1
|
Tu GC, Abedi F, Chang AY, Shen X, Soleimani M, Araujo I, Jung R, Kwon J, Anwar KN, Arabpour Z, Mahmud N, Tu EY, Dana R, Hematti P, Joslin CE, Djalilian AR. Safety of subconjunctival injection of mesenchymal stromal cells in persistent corneal epithelial disease - A phase 1b clinical trial. Ocul Surf 2025; 38:8-13. [PMID: 40414287 DOI: 10.1016/j.jtos.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE To investigate the safety and tolerability of subconjunctival injection of three escalating doses of allogeneic bone marrow-derived mesenchymal stromal cells (MSCs) in patients with persistent corneal epithelial defect/disease (PCED). DESIGN Prospective single-center open label phase 1b clinical trial. PARTICIPANTS Patients with PCED in the setting of neurotrophic keratitis and/or limbal stem cell deficiency. METHODS A dose escalation study design was used. The first three patients received a subconjunctival injection of 1 × 106 MSCs/50 μL suspension; subsequently, three participants were treated with 1 subconjunctival injection of 3 × 106 MSCs/150 μL; and two participants received 2 subconjunctival injections of 3 × 106 MSCs/150 μl in 2 conjunctival sites. MAIN OUTCOME MEASURES The primary outcome was the safety of the treatment determined on day 28 post-injection. Ocular surface toxicity and other ocular or systemic treatment emergent adverse events (TEAEs) were assessed at 1, 7, 14, 28 and 90 days. Demonstration of safety on day 28 was required before escalating to the next higher dose. Changes in the PCED were also monitored. RESULTS Eight participants completed the 90-day study. All 3 doses of subconjunctival MSCs were well tolerated. No participant developed ocular surface toxicity or other ocular or systemic TEAEs. The size of the PCED improved in 5 (63 %) patients; it increased in 2 (25 %) patients; and no progressive improvement was observed with dose escalation. CONCLUSION Subconjunctival administration of MSCs was safe and well tolerated with no systemic or ocular toxicity in patients with PCED. Improvement in epithelial defect size was observed in 63 % of the participants.
Collapse
Affiliation(s)
- Grace C Tu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Iskra Araujo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeonghyun Kwon
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandeker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadim Mahmud
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmer Y Tu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Reza Dana
- Massachusetts Eye and Ear, Harvard Medical School Department of Ophthalmology, Boston, MA, USA
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Charlotte E Joslin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA; Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Fu L, Pelosini L, Kopsachilis N, Foti R, D'Esposito F, Musa M, D'Amico A, Tognetto D, Gagliano C, Zeppieri M. Evaluating the efficacy of stem cells in treating severe dry eye disease. World J Stem Cells 2025; 17:101891. [PMID: 40308890 PMCID: PMC12038461 DOI: 10.4252/wjsc.v17.i4.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that disturbs ocular surface equilibrium, considerably diminishing quality of life. Present therapies only offer symptomatic alleviation. Stem cell treatment, especially mesenchymal stem cells (MSCs), has surfaced as a viable approach for tissue regeneration and immunological regulation in DED. Preclinical and early clinical investigations indicate that MSCs can improve lacrimal gland functionality, diminish inflammation, and facilitate corneal regeneration. Nonetheless, obstacles persist in enhancing MSC viability, determining the optimal MSC source, and guaranteeing sustained therapeutic effectiveness. Additional extensive randomized clinical trials are required to confirm the efficacy of MSC-based therapies for severe DED.
Collapse
Affiliation(s)
- Lanxing Fu
- Department of Ophthalmology, East Kent Hospitals University NHS Foundation Trust, Canterbury CT1 3NG, United Kingdom
| | - Lucia Pelosini
- Department of Ophthalmology, King's College Hospital NHS Foundation Trust, London SE5 9RS, United Kingdom
| | - Nick Kopsachilis
- Department of Ophthalmology, East Kent Hospitals University NHS Foundation Trust, Canterbury CT1 3NG, United Kingdom
| | - Roberta Foti
- Division of Rheumatology, A.O.U. "Policlinico-San Marco," Catania 95123, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group Unit, Imperial College, London NW1 5QH, United Kingdom
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Alberto D'Amico
- Academic Neurosurgery, Department of Neurosciences, University of Padova, Padova 35128, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34129, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore," Catania 94100, Italy
- Mediterranean Foundation "G.B. Morgagni", 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34129, Italy
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
3
|
Zhang D, Chen T, Liang Q, Feng X, Jiang J, Chen Z, Tang Y, Chu Y, Wang B, Hu K. A first-in-human, prospective pilot trial of umbilical cord-derived mesenchymal stem cell eye drops therapy for patients with refractory non-Sjögren's and Sjögren's syndrome dry eye disease. Stem Cell Res Ther 2025; 16:202. [PMID: 40269970 PMCID: PMC12020048 DOI: 10.1186/s13287-025-04292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Patients with refractory dry eye disease (DED) often face the threat of diminished visual quality and have limited responses to existing treatments. Ocular injection of Mesenchymal stem cells (MSCs) has recently emerged as a promising new therapeutic strategy for DED. Topical eye drops are the clinical favorable choice for drug administration in DED. To date, the clinical use of MSC eye drops has not been reported in settings. This clinical trial represents a groundbreaking exploration into the preliminary therapeutic potential and safety of umbilical cord MSC eye drops for patients with refractory DED, including both non-Sjögren's dry eye (NSDE) and Sjögren's syndrome dry eye (SSDE). The study also aimed to investigate the possible underlying mechanisms. METHODS In this open-label, prospective, single-arm, self-controlled trial, 11 NSDE and 5 SSDE patients received twice-daily MSC eye drops for two weeks, subsequent follow-up visits were scheduled at 4 weeks and 12 months after treatment. The primary efficacy was evaluated using the ocular surface disease index (OSDI) score, tear meniscus height (TMH), non-invasive break-up time (NIBUT), Schirmer I test (SIT), and corneal fluorescein staining (CFS) score. Secondary assessments focused on the evaluation of lipid layer, meibomian gland function, and bulbar conjunctival redness. Safety was monitored by recording adverse events (AEs) throughout the study. Changes in tear levels of interleukin-6 (IL-6), IL-17A, Mucin 5AC (MUC5AC), C-C chemokine ligand 20 (CCL20) and IL-23, along with proteomic alterations, were compared between baseline and T-week2. RESULTS Significant clinical improvements were observed in most symptoms and signs following MSC eye drops treatment in both NSDE and SSDE patients, particularly in tear production as measured by SIT and TMH, and the alleviation of meibomian gland blockage. The therapeutic effect on OSDI, NIBUT, and the lipid layer was more pronounced in NSDE patients compared to SSDE. No serious AEs were reported during the treatment and follow-up period. Post-treatment reductions in tear levels of IL-6 and IL-17A, along with an increase in MUC5AC, further confirmed the efficacy. Tear proteomic analysis indicated that the efficacy of MSC eye drops is associated with the inhibition of inflammation caused by T helper 17 (Th17) cells in both NSDE and SSDE groups. CONCLUSIONS In this prospective exploratory clinical study, we have demonstrated that MSC eye drops might offer clinical efficacy and manageable safety in treating refractory DED for the first time, potentially bringing a new perspective on the treatment of such patients. Our research represents a preliminary exploratory endeavor, paving the way for future large-scale randomized positive-controlled trials. TRIAL REGISTRATION ClinicalTrials.gov, NCT05784519. Registered 28 February 2023, https://clinicaltrials.gov/study/NCT05784519 .
Collapse
Affiliation(s)
- Di Zhang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Taige Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Zeying Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Yun Tang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Yiran Chu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China.
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
4
|
Ajekiigbe VO, Agbo CE, Ogieuhi IJ, Anthony CS, Adewole OA, Ahmed B, Akingbola A, Nwankwo CK, Kayode AT, Chima UE, Adaobi OM. Innovative approaches to treatment of eye diseases: advances in stem cell therapy use in ophthalmology. Int Ophthalmol 2025; 45:113. [PMID: 40120030 DOI: 10.1007/s10792-025-03493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION The human eye, a photo-sensory organ with an array of neuronal and tissue networks, remains susceptible to damage from various diseases and disorders despite its being a flawless masterpiece. It is estimated that over 2 billion people suffer from vision loss with common causative factors such as; age-related macular degeneration (AMD), glaucoma, cataracts, diabetic retinopathy, and infections amongst others. The use of Orthodox procedures has only helped mitigate the pathology; however, it doesn't serve any substantial curative purpose. More recently, the incorporation of new therapies via ocular delivery of nanomaterials and stem cell intervention has helped to change tides in the treatment of various ophthalmic pathologies. MAIN TEXT This review provides an overview of the current trends and breakthroughs in ophthalmology via stem cell therapy, with emphasis on its types, mechanisms, applications, and benefits. Mesenchymal stem cells which can arise from embryonic or adult origin possess some immunomodulatory effects that contribute to the therapeutic relevance of the MSCs and the ability to evade rejection from the host. However, the major drawback has been uncontrolled growth which can result in unintended side effects. Moreso, religious and ethical issues concerning the employment of MSCs from embryonic origin have also hindered clinical progression with its use. The use of stem cell therapy in the treatment of eye pathologies which is still undergoing clinical trials has shown to be a more viable treatment approach in ophthalmology as it targets retinal degenerative diseases thereby offering novel pathways for vision restoration. And also serves as a revolutionary alternative for treating severe ocular diseases. Stem cell delivery techniques might be quite cumbersome as the eye is a very delicate organ. The therapeutic interventional technique employed is aimed to ensure the reduction or absence of undesired effects in the deposition of the active pharmaceutical ingredient (API) being the stem cells. Techniques such as hydrogel-based injectables, which offer delivery of the APIs to the desired site of action without change in the physicochemical properties of the drug molecule, the scaffold delivery techniques, and the use of 3D bio-printing which can be used to develop scaffolds for retinal degeneration. The employment of artificial intelligence and machine learning in stem cell therapy has shown to be very fast and efficient in stem cell delivery and preventing likely human errors. CONCLUSIONS Unlike conventional treatments that often focus on managing symptoms, stem cells have the unique ability to repair and regenerate damaged tissues, addressing the root causes of the diseases. However, limitations due to economic, regulatory, and ethical challenges have posed barriers to advancing stem cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Bisharat Ahmed
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Adewunmi Akingbola
- Department of Public Health, University of Cambridge Cambridgeshire Old Trinity Schools, Cambridge, CB2 1TN, England, UK
| | | | | | | | | |
Collapse
|
5
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Chen X, Zhang C, Peng F, Wu L, Zhuo D, Wang L, Zhang M, Li Z, Tian L, Jie Y, Huang Y, Yang X, Li X, Lei F, Cheng Y. Identification of glutamine as a potential therapeutic target in dry eye disease. Signal Transduct Target Ther 2025; 10:27. [PMID: 39837870 PMCID: PMC11751114 DOI: 10.1038/s41392-024-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes. In situ metabolomics through matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased glutamine levels in cornea following MSC + Tβ4 combined therapy. Inhibition of glutamine reversed the anti-inflammatory, anti-apoptotic, and homeostasis-preserving effects observed with combined therapy, highlighting the critical role of glutamine in dry eye therapy. Clinical cases and rodent model showed elevated expression of glutaminase (GLS1), an upstream enzyme in glutamine metabolism, following dry eye injury. Mechanistic studies indicated that overexpression and inhibition of GLS1 counteracted and enhanced, respectively, the anti-inflammatory effects of combined therapy, underscoring GLS1's pivotal role in regulating glutamine metabolism. Furthermore, single-cell sequencing revealed a distinct subset of pro-inflammatory and pro-fibrotic corneal epithelial cells in the dry eye model, while glutamine treatment downregulated those subclusters, thereby reducing their inflammatory cytokine secretion. In summary, glutamine effectively ameliorated inflammation and the occurrence of apoptosis by downregulating the pro-inflammatory and pro-fibrotic corneal epithelial cells subclusters and the related IκBα/NF-κB signaling. The present study suggests that glutamine metabolism plays a critical, previously unrecognized role in DED and proposes an attractive strategy to enhance glutamine metabolism by inhibiting the enzyme GLS1 and thus alleviating inflammation-driven DED progression.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chuyue Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Fei Peng
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Min Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
De Miguel MP, Cadenas-Martin M, Stokking M, Martin-Gonzalez AI. Biomedical Application of MSCs in Corneal Regeneration and Repair. Int J Mol Sci 2025; 26:695. [PMID: 39859409 PMCID: PMC11766311 DOI: 10.3390/ijms26020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply. Lamellar keratoplasty (transplantation replacement of only one of the three layers of the cornea) is partially solving the problem of cornea undersupply. Obviously, cell therapy applied to every one of these layers will expand current therapeutic options, reducing the cost of ophthalmological interventions and increasing the effectiveness of surgery. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity for self-renewal and differentiation into different cell lineages. They can be obtained from many human tissues, such as bone marrow, umbilical cord, adipose tissue, dental pulp, skin, and cornea. Their ease of collection and advantages over embryonic stem cells or induced pluripotent stem cells make them a very practical source for experimental and potential clinical applications. In this review, we focus on recent advances using MSCs from different sources to replace the damaged cells of the three corneal layers, at both the preclinical and clinical levels for specific corneal diseases.
Collapse
Affiliation(s)
- Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (M.C.-M.); (M.S.); (A.I.M.-G.)
| | | | | | | |
Collapse
|
8
|
Qayyum AA, Frljak S, Juhl M, Poglajen G, Zemljičl G, Cerar A, Litman T, Ekblond A, Haack‐Sørensen M, Højgaard LD, Kastrup J, Vrtovec B. Mesenchymal stromal cells to treat patients with non-ischaemic heart failure: Results from SCIENCE II pilot study. ESC Heart Fail 2024; 11:3882-3891. [PMID: 39039797 PMCID: PMC11631292 DOI: 10.1002/ehf2.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
AIMS Allogeneic stem cell therapy is more logistically suitable compared with autologous cell therapy for large-scale patient treatment. We aim to investigate the clinical safety and efficacy profile of the allogeneic adipose tissue derived mesenchymal stromal cell product (CSCC_ASC) as an add-on therapy in patients with chronic non-ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) < 40%. METHODS AND RESULTS This is a single-centre investigator-initiated randomized phase I/II study with direct intra-myocardial injections of 100 million allogeneic CSCC_ASC. A total of 30 HFrEF patients with New York Heart Association (NYHA) class ≥II despite optimal anticongestive heart failure medication and plasma NT-proBNP > 300 pg/mL (>35 pmol/L) were included and randomized 2:1 to CSCC_ASC or standard care. The primary endpoint left ventricular end systolic volume (LVESV) and other echo related parameters were analysed by an investigator blinded for treatment allocation. No difference in serious adverse events was observed between groups. LVESV decreased significantly from baseline to 6 months follow-up in the ASC group (153.7 ± 53.2 mL and 128.7 ± 45.6 mL, P < 0.001) and remained unchanged in the standard care group (180.4 ± 39.4 mL and 186.7 ± 48.9 mL, P = 0.652). There was a significant difference between the groups in LVESV change (31.3 ± 11.0 mL, P = 0.009). The difference from baseline to follow-up between the two groups in left ventricular end diastolic volume (LVEDV) was 18.7 ± 12.4 mL, P = 0.146 and in left ventricular ejection fraction (LVEF) -7.8 ± 2.1%, P = 0.001. Considering the baseline values of LVESV, LVEDV and LVEF as covariates, the difference between groups for change from baseline to follow-up resulted in a P-value of 0.056, 0.076, and 0.738, respectively. NYHA class and self-reported health did also improve significantly in the ASC group compared with the standard care group (0.7 ± 0.2, P = 0.001 and -12.8 ± 5.3, P = 0.025; respectively). There was no difference in NT-proBNP (-371 ± 455 pmol/L, P = 0.422) or in 6 min walk test (12 ± 31 m, P = 0.695) between groups. CONCLUSIONS Intramyocardial injections of allogeneic CSCC_ASC in patients with chronic non-ischaemic HFrEF was safe and improved LVESV, LVEF, NYHA class, and self-reported health compared with standard care group.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
- Department of Cardiology, Hvidovre HospitalUniversity of CopenhagenCopenhagenDenmark
| | - Sabina Frljak
- Advanced Heart Failure and Transplantation CentreUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation CentreUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Gregor Zemljičl
- Advanced Heart Failure and Transplantation CentreUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Andraz Cerar
- Advanced Heart Failure and Transplantation CentreUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Thomas Litman
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research CenterUniversity of CopenhagenCopenhagenDenmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Mandana Haack‐Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation CentreUniversity Medical Centre LjubljanaLjubljanaSlovenia
| |
Collapse
|
9
|
Kobal N, Marzidovšek M, Schollmayer P, Maličev E, Hawlina M, Marzidovšek ZL. Molecular and Cellular Mechanisms of the Therapeutic Effect of Mesenchymal Stem Cells and Extracellular Vesicles in Corneal Regeneration. Int J Mol Sci 2024; 25:11121. [PMID: 39456906 PMCID: PMC11507649 DOI: 10.3390/ijms252011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The cornea is a vital component of the visual system, and its integrity is crucial for optimal vision. Damage to the cornea resulting from trauma, infection, or disease can lead to blindness. Corneal regeneration using mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) offers a promising alternative to corneal transplantation. MSCs are multipotent stromal cells that can differentiate into various cell types, including corneal cells. They can also secrete a variety of anti-inflammatory cytokines and several growth factors, promoting wound healing and tissue reconstruction. This review summarizes the current understanding of the molecular and cellular mechanisms by which MSCs and MSC-EVs contribute to corneal regeneration. It discusses the potential of MSCs and MSC-EV for treating various corneal diseases, including corneal epithelial defects, dry eye disease, and keratoconus. The review also highlights finalized human clinical trials investigating the safety and efficacy of MSC-based therapy in corneal regeneration. The therapeutic potential of MSCs and MSC-EVs for corneal regeneration is promising; however, further research is needed to optimize their clinical application.
Collapse
Affiliation(s)
- Nina Kobal
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Miha Marzidovšek
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Petra Schollmayer
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zala Lužnik Marzidovšek
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Yi S, Kim J, Kim MJ, Yae CG, Kim KH, Kim HK. Development of human amniotic epithelial cell-derived extracellular vesicles as cell-free therapy for dry eye disease. Ocul Surf 2024; 34:370-380. [PMID: 39332677 DOI: 10.1016/j.jtos.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE This study aimed to investigate the therapeutic potential of extracellular vesicles (EVs) derived from human amniotic epithelial cells (hAEC-EVs) for Dry Eye Disease (DED) treatment. METHODS Highly purified EVs were isolated from the culture supernatants of hAECs, which obtained from term placenta and characterized. Proteomic contents were analyzed for assessing its biological function related to the therapeutic potentials for DED. Subsequently, we examined the therapeutic efficacy of hAEC-EVs on human corneal epithelial cells exposed to hyperosmotic stress and in an experimental DED mouse model induced by desiccation stress. RESULTS Proteomic analysis of hAEC-EVs revealed proteins linked to cell proliferation and anti-inflammatory responses. We demonstrated efficient uptake of hAEC-EVs by ocular surface cells. Under DED conditions, EV treatment increased corneal epithelial cell proliferation and migration, and concurrently reducing inflammatory cytokines. In the DED mouse model, hAEC-EVs showed significant improvements in corneal staining score, tear secretion, corneal irregularity, and conjunctival goblet cell density. Additionally, hAEC-EVs exhibited a mitigating effect on ocular surface inflammation induced by desiccation. CONCLUSIONS These findings suggest that hAEC-EVs hold potential as a cell-free therapy for corneal epithelial defects and ocular surface diseases, presenting a promising treatment option for DED.
Collapse
Affiliation(s)
- Soojin Yi
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea; Department of Biomedical Science, The Graduate School, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea
| | - Mi Ju Kim
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Che Gyem Yae
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea; Bio-Medical Institute, Kyungpook National University Hospital, Jung-gu, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
12
|
Kanda P, Gupta A, Dhillon J, Kundapur D, Gottlieb CC. Mesenchymal stem cell based therapies for uveitis: a systematic review of preclinical studies. Eye (Lond) 2024; 38:1845-1854. [PMID: 38600361 PMCID: PMC11226430 DOI: 10.1038/s41433-024-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/03/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Cell therapy has shown promising results for treating uveitis in preclinical studies. As the field continues to grow towards clinical translation, it is important to review and critically appraise existing studies. Herein, we analysed and critically appraised all preclinical studies using cell therapy or cell derived extracellular vesicles (EVs) for uveitis, and provided insight into mechanisms regulating ocular inflammation. We used PubMed, Medline, and Embase to search for preclinical studies examining stem cell therapy (e.g., mesenchymal stem cells [MSC]) and secreted EVs. All included studies were assessed for quality using the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) checklist. Sixteen preclinical studies from 2011 to 2022 were analysed and included in this review of which 75% (n = 12) focused only on cell therapy, 18.7% (n = 3) studies focused on EVs, and 6.3% (n = 1) study focused on both cells and EVs. MSCs were the most common type of cells used in preclinical studies (n = 15) and EVs were commonly isolated from MSCs (n = 3). Overall, both MSCs and EVs showed improvements in ocular inflammation (seen on fundoscopy/slit lamp and histology) and electroretinogram outcomes. Overall, MSC and MSC-derived EVs shown great potential as therapeutic agents for treating uveitis. Unfortunately, small sample size, risk of selection/performance bias, and lack of standardized cell harvesting or delivery protocols are some factors which limits clinical translation. Large scaled, randomized preclinical studies are required to understand the full potential of MSCs for treating uveitis.
Collapse
Affiliation(s)
| | - Arnav Gupta
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- College of Public Health, Kent State University, Kent, OH, USA
| | | | | | - Chloe C Gottlieb
- Eye Institute, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
13
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Boto de Los Bueis A, Vidal Arranz C, Del Hierro-Zarzuelo A, Díaz Valle D, Méndez Fernández R, Gabarrón Hermosilla MI, Benítez Del Castillo JM, García-Arranz M. Long-Term Effects of Adipose-Derived Stem Cells for the Treatment of Bilateral Limbal Stem Cell Deficiency. Curr Eye Res 2024; 49:345-353. [PMID: 38152876 DOI: 10.1080/02713683.2023.2297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE To determine the safety and feasibility of human autologous adipose tissue-derived adult mesenchymal stem cells (ASCs) for ocular surface regeneration in patients with bilateral limbal stem-cell deficiency (LSCD). METHODS A phase IIa clinical trial was designed (https://Clinicaltrials.gov, NCT01808378) with 8 patients, 3 of whom had aniridia, 2 meibomian glands diseases, 2 multiple surgeries and 1 chronic chemical injury. The therapeutic protocol was as follows: 6-mm of central corneal epithelium was removed, 400,000 ASCs were injected into each limboconjunctival quadrant, 400,000 ASCs were suspended over the cornea for 20 min, and finally the cornea was covered with an amniotic membrane patch. RESULTS No adverse events were detected after a mean of 86,5 months of follow-up. One year after surgery, 6 of the 8 transplants were scored as successful, five patients had improved uncorrected visual acuity (mean of 12 letters), two patients presented epithelial defects (also present at baseline) and the mean percentage of corneal neovascularization was of 28.75% (36.98%, at baseline). Re-examination 24 months after treatment disclosed preserved efficacy in 4 patients. At the last visit (after a mean of 86,5 months of follow up) epithelial defects were absent in all patients although improvement in all of the variables was only maintained in patient 3 (meibomian glands agenesia). CONCLUSION ASCs are a feasible and conservative therapy for treating bilateral LSCD. The therapeutic effect differs between etiologies and diminishes over time.
Collapse
Affiliation(s)
| | | | | | - David Díaz Valle
- Department of Ophthalmology, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | | | | | - Mariano García-Arranz
- New Therapy Laboratory, Research Institute Foundation-Fundación Jiménez Díaz, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Chandran C, Santra M, Rubin E, Geary ML, Yam GHF. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines 2024; 12:649. [PMID: 38540264 PMCID: PMC10967722 DOI: 10.3390/biomedicines12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The cornea is a transparent and vitally multifaceted component of the eye, playing a pivotal role in vision and ocular health. It has primary refractive and protective functions. Typical corneal dysfunctions include opacities and deformities that result from injuries, infections, or other medical conditions. These can significantly impair vision. The conventional challenges in managing corneal ailments include the limited regenerative capacity (except corneal epithelium), immune response after donor tissue transplantation, a risk of long-term graft rejection, and the global shortage of transplantable donor materials. This review delves into the intricate composition of the cornea, the landscape of corneal regeneration, and the multifaceted repercussions of scar-related pathologies. It will elucidate the etiology and types of dysfunctions, assess current treatments and their limitations, and explore the potential of regenerative therapy that has emerged in both in vivo and clinical trials. This review will shed light on existing gaps in corneal disorder management and discuss the feasibility and challenges of advancing regenerative therapies for corneal stromal scarring.
Collapse
Affiliation(s)
- Christine Chandran
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Elizabeth Rubin
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Moira L. Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
16
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
17
|
Wiebe-Ben Zakour KE, Kaya S, Matros JC, Hacker MC, Cheikh-Rouhou A, Spaniol K, Geerling G, Witt J. Enhancement of lacrimal gland cell function by decellularized lacrimal gland derived hydrogel. Biofabrication 2024; 16:025008. [PMID: 38241707 DOI: 10.1088/1758-5090/ad2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriatein vitromodels. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential forin vitroADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a futurein vitromodel in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functionalin vitromodel, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LGin vitromodel such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments.
Collapse
Affiliation(s)
- Katharina E Wiebe-Ben Zakour
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia C Matros
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Amina Cheikh-Rouhou
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
18
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
19
|
Møller-Hansen M, Larsen AC, Wiencke AK, Terslev L, Siersma V, Andersen TT, Hansen AE, Bruunsgaard H, Haack-Sørensen M, Ekblond A, Kastrup J, Utheim TP, Heegaard S. Allogeneic mesenchymal stem cell therapy for dry eye disease in patients with Sjögren's syndrome: A randomized clinical trial. Ocul Surf 2024; 31:1-8. [PMID: 38049032 DOI: 10.1016/j.jtos.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE This double-blinded randomized clinical trial aimed to evaluate the efficacy of injecting allogeneic adipose-derived mesenchymal stem cells (ASCs) into the lacrimal gland (LG) for the treatment of dry eye disease (DED) secondary to Sjögren's syndrome (SS). METHODS Fifty-four participants with severe DED secondary to SS were included and allocated to either ASCs (n = 20), vehicle (n = 20), or a non-randomized observation group (n = 14). The intervention groups received a single injection of either ASCs or an active comparator (vehicle, Cryostor® CS10) into the LG in one eye, while the observation group received lubricating eye drops only. The primary outcome measure was changes in Ocular Surface Disease Index (OSDI) score and secondary outcome measures were non-invasive tear break-up time, tear meniscus height, Schirmer's test, and Oxford score within a 12-month follow-up. RESULTS A significant reduction in OSDI score was observed in the ASCs and vehicle groups compared to the observation group. In addition, the ASCs group demonstrated a significant increase in non-invasive tear break-up time compared to the vehicle group at the 4-week follow-up and to the observation group at the 12-month follow-up. A significant improvement in ocular surface staining, tear osmolarity, and Schirmer test score from baseline was also observed in the ASCs group; however, these changes were not significant compared to the other groups. CONCLUSION Improvement of subjective and objective signs and symptoms of DED was observed in both intervention groups following injection into the LG compared to the observation group. Future studies should investigate the mode-of-action of both injection treatments.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Ann-Cathrine Larsen
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne K Wiencke
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Terslev
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Dept. of Rheumatology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tobias T Andersen
- Department of Diagnostic Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Adam E Hansen
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Diagnostic Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helle Bruunsgaard
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens Kastrup
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Cardiology Stem Cell Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tor P Utheim
- Dept. of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Steffen Heegaard
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Chung HS, Ye EA, Lee H, Kim JY. Current Advances in Regenerative Strategies for Dry Eye Diseases: A Comprehensive Review. Bioengineering (Basel) 2023; 11:39. [PMID: 38247916 PMCID: PMC10813666 DOI: 10.3390/bioengineering11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Dry eye disease (DED) is an emerging health issue affecting millions of individuals annually. Ocular surface disorders, such as DED, are characterized by inflammation triggered by various factors. This condition can lead to tear deficiencies, resulting in the desiccation of the ocular surface, corneal ulceration/perforation, increased susceptibility to infections, and a higher risk of severe visual impairment and blindness. Currently, the clinical management of DED primarily relies on supportive and palliative measures, including the frequent and lifelong use of different lubricating agents. While some advancements like punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts have been attempted, they have shown limited effectiveness. Recently, there have been promising developments in the treatment of DED, including biomaterials such as nano-systems, hydrogels, and contact lenses for drug delivery, cell-based therapies, biological approaches, and tissue-based regenerative therapy. This article specifically explores the different strategies reported so far for treating DED. The aim is to discuss their potential as long-term cures for DED while also considering the factors that limit their feasibility and effectiveness. These advancements offer hope for more effective and sustainable treatment options in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.B.); (S.-H.O.); (C.-M.K.); (Y.-J.Y.); (H.-S.C.); (E.-A.Y.); (H.L.)
| |
Collapse
|
21
|
Møller-Hansen M, Utheim TP, Heegaard S. Surgical Procedures in the Treatment of Dry Eye Disease. J Ocul Pharmacol Ther 2023; 39:692-698. [PMID: 37566528 DOI: 10.1089/jop.2023.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disease affecting 5% to 50% in different populations. The most severe cases of DED are often caused by aqueous deficient dry eye disease (ADDE) due to lacrimal gland (LG) hypofunction. Many patients with severe ADDE do not experience adequate symptom relief from topical treatment, severely reducing their quality of life. The focus of this review is to describe the surgical interventions presently being used or investigated when topical treatment with eye drops is insufficient. The conventional surgical approach is to proceed to punctal occlusion or partial or total tarsorrhaphy. However, novel surgical procedures have been reported to have higher efficacy and patient satisfaction than conventional treatments. These procedures include amniotic membrane transplantation, transposition or transplantation of the salivary glands, and cell-based injections into the LG, each with strengths and weaknesses. Further development of these treatment modalities might prove pivotal in treating dry eye patients in the future.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tor Paaske Utheim
- Departmernt of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Steffen Heegaard
- Department of Ophthalmology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Hulme CH, Mennan C, McCarthy HS, Davies R, Lan T, Rix L, Perry J, Wright K. A comprehensive review of quantum bioreactor cell manufacture: Research and clinical applications. Cytotherapy 2023; 25:1017-1026. [PMID: 37162433 DOI: 10.1016/j.jcyt.2023.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
The Quantum cell expansion system manufactured by Terumo-BCT is perhaps the most widely reported Good Manufacturing Practice-compliant bioreactor used for the expansion of adherent cell populations, both for research purposes and clinical cell-based therapies/trials. Although the system was originally designed for adherent cell expansion, more recently suspension cultures and extracellular vesicle manufacturing protocols have been published using the Quantum system. Cell therapy research and regenerative medicine in general is a rapidly expanding field and as such it is likely that the use of this system will become even more widespread and perhaps mandatory, for both research and development and in the clinic. The purpose of this review is to describe, compare and discuss the diverse range of research and clinical applications currently using the Quantum system, which to our knowledge has not previously been reviewed. In addition, current and future challenges will also be discussed.
Collapse
Affiliation(s)
- Charlotte H Hulme
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Claire Mennan
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Helen S McCarthy
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Rebecca Davies
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Tian Lan
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Larissa Rix
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Jade Perry
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom
| | - Karina Wright
- Centre for Regenerative Medicine Research, School of Pharmacy and Bioengineering, Keele University, Keele, Newcastle, United Kingdom; Robert Jones and Agnes Hunt Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, United Kingdom.
| |
Collapse
|
23
|
Singh S, Winter Z, Necker F, Bäuerle T, Scholz M, Bräuer L, Paulsen F. New insights into lacrimal gland anatomy using 7T MRI and electron microscopy: Relevance for lacrimal gland targeted therapies and bioengineering. Ocul Surf 2023; 30:204-212. [PMID: 37774917 DOI: 10.1016/j.jtos.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE To study the tissue architecture, isthmus (connection between two lobes) of the lacrimal gland using preclinical 7T MRI in combination with histology and electron microscopy. METHODS Ten lacrimal glands from Caucasian body donors (mean age 78.7 years) were studied using 7T-MRI (N = 5; scanned at 75-μm intervals), histology, and electron microscopy (N = 5) and 3D cinematic rendering (CR) techniques. RESULTS 3D CR images showed uniform-sized lobules (widest lobule diameter, 1.68 ± 0.19 mm in orbital lobe, 1.68 ± 0.17 mm in palpebral lobe) in both lobes, separated by septae (size, 0.29 ± 0.09 mm). The internal framework of the gland resembled a honeycoomb pattern. In CR and histology, the isthmus contained glandular acini, large blood vessels, nerves, and no more than two ducts having a tortuous course towards the conjunctival surface. On assigning a color display to the rendered lacrimal gland, all glands showed a blood vessel originating from the main lacrimal artery just 5 mm beyond the hilum and making it course to the palpebral lobe via isthmus. The distance between the conjunctiva and the central substance of the orbital and palpebral lobe was 9.4 ± 0.2 mm and 2.8 ± 0.7 mm, respectively. Electron microscopy of the palpebral lobe revealed compact subepithelial layer in the overlying conjunctiva, followed by loosely scattered collagen bundles that contained the gland lobules. CONCLUSION 3D-CR can be used to study the lacrimal gland microstructure, help fabricate a 3D scaffold for lacrimal gland bioprinting, and serve as guide for transconjunctival lacrimal gland targeted therapies i.e., 2.9 & 9 mm long needle to reach the orbital and palpebral lobe center, respectively in normal-size glands.
Collapse
Affiliation(s)
- Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Ophthalmic Plastic Surgery Services, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Zoltan Winter
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Fabian Necker
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Scholz
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lars Bräuer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
24
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
25
|
Larsen AC, Møller-Hansen M, Wiencke AK, Terslev L, Torp-Pedersen S, Heegaard S. Ultrasound-Guided Transcutaneous Injection in the Lacrimal Gland: A Description of Sonoanatomy and Technique. J Ocul Pharmacol Ther 2023; 39:275-278. [PMID: 36944128 DOI: 10.1089/jop.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Purpose: To develop a method of injecting a volume up to 50% of the lacrimal gland (LG) volume while minimizing patient discomfort and maximizing accurate drug delivery. Herein we describe a series of ultrasound (US)-guided transcutaneous injections in the LG and discuss the safety and feasibility of this technique. Methods: Ultrasonography was performed in 40 patients with aqueous deficient dry eye disease using a GE Logic E10 (Milwaukee, Wisconsin, USA) US machine with a 6-24 MHz transducer. US was performed by 2 medical experts in ultrasonography. We recorded the injection and observed an enlargement of the LG ensuring delivery within the LG before the needle was removed. Assessment of injection-related adverse event was performed immediately after the injection. Results: The position of the injection needle within the LG was documented in all 40 patients. Injection of the stem cells and vehicle (N = 20) or solely vehicle (N = 20) led to an enlargement of the glandular structures in all cases. No serious adverse reactions related to the injections were observed. Conclusion: US-guided injection into the LG enables injection on a closed eye causing minimum patient discomfort and maximum certainty of accurate drug delivery. US can provide real-time images and may be used to safely guide the needle ensuring correct placement and injection within the gland capsule. This reduces the risk of injury to the eye and adjacent structures and makes a precise transcutaneous injection possible. Clinical Trial Registration number: NCT04615455.
Collapse
Affiliation(s)
| | | | | | - Lene Terslev
- Department of Rheumatology and Spine Diseases, and Rigshospitalet-Glostrup, Copenhagen, Denmark
| | | | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
26
|
Shekari F, Abyadeh M, Meyfour A, Mirzaei M, Chitranshi N, Gupta V, Graham SL, Salekdeh GH. Extracellular Vesicles as reconfigurable therapeutics for eye diseases: Promises and hurdles. Prog Neurobiol 2023; 225:102437. [PMID: 36931589 DOI: 10.1016/j.pneurobio.2023.102437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
A large number of people worldwide suffer from visual impairment. However, most available therapies rely on impeding the development of a particular eye disorder. Therefore, there is an increasing demand for effective alternative treatments, specifically regenerative therapies. Extracellular vesicles, including exosomes, ectosomes, or microvesicles, are released by cells and play a potential role in regeneration. Following an introduction to EV biogenesis and isolation methods, this integrative review provides an overview of our current knowledge about EVs as a communication paradigm in the eye. Then, we focused on the therapeutic applications of EVs derived from conditioned medium, biological fluid, or tissue and highlighted some recent developments in strategies to boost the innate therapeutic potential of EVs by loading various kinds of drugs or being engineered at the level of producing cells or EVs. Challenges faced in the development of safe and effective translation of EV-based therapy into clinical settings for eye diseases are also discussed to pave the road toward reaching feasible regenerative therapies required for eye-related complications.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | | |
Collapse
|
27
|
Qayyum AA, van Klarenbosch B, Frljak S, Cerar A, Poglajen G, Traxler-Weidenauer D, Nadrowski P, Paitazoglou C, Vrtovec B, Bergmann MW, Chamuleau SAJ, Wojakowski W, Gyöngyösi M, Kraaijeveld A, Hansen KS, Vrangbaek K, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Mathiasen AB, Ekblond A, Haack-Sørensen M, Kastrup J. Effect of allogeneic adipose tissue-derived mesenchymal stromal cell treatment in chronic ischaemic heart failure with reduced ejection fraction - the SCIENCE trial. Eur J Heart Fail 2023; 25:576-587. [PMID: 36644821 DOI: 10.1002/ejhf.2772] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 01/08/2023] [Indexed: 01/17/2023] Open
Abstract
AIMS The aim of the SCIENCE trial was to investigate whether a single treatment with direct intramyocardial injections of adipose tissue-derived mesenchymal stromal cells (CSCC_ASCs) was safe and improved cardiac function in patients with chronic ischaemic heart failure with reduced ejection fraction (HFrEF). METHODS AND RESULTS The study was a European multicentre, double-blind, placebo-controlled phase II trial using allogeneic CSCC_ASCs from healthy donors or placebo (2:1 randomization). Main inclusion criteria were New York Heart Association (NYHA) class II-III, left ventricular ejection fraction (LVEF) <45%, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels >300 pg/ml. CSCC_ASCs or placebo (isotonic saline) were injected directly into viable myocardium. The primary endpoint was change in left ventricular end-systolic volume (LVESV) at 6-month follow-up measured by echocardiography. A total of 133 symptomatic HFrEF patients were included. The treatment was safe without any drug-related severe adverse events or difference in cardiac-related adverse events during a 3-year follow-up period. There were no significant differences between groups during follow-up in LVESV (0.3 ± 5.0 ml, p = 0.945), nor in secondary endpoints of left ventricular end-diastolic volume (-2.0 ± 6.0 ml, p = 0.736) and LVEF (-1.6 ± 1.0%, p = 0.119). The NYHA class improved slightly within the first year in both groups without any difference between groups. There were no changes in 6-min walk test, NT-proBNP, C-reactive protein or quality of life the first year in any groups. CONCLUSION The SCIENCE trial demonstrated safety of intramyocardial allogeneic CSCC_ASC therapy in patients with chronic HFrEF. However, it was not possible to improve the pre-defined endpoints and induce restoration of cardiac function or clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bas van Klarenbosch
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabina Frljak
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andraz Cerar
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Pawel Nadrowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | | | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Martin W Bergmann
- Department of Cardiology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Steven A J Chamuleau
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wojtek Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Adriaan Kraaijeveld
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristian Schultz Hansen
- Faculty of Social Sciences and the Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Vrangbaek
- Faculty of Social Sciences and the Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
28
|
Soleimani M, Masoumi A, Momenaei B, Cheraqpour K, Koganti R, Chang AY, Ghassemi M, Djalilian AR. Applications of mesenchymal stem cells in ocular surface diseases: sources and routes of delivery. Expert Opin Biol Ther 2023; 23:509-525. [PMID: 36719365 PMCID: PMC10313829 DOI: 10.1080/14712598.2023.2175605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are novel, promising agents for treating ocular surface disorders. MSCs can be isolated from several tissues and delivered by local or systemic routes. They produce several trophic factors and cytokines, which affect immunomodulatory, transdifferentiating, angiogenic, and pro-survival pathways in their local microenvironment via paracrine secretion. Moreover, they exert their therapeutic effect through a contact-dependent manner. AREAS COVERED In this review, we discuss the characteristics, sources, delivery methods, and applications of MSCs in ocular surface disorders. We also explore the potential application of MSCs to inhibit senescence at the ocular surface. EXPERT OPINION Therapeutic application of MSCs in ocular surface disorders are currently under investigation. One major research area is corneal epitheliopathies, including chemical or thermal burns, limbal stem cell deficiency, neurotrophic keratopathy, and infectious keratitis. MSCs can promote corneal epithelial repair and prevent visually devastating sequelae of non-healing wounds. However, the optimal dosages and delivery routes have yet to be determined and further clinical trials are needed to address these fundamental questions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmoud Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Jackson CJ, Naqvi M, Gundersen KG, Utheim TP. Role of stem cells in regenerative treatment of dry eye disease caused by lacrimal gland dysfunction. Acta Ophthalmol 2022; 101:360-375. [PMID: 36564971 DOI: 10.1111/aos.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/06/2022] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
An ageing population and increased screen use in younger people have contributed to a rise in incidence of dry eye disease (DED). Quality of life can be significantly affected by DED, with patients experiencing eye dryness, burning, pain and sensitivity to light. If left untreated, DED may progress to cause lasting damage to the delicate cell layers of the ocular surface. The aqueous-deficient form of DED is characterized by decreased tear volume. This can occur through underlying disease or damage to the lacrimal gland (LG), which results in increased inflammation at the ocular surface and decreased tear secretion. Regenerative therapy for treatment of aqueous-deficient DED would ideally restore LG function without causing adverse side effects and be feasible in terms of cost, production and practical application in the clinic. In this review, we evaluate research directed at the development of clinical procedures for regeneration of the LG using various stem cell types and their products. We also discuss work identifying potential therapeutic targets that may alter pathways to effect healing and ameliorate development of DED. Finally, we discuss shortcomings and recommend future avenues for research. These include determination of the best tissue of origin for mesenchymal cells and transference of knowledge gleaned from animal studies to clinical investigations.
Collapse
Affiliation(s)
- Catherine J Jackson
- Ifocus, Haugesund, Norway.,Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Maria Naqvi
- Department of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.,Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen, Norway.,Faculty of Medicine, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,The Faculty of Health Sciences, Department of Quality and Health Technology, University of Stavanger, Stavanger, Norway.,Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway.,National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway.,The Faculty of Health and Sport Sciences, Department of Health and Nursing Science, University of Agder, Grimstad, Norway.,Department of Computer Science, Oslo Metropolitan University, Oslo, Norway.,The Norwegian Dry Eye Clinic, Oslo, Norway
| |
Collapse
|
30
|
Intraglandular mesenchymal stem cell treatment induces changes in the salivary proteome of irradiated patients. COMMUNICATIONS MEDICINE 2022; 2:160. [PMID: 36496530 PMCID: PMC9735277 DOI: 10.1038/s43856-022-00223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyposalivation and xerostomia (dry mouth), are the leading site-effects to treatment of head and neck cancer. Currently, there are no effective therapies to alleviate radiation-induced hyposalivation. Adipose tissue-derived mesenchymal stem/stromal cells (AT-MSCs) have shown potential for restoring salivary gland function. However, the mode of action is unknown. The purpose of the present study was therefore to characterize the effect of AT-MSC therapy on the salivary proteome in previously irradiated head and neck cancer patients. METHODS Whole saliva was collected from patients with radiation-induced salivary gland hypofunction (n = 8) at baseline, and 120 days after AT-MSC treatment, and from healthy controls (n = 10). The salivary proteome was characterized with mass spectrometry based proteomics, and data was compared within the AT-MSC group (baseline versus day 120) and between AT-MSC group and healthy controls. Significance levels between groups were determined by using double-sided t-test, and visualized by means of principal component analysis, volcano plots and cluster analysis. RESULTS Here we show that 140 human proteins are significantly differentially expressed in saliva from patients with radiation-induced hypofunction versus healthy controls. AT-MSC treatment induce a significant impact on the salivary proteome, as 99 proteins are differentially expressed at baseline vs. 120 days after treatment. However, AT-MSC treatment does not restore healthy conditions, as 212 proteins are significantly differentially expressed in saliva 120 days after AT-MSCs treatment, as compared to healthy controls. CONCLUSION The results indicate an increase in proteins related to tissue regeneration in AT-MSCs treated patients. Our study demonstrates the impact of AT-MSCs on the salivary proteome, thereby providing insight into the potential mode of action of this novel treatment approach.
Collapse
|
31
|
Jiang Y, Lin S, Gao Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant 2022; 31:9636897221133818. [PMID: 36398793 PMCID: PMC9679336 DOI: 10.1177/09636897221133818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dry eye is one of the most common chronic diseases in ophthalmology. It affects quality of life and has become a public health problem that cannot be ignored. The current treatment methods mainly include artificial tear replacement therapy, anti-inflammatory therapy, and local immunosuppressive therapy. These treatments are mainly limited to improvement of ocular surface discomfort and other symptoms. In recent years, regenerative medicine has developed rapidly, and ophthalmologists are working on new methods to treat dry eye. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immune regulatory effects, and have become a promising tool for the treatment of dry eye. These effects can also be produced by MSC-derived exosomes (MSC-Exos). As a cell-free therapy, MSC-Exos are hypoimmunogenic, serve more stable entities, and compared with MSCs, reduce the safety risks associated with the injection of live cells. This article reviews current knowledge about MSCs and MSC-Exos, and highlights the latest progress and future prospects of MSC-based therapy in dry eye treatment.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Yingying Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Yingying Gao, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian, China.
| |
Collapse
|
32
|
Serrano A, Osei KA, Huertas-Bello M, Sabater AL. The Potential of Stem Cells as Treatment for Ocular Surface Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Trends in using mesenchymal stromal/stem cells (MSCs) in treating corneal diseases. Ocul Surf 2022; 26:255-267. [DOI: 10.1016/j.jtos.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
|
34
|
[Beyond esthetics-Regenerative medicine for severe diseases of the adnexa oculi]. DIE OPHTHALMOLOGIE 2022; 119:878-890. [PMID: 35925347 DOI: 10.1007/s00347-022-01643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Restoration of eyelid and lacrimal functions are important steps on the way to an intact ocular surface. Clinically available substitute tissues or therapeutic options for eyelid reconstruction and lacrimal gland regeneration often reach their limits in patients with severe diseases of the adnexa oculi. Several approaches in regenerative medicine have been intensively researched and clinically tested in recent years. These range from reconstructive approaches with novel tissue matrices in the field of eyelid surgery to stem cell therapies to regenerate lacrimal gland function. MATERIAL AND METHODS The state of the art in the current literature is presented and an overview of clinically applied or currently researched tissues for eyelid reconstruction is given. Furthermore, approaches in stem cell therapy of the lacrimal gland as well as own results are presented. RESULTS Acellular dermis has been successfully used for eyelid reconstruction and represents a viable option in cases of limited availability of autologous tissue. In vitro grown cellular constructs or tissues with genetically modified cells have already been successfully applied in dermatology for the treatment of burns or severe genodermatoses. First studies on stem cell therapy for severe dry eye in Sjögren syndrome showed a safe and effective application of mesenchymal stem cells by injection into the lacrimal gland. CONCLUSION Due to the limitations of currently available replacement tissues, there is a clinical need for the development of new materials for adnexa oculi reconstruction. Constructs grown in vitro with allogeneic and/or genetically engineered cells are slowly making their way into clinical practice. The efficacy and mode of action of stem cells in severe dry eye are subject matters of current clinical trials.
Collapse
|
35
|
Corneal Regeneration Using Adipose-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11162549. [PMID: 36010626 PMCID: PMC9406486 DOI: 10.3390/cells11162549] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose-derived stem cells are a subtype of mesenchymal stem cell that offers the important advantage of being easily obtained (in an autologous manner) from low invasive procedures, rendering a high number of multipotent stem cells with the potential to differentiate into several cellular lineages, to show immunomodulatory properties, and to promote tissue regeneration by a paracrine action through the secretion of extracellular vesicles containing trophic factors. This secretome is currently being investigated as a potential source for a cell-free based regenerative therapy for human tissues, which would significantly reduce the involved costs, risks and law regulations, allowing for a broader application in real clinical practice. In the current article, we will review the existing preclinical and human clinical evidence regarding the use of such adipose-derived mesenchymal stem cells for the regeneration of the three main layers of the human cornea: the epithelium (derived from the surface ectoderm), the stroma (derived from the neural crest mesenchyme), and the endothelium (derived from the neural crest cells).
Collapse
|
36
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
37
|
Doctor MB, Basu S. Lacrimal Gland Insufficiency in Aqueous Deficiency Dry Eye Disease: Recent Advances in Pathogenesis, Diagnosis, and Treatment. Semin Ophthalmol 2022; 37:801-812. [PMID: 35587465 DOI: 10.1080/08820538.2022.2075706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aqueous deficiency dry eye disease is a chronic and potentially sight-threatening condition, that occurs due to the dysfunction of the lacrimal glands. The aim of this review was to describe the various recent developments in the understanding, diagnosis and treatment of lacrimal gland insufficiency in aqueous deficiency dry eye disease. METHODS A MEDLINE database search using PubMed was performed using the keywords: "dry eye disease/syndrome", "aqueous deficient/deficiency dry eye disease", "lacrimal gland" and "Sjogren's syndrome". After scanning through 750 relevant abstracts, 73 eligible articles published in the English language from 2016 to 2021 were included in the review. RESULTS Histopathological and ultrastructural studies have revealed new insights into the pathogenesis of cicatrising conjunctivitis-induced aqueous deficiency, where the lacrimal gland acini remain uninvolved and retain their secretory property, while significant ultrastructural changes in the gland have been observed. Recent advances in diagnosis include the techniques of direct clinical assessment of the lacrimal gland morphology and secretion, tear film osmolarity, tear film lysozyme and lactoferrin levels, tear film interferometry and lacrimal gland confocal microscopy. Developments in the treatment of aqueous deficiency dry eye disease, apart from the nanoparticle-based tear substitutes, include secretagogues like diquafosol tetrasodium and rebamipide, anti-inflammatory topical agents like nanomicellar form of cyclosporine and lifitegrast, scleral contact lenses, neurostimulation, and acupuncture for increasing the amount of tear production, minor salivary gland transplantation, faecal microbial transplantation, lacrimal gland regeneration and mesenchymal stem cell therapy. CONCLUSIONS Significant advances in the understanding, diagnosis and management of lacrimal gland insufficiency and its role in aqueous deficiency dry eye disease have taken place within the second half of the last decade. Of which, translational breakthroughs in terms of newer drug formulations and regenerative medicine are most promising.
Collapse
Affiliation(s)
- Mariya B Doctor
- Academy of Eye Care Education, L V Prasad Eye Institute, Hyderabad, India.,The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Sayan Basu
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
38
|
Chen X, Zhang C, Tian L, Wu L, Jie Y, Wang N, Liu R, Wang L. In situ metabolic profile and spatial distribution of ocular tissues: New insights into dry eye disease. Ocul Surf 2022; 24:51-63. [PMID: 34990847 DOI: 10.1016/j.jtos.2021.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/21/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Dry eye disease (DED) is a chronic multifactorial disorder affecting millions of people, yet the pathogenesis mechanisms still remain unclear. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is a novel in situ visualization approach combined high-throughput mass spectrometry and molecular imaging. We aimed to explore the in situ ocular metabolic changes via MALDI-MSI to accelerate the recognition of DED pathogenesis. METHODS Experimental dry eye was established in Wistar rats by subcutaneous injection of scopolamine. The induction of DED was assessed by tear film breakup time, sodium fluorescein, histopathological staining and cell apoptosis. MALDI-MSI was applied to explore in situ ocular metabolomic in DED rats, and histopathological staining from same sections were used for side-by-side comparison with MALDI to annotate different tissue structures in the eye. RESULTS Considering the complexity of ocular tissue, we visualized the metabolites in specific ocular regions (central cornea, peripheral cornea, fornix conjunctiva, eyelid conjunctiva and aqueous humor), and identified metabolites related to DED, with information of relative abundance and spatial signatures. In addition, integrative pathway analysis illustrated that, several metabolic pathways such as glycerophospholipid, sphingolipid phenylalanine, and metabolism of glycine, serine and threonine were significantly altered in certain regions in the dry eye tissue. Moreover, we discussed how the metabolic pathways with spatiotemporal signatures might be involved in the DED process. CONCLUSIONS Our data exploit the advantages of in situ analysis of MALDI-MSI to accurately analyze the region-specific metabolic behaviors in DED, and provide new clues to uncover DED pathogenesis.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Senior Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China.
| | - Chuyue Zhang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ran Liu
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Senior Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
39
|
Elhusseiny AM, Soleimani M, Eleiwa TK, ElSheikh RH, Frank CR, Naderan M, Yazdanpanah G, Rosenblatt MI, Djalilian AR. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:259-268. [PMID: 35303110 PMCID: PMC8968724 DOI: 10.1093/stcltm/szab028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
The corneal epithelium serves to protect the underlying cornea from the external environment and is essential for corneal transparency and optimal visual function. Regeneration of this epithelium is dependent on a population of stem cells residing in the basal layer of the limbus, the junction between the cornea and the sclera. The limbus provides the limbal epithelial stem cells (LESCs) with an optimal microenvironment, the limbal niche, which strictly regulates their proliferation and differentiation. Disturbances to the LESCs and/or their niche can lead to the pathologic condition known as limbal stem cell deficiency (LSCD) whereby the corneal epithelium is not generated effectively. This has deleterious effects on the corneal and visual function, due to impaired healing and secondary corneal opacification. In this concise review, we summarize the characteristics of LESCs and their niche, and present the current and future perspectives in the management of LSCD with an emphasis on restoring the function of the limbal niche.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Taher K Eleiwa
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Reem H ElSheikh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles R Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Morteza Naderan
- Department of Ophthalmology, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author: Ali R. Djalilian, Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
The link module of human TSG-6 (Link_TSG6) promotes wound healing, suppresses inflammation and improves glandular function in mouse models of Dry Eye Disease. Ocul Surf 2021; 24:40-50. [PMID: 34968766 DOI: 10.1016/j.jtos.2021.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.
Collapse
|
41
|
Noh SR, Chung JL, Lee JM, Seo KY, Koh K. Meibomian gland atrophy with duration of Sjogren's syndrome in adult females. Int Ophthalmol 2021; 42:191-200. [PMID: 34409540 DOI: 10.1007/s10792-021-02013-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND To investigate the correlation between the duration of Sjögren syndrome (SS) and ocular surface parameters in patients with SS-related dry eye. METHODS We analyzed 108 eyes of 108 female patients with primary SS-related dry eye. All patients underwent rheumatoid serologic tests and ocular surface assessments. The ocular surface assessment included the Standard Patient Evaluation of Eye Dryness (SPEED) score, meibomian gland (MG) atrophy, lipid layer thickness (LLT), partial and total blinking, partial blinking rate, Schirmer's I test, non-invasive tear break-up time, and ocular surface staining score. Correlations between the duration of SS and ocular surface assessments were calculated. RESULTS The average age and SS duration of the participants were 56.7 ± 10.2 (range 21-78) years and 54.15 ± 41.10 (range 1-134) months, respectively. There was a strong positive correlation between SS duration and MG atrophy (r = 0.766, p < 0.001). The correlation between SS duration and MG atrophy rate remained significant after controlling for age (r = 0.559, p < 0.001). Average, maximum, and minimum LLTs showed weak negative correlations with SS duration (r = - 0.310, - 0.211, and-0.304, respectively, p = 0.014, 0.028, and 0.022, respectively) and MG atrophy (r = - 0.191, - 0.326, and - 0.299, respectively, p = 0.049, 0.002, and 0.009, respectively). SPEED score showed a weak positive correlation to SS duration (r = 0.303, p = 0.042) and a moderate positive correlation to MG atrophy (r = 0.450, p = 0.029). CONCLUSIONS Longer duration of primary SS was related to more severe MG atrophy. Therefore, it is necessary to perform meibography in SS patients to verify MG atrophy status. A comparative study with non-SS dry eye patients is required to validate this study.
Collapse
Affiliation(s)
- Sung Rae Noh
- Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, 136 Youngshinro, Youngdeungpo-gu, Seoul, 07301, Republic of Korea
| | | | - Jeong Min Lee
- Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, 136 Youngshinro, Youngdeungpo-gu, Seoul, 07301, Republic of Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Koh
- Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, 136 Youngshinro, Youngdeungpo-gu, Seoul, 07301, Republic of Korea.
| |
Collapse
|
42
|
Putra I, Shen X, Anwar KN, Rabiee B, Samaeekia R, Almazyad E, Giri P, Jabbehdari S, Hayat MR, Elhusseiny AM, Ghassemi M, Mahmud N, Edward DP, Joslin CE, Rosenblatt MI, Dana R, Eslani M, Hematti P, Djalilian AR. Preclinical Evaluation of the Safety and Efficacy of Cryopreserved Bone Marrow Mesenchymal Stromal Cells for Corneal Repair. Transl Vis Sci Technol 2021; 10:3. [PMID: 34383879 PMCID: PMC8362636 DOI: 10.1167/tvst.10.10.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Mesenchymal stromal cells (MSCs) have been shown to enhance tissue repair as a cell-based therapy. In preparation for a phase I clinical study, we evaluated the safety, dosing, and efficacy of bone marrow–derived MSCs after subconjunctival injection in preclinical animal models of mice, rats, and rabbits. Methods Human bone marrow–derived MSCs were expanded to passage 4 and cryopreserved. Viability of MSCs after thawing and injection through small-gauge needles was evaluated by vital dye staining. The in vivo safety of human and rabbit MSCs was studied by subconjunctivally injecting MSCs in rabbits with follow-up to 90 days. The potency of MSCs on accelerating wound healing was evaluated in vitro using a scratch assay and in vivo using 2-mm corneal epithelial debridement wounds in mice. Human MSCs were tracked after subconjunctival injection in rat and rabbit eyes. Results The viability of MSCs after thawing and immediate injection through 27- and 30-gauge needles was 93.1% ± 2.1% and 94.9% ± 1.3%, respectively. Rabbit eyes demonstrated mild self-limiting conjunctival inflammation at the site of injection with human but not rabbit MSCs. In scratch assay, the mean wound healing area was 93.5% ± 12.1% in epithelial cells co-cultured with MSCs compared with 40.8% ± 23.1% in controls. At 24 hours after wounding, all MSC-injected murine eyes had 100% corneal wound closure compared with 79.9% ± 5.5% in controls. Human MSCs were detectable in the subconjunctival area and peripheral cornea at 14 days after injection. Conclusions Subconjunctival administration of MSCs is safe and effective in promoting corneal epithelial wound healing in animal models. Translational Relevance These results provide preclinical data to support a phase I clinical study.
Collapse
Affiliation(s)
- Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ravand Samaeekia
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Enmar Almazyad
- Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Pushpanjali Giri
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed R Hayat
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak P Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Charlotte E Joslin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Dry eye disease (DED) is a multifactorial disease affecting approximately 5-50% of individuals in various populations. Contributors to DED include, but are not limited to, lacrimal gland hypofunction, meibomian gland dysfunction (MGD), ocular surface inflammation, and corneal nerve dysfunction. Current DED treatments target some facets of the disease, such as ocular surface inflammation, but not all individuals experience adequate symptom relief. As such, this review focuses on alternative and adjunct approaches that are being explored to target underlying contributors to DED. RECENT FINDINGS Neuromodulation, stem cell treatments, and oral royal jelly have all been studied in individuals with DED and lacrimal gland hypofunction, with promising results. In individuals with MGD, devices that provide eyelid warming or intense pulsed light therapy may reduce DED symptoms and signs, as may topical Manuka honey. For those with ocular surface inflammation, naturally derived anti-inflammatory agents may be helpful, with the compound trehalose being farthest along in the process of investigation. Nerve growth factor, blood-derived products, corneal neurotization, and to a lesser degree, fatty acids have been studied in individuals with DED and neurotrophic keratitis (i.e. corneal nerve hyposensitivity). Various adjuvant therapies have been investigated in individuals with DED with neuropathic pain (i.e. corneal nerve hypersensitivity) including nerve blocks, neurostimulation, botulinum toxin, and acupuncture, although study numbers and design are generally weaker than for the other DED sub-types. SUMMARY Several alternatives and adjunct DED therapies are being investigated that target various aspects of disease. For many, more robust studies are required to assess their sustainability and applicability.
Collapse
Affiliation(s)
- Rhiya Mittal
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Sneh Patel
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Research Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
44
|
Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Prog Retin Eye Res 2021; 85:100967. [PMID: 33775824 DOI: 10.1016/j.preteyeres.2021.100967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, have emerged as a promising cell-based therapy for a range of autoimmune diseases thanks to several therapeutic advantages. Key among these are: 1) the ability to modulate innate and adaptive immune responses and to promote tissue regeneration, 2) the ease of their isolation from readily accessible tissues and expansion at scale in culture, 3) their low immunogenicity enabling use as an allogeneic "off-the-shelf" product, and 4) MSC therapy's safety and feasibility in humans, as demonstrated in more than one thousand clinical trials. Evidence from preclinical studies and early clinical trials indicate the therapeutic potential of MSCs and their derivatives for efficacy in ocular autoimmune diseases such as autoimmune uveoretinitis and Sjögren's syndrome-related dry eye disease. In this review, we provide an overview of the current understanding of the therapeutic mechanisms of MSCs, and summarize the results from preclinical and clinical studies that have used MSCs or their derivatives for the treatment of ocular autoimmune diseases. We also discuss the challenges to the successful clinical application of MSC therapy, and suggest strategies for overcoming them.
Collapse
|