kim CS. Toxicological effects of urban particulate matter on corneal and conjunctival epithelial cells. Toxicol Res 2020; 36:311-318. [PMID: 33005590 DOI: 10.1007/s43188-019-00034-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/10/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Exposure to urban particulate matter (UPM) is a high-risk factor for various ocular surface diseases, including dry eye syndrome. However, the effects of UPM on corneal and conjunctival epithelium damage have not been fully elucidated. In this study, we investigated the toxicological effects of UPM exposure at high concentrations by using in vitro cultures. The cell viability, mucin expression, and the secreted inflammatory mediators of corneal and conjunctival epithelial cells was observed at 24 h after exposure to UPM. The progression of cell cycle was also examined by flow cytometry at 24 h after exposure to UPM. UPM reduced cell viability in a dose-dependent manner and increased cell population in S and G2 phase. The expression of mucin-1 was attenuated by UPM exposure, but that of mucin-4 was not. UPM increased interleukin (IL)-6 release and decreased IL-8 release. The intensity of 2',7'-dichlorofluorescein diacetate (DCF-DA) was highest at 4 h of UPM exposure. In conclusion, these results suggest that UPM causes the disruption of corneal and conjunctival epithelium by decreasing cell viability, altering cell cycle, disrupting mucin, and regulating inflammatory mediators.
Collapse
Affiliation(s)
- Soo-Wang Hyun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054 Korea.,Present Address: Medicinal Evaluation Team, Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon, Gyeonggi-do 16229 Korea
| | - Su Jeong Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054 Korea
| | - Bongkyun Park
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yusengdae-ro, Daejeon, 34054 Korea
| | - Tae Gu Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yusengdae-ro, Daejeon, 34054 Korea
| | - Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yusengdae-ro, Daejeon, 34054 Korea.,Korean Convergence Medicine, University of Science Technology (UST), Daejeon, 34054 Korea
| |
Collapse
|
44
|
Kang WS, Choi H, Jang G, Lee KH, Kim E, Kim KJ, Jeong GY, Kim JS, Na CS, Kim S. Long-Term Exposure to Urban Particulate Matter on the Ocular Surface and the Incidence of Deleterious Changes in the Cornea, Conjunctiva and Retina in Rats. Int J Mol Sci 2020; 21:E4976. [PMID: 32674521 PMCID: PMC7404123 DOI: 10.3390/ijms21144976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
We investigated the time-dependent deleterious ocular changes induced by urban particulate matter (UPM) in vitro and in vivo. UPM treatment decreased human corneal epithelial cell migration and survival. Fluorescein scores were consistently increased by UPM application for 16 weeks. One week of rest at 2 or 4 weeks led to a recovery trend, whereas two weeks of rest at 8 weeks induced no change. UPM treatment decreased the tear film break-up time at 2 weeks, which was thereafter maintained until 16 weeks. No changes were found after periods of rest. UPM-treated eyes exhibited greater corneal epithelium thickness than normal eyes at 2 weeks, which recovered to normal at 4 and 8 weeks and was significantly decreased at 16 weeks. Apoptotic cell number in the epithelium was increased at 2 weeks, which remained constant except at 8 weeks. IL-6 expression in the cornea of the right eye continually increased for 16 weeks, and significant recovery was only observed at 8 weeks after 2 weeks of rest. Ocular pressure was significantly increased in the right eye at 12 and 16 weeks. Topical UPM application to the eye induced deleterious changes to various closely related parts of the eye.
Collapse
Affiliation(s)
- Wan Seok Kang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Hakjoon Choi
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Goeun Jang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Eun Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Kyeong Jo Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Gil-Yeon Jeong
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si, Jeollanam-do 58245, Korea;
| | - Sunoh Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| |
Collapse
|
45
|
Guzmán-Téllez P, Martínez-Castillo M, Flores-Huerta N, Rosales-Morgan G, Pacheco-Yépez J, la Garza MD, Serrano-Luna J, Shibayama M. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15:919-936. [PMID: 32716210 DOI: 10.2217/fmb-2019-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Currently, there is growing interest in the identification and purification of microbial lectins due to their involvement in the pathogenicity mechanisms of pathogens, such as Entamoeba histolytica and free-living amoebae. The Gal/GalNAc lectin from E. histolytica participates in adhesion, cytotoxicity and regulation of immune responses. Furthermore, mannose- and galactose-binding protein have been described in Acanthamoeba castellanii and Balamuthia mandrillaris, respectively and they also contribute to host damage. Finally, in Naegleria fowleri, molecules containing mannose and fucose are implicated in adhesion and cytotoxicity. Considering their relevance in the pathogenesis of the diseases caused by these protozoa, lectins appear to be promising targets in the diagnosis, vaccination and treatment of these infections.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
- Department of Experimental Medicine, Liver, Pancreas & Motility Laboratory (HIPAM), School of Medicine, National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Nadia Flores-Huerta
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Gabriela Rosales-Morgan
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
46
|
Bazán Henostroza MA, Curo Melo KJ, Nishitani Yukuyama M, Löbenberg R, Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Charged glycan residues critically contribute to the adsorption and lubricity of mucins. Colloids Surf B Biointerfaces 2020; 187:110614. [DOI: 10.1016/j.colsurfb.2019.110614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022]
|
48
|
Shamloo K, Barbarino A, Alfuraih S, Sharma A. Graft Versus Host Disease-Associated Dry Eye: Role of Ocular Surface Mucins and the Effect of Rebamipide, a Mucin Secretagogue. Invest Ophthalmol Vis Sci 2020; 60:4511-4519. [PMID: 31675422 DOI: 10.1167/iovs.19-27843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The present study was designed to investigate the role of ocular surface glycocalyx and mucins in graft versus host disease (GVHD)-associated dry eye. The ameliorative effect of topical rebamipide, a mucin secretagogue, on GVHD-associated dry eye was also tested. Methods A mouse model of allogeneic transplantation was used to induce ocular GVHD with C57BL/6 as donors and B6D2F1 as recipient mice. Phenol red thread method and fluorescein staining was used to quantify tear secretion and corneal keratopathy. At 8 weeks after the allogeneic transplantation, corneas were harvested to perform glycocalyx staining and confocal microscopy. Goblet cell staining was performed using periodic acid Schiff's staining. Corneal and tear film levels of Mucin 1, 4, 16, 19, and 5AC were quantified using ELISA and real-time PCR. Rebamipide was applied topically twice daily to mice eyes. Results Allogeneic transplantation resulted in ocular GVHD-associated dry eye characterized by a significant decrease in tear film volume and the onset of corneal keratopathy. Ocular GVHD caused a significant decrease in the area and thickness of corneal glycocalyx. A significant decrease in the goblet cells was also noted. A significant decrease in mucin 4 and 5AC levels was also observed. Topical treatment with rebamipide partially attenuated ocular GVHD-mediated decrease in tear film volume and significantly reduced the severity of corneal keratopathy. Conclusions Ocular GVHD has detrimental impact on ocular surface glycocalyx and mucins. Rebamipide, a mucin secretagogue, partially prevents ocular GVHD-associated decrease in tear film and reduces the severity of corneal keratopathy.
Collapse
Affiliation(s)
- Kiumars Shamloo
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Ashley Barbarino
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Saleh Alfuraih
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| |
Collapse
|
49
|
Taniguchi J, Sharma A. Fluorometholone modulates gene expression of ocular surface mucins. Acta Ophthalmol 2019; 97:e1082-e1088. [PMID: 30963711 DOI: 10.1111/aos.14113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/19/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Mucins are vital to keep the ocular surface hydrated. Genes encoding for mucins contain a glucocorticoid response element. The purpose of this study was to evaluate the effect of fluorometholone, a glucocorticoid receptor agonist used in the management of dry eye, on the gene expression of conjunctival and corneal epithelial cell mucins. METHODS Stratified cultures of human conjunctival and corneal epithelial cells were exposed to 25, 50 and 100 nM of fluorometholone alone or in presence of mifepristone, a glucocorticoid receptor antagonist. The mRNA was isolated from the cells and reverse transcribed to cDNA. The cDNA was used for quantification of gene expression of mucin (MUC) 1, 4, 16 and 19 using real-time PCR. RESULTS Fluorometholone caused a dose- and time-dependent increase in the gene expression of MUC1, MUC4, MUC16 and MUC19 in the conjunctival as well as corneal epithelial cells. Mifepristone, a glucocorticoid receptor antagonist, inhibited fluorometholone-mediated increase in the gene expression of conjunctival and corneal mucins. At the tested concentration, neither fluorometholone nor mifepristone caused any notable changes in the cellular phenotype or viability of conjunctival and corneal epithelial cells. CONCLUSION Fluorometholone increases the gene expression of MUC1, MUC4, MUC16 and MUC19 in the conjunctival and corneal epithelial cells through activation of glucocorticoid receptors. The increased expression of mucins can be an additional possible mechanism contributing to the beneficial effects of fluorometholone in dry eye in addition to its well-known anti-inflammatory effects.
Collapse
Affiliation(s)
- Jonathan Taniguchi
- Department of Biomedical and Pharmaceutical Sciences Chapman University School of Pharmacy Chapman University Irvine CA USA
| | - Ajay Sharma
- Department of Biomedical and Pharmaceutical Sciences Chapman University School of Pharmacy Chapman University Irvine CA USA
| |
Collapse
|
50
|
Kaluzhny Y, Kinuthia MW, Lapointe AM, Truong T, Klausner M, Hayden P. Oxidative stress in corneal injuries of different origin: Utilization of 3D human corneal epithelial tissue model. Exp Eye Res 2019; 190:107867. [PMID: 31705899 DOI: 10.1016/j.exer.2019.107867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
The purpose of the current work was to utilize a three dimensional (3D) corneal epithelial tissue model to study dry eye disease and oxidative stress-related corneal epithelial injuries for the advancement of ocular therapeutics. Air-liquid interface cultures of normal human corneal epithelial cells were used to produce 3D corneal epithelial tissues appropriate for physiologically relevant exposure to environmental factors. Oxidative stress was generated by exposing the tissues to non-toxic doses of ultraviolet radiation (UV), hydrogen peroxide, vesicating agent nitrogen mustard, or desiccating conditions that stimulated morphological, cellular, and molecular changes relevant to dry eye disease. Corneal specific responses, including barrier function, tissue viability, reactive oxygen species (ROS) accumulation, lipid peroxidation, cytokine release, histology, and gene expression were evaluated. 3D corneal epithelial tissue model structurally and functionally reproduced key features of molecular responses of various types of oxidative stress-induced ocular damage. The most pronounced effects for different treatments were: UV irradiation - intracellular ROS accumulation; hydrogen peroxide exposure - barrier impairment and IL-8 release; nitrogen mustard exposure - lipid peroxidation and IL-8 release; desiccating conditions - tissue thinning, a decline in mucin expression, increased lipid peroxidation and IL-8 release. Utilizing a PCR gene array, we compared the effects of corneal epithelial damage on the expression of 84 oxidative stress-responsive genes and found specific molecular responses for each type of damage. The topical application of lubricant eye drops improved tissue morphology while decreasing lipid peroxidation and IL-8 release from tissues incubated at desiccating conditions. This model is anticipated to be a valuable tool to study molecular mechanisms of corneal epithelial damage and aid in the development of therapies against dry eye disease, oxidative stress- and vesicant-induced ocular injuries.
Collapse
Affiliation(s)
- Yulia Kaluzhny
- MatTek Corporation, 200 Homer Avenue, Ashland, MA, 01721, USA.
| | | | | | - Thoa Truong
- MatTek Corporation, 200 Homer Avenue, Ashland, MA, 01721, USA.
| | | | - Patrick Hayden
- MatTek Corporation, 200 Homer Avenue, Ashland, MA, 01721, USA.
| |
Collapse
|