1
|
Valeriano JDP, Andrade-Silva M, Pereira-Dutra F, Seito LN, Bozza PT, Rosas EC, Souza Costa MF, Henriques MG. Cannabinoid receptor type 2 agonist GP1a attenuates macrophage activation induced by M. bovis-BCG by inhibiting NF-κB signaling. J Leukoc Biol 2025; 117:qiae246. [PMID: 39538989 DOI: 10.1093/jleuko/qiae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide and a major public health problem. Immune evasion mechanisms and antibiotic resistance highlight the need to better understand this disease and explore alternative treatment approaches. Mycobacterial infection modulates the macrophage response and metabolism to persist and proliferate inside the cell. Cannabinoid receptor type 2 (CB2) is expressed mainly in leukocytes and modulates the course of inflammatory diseases. Therefore, our study aimed to evaluate the effects of the CB2-selective agonist GP1a on irradiated Mycobacterium bovis-BCG (iBCG)-induced J774A.1 macrophage activation. We observed increased expression of CB2 in macrophages after iBCG stimulation. The pretreatment with CB2-agonists, GP1a, JWH-133, and GW-833972A (10 µM), reduced iBCG-induced TNF-α and IL-6 release by these cells. Moreover, the CB2-antagonist AM630 (200 nM) treatment confirmed the activity of GP1a on CB2 by scale down its effect on cytokine production. GP1a pretreatment (10 µM) also inhibited the iBCG-induced production of inflammatory mediators as prostaglandin (PG)E2 and nitric oxide by macrophages. Additionally, GP1a pretreatment also reduced the transcription of proinflammatory genes (inos, il1b, and cox2) and genes related to lipid metabolism (dgat1, acat1, plin2, atgl, and cd36). Indeed, lipid droplet accumulation was reduced by GP1a treatment, which was partially blockade by AM630 pretreatment. Finally, GP1a pretreatment reduced the activation of the NF-κB signaling pathway. In conclusion, the activation of CB2 by GP1a modulated the macrophage response to iBCG by reducing inflammatory mediator levels and metabolic reprogramming.
Collapse
Affiliation(s)
- Jessica Do Prado Valeriano
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
- Graduate Program in Biosciences-IBRAG IBRAG, Universidade do Estado do Rio de Janeiro, Blvd. 28 de Setembro, 87 - fundos - Vila Isabel, Rio de Janeiro - RJ 20551-030, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Filipe Pereira-Dutra
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Patricia Torres Bozza
- Immunopharmacology Laboratory, IOC, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro - RJ 21040-900, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| | - Maria Fernanda Souza Costa
- Immunobiology Department, Immunobiology of Inflammation Laboratory, IB, Universidade Federal Fluminense, R. Prof. Marcos Waldemar de Freitas Reis - São Domingos, Niterói - RJ 24210-201, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro - RJ 21041-000, Brazil
| |
Collapse
|
2
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Ferri B, Campillo JA, Martínez-Sánchez MV, Minguela A. Differential Role of NKG2A/HLA-E Interaction in the Outcomes of Bladder Cancer Patients Treated with M. bovis BCG or Other Therapies. Biomedicines 2025; 13:156. [PMID: 39857739 PMCID: PMC11760850 DOI: 10.3390/biomedicines13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette-Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use of these therapies. Methods: We evaluated killer-cell immunoglobulin-like receptors (KIRs) and HLA-I genotyping and the expression of NK cell receptors in circulating T and NK lymphocytes at diagnosis in 325 consecutive BC patients (151 treated with BCG and 174 treated with other therapies), as well as in 648 patients with other cancers and 973 healthy donors as controls. The proliferation and production of cytokines and cytotoxicity were evaluated in peripheral blood mononuclear cells, stimulated in vitro with anti-CD3/CD28 or BCG, from selected patients based on HLA-B -21M/T dimorphism (NKG2A ligands). Results: The HLA-B -21M/T genotype showed opposing results in BC patients treated with BCG or other therapies. The MM genotype, compared to MT and TT, was associated with a longer 75th-percentile overall survival (not reached vs. 68.0 ± 13.7 and 52.0 ± 8.3 months, p = 0.034) in BCG, but a shorter (8.0 ± 2.4 vs. 21.0 ± 3.4 and 19.0 ± 4.9 months, p = 0.131) survival in other treatments. The HLA-B -21M/T genotype was an independent predictive parameter of the progression-free survival (HR = 2.08, p = 0.01) and the OS (HR = 2.059, p = 0.039) of BC patients treated with BCG, together with age and tumor histopathologic characteristics. The MM genotype was associated with higher counts of circulating CD56bright, fewer KIR2DL1/L2+ NK cells, and lower NKG2A expression, but not with differential in vitro NK cell functionality. Conclusions: The HLA-B -21M/T is independently associated with BC patient outcomes and can help to optimize the use of new immunotherapies in these patients.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - Lourdes Gimeno
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.)
| | - Belén Ferri
- Pathology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| | - Alfredo Minguela
- Immunology Service, Clinical University Hospital Virgen de la Arrixaca (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.V.M.-S.)
| |
Collapse
|
3
|
Bach-Griera M, Hernández A, Julián E. Mycobacteria Treatment Inhibits Bladder Cancer Cell Migration, Invasion, and Anchorage-Independent Growth. Int J Mol Sci 2024; 25:12997. [PMID: 39684712 DOI: 10.3390/ijms252312997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) is a highly recurrent and invasive malignancy, with Mycobacterium bovis BCG serving as the primary immunotherapy, particularly for non-muscle-invasive bladder cancer (NMIBC). However, the mechanisms underlying BCG's antitumor effects and the potential of non-tuberculous mycobacteria like Mycobacterium brumae remain unclear. This study investigates the antitumor effects of M. bovis BCG and M. brumae on BC cell migration, invasion, and anchorage-independent growth. BC cell lines representing different stages of tumor differentiation were treated with either M. bovis BCG or M. brumae. Cell migration was assessed through wound healing and transwell assays, invasiveness by transwell invasion assays, MMP-9 production by gelatin zymography, and anchorage-independent growth via soft agar colony formation. Both mycobacteria inhibited individual cell migration across all BC lines, while collective migration was only reduced in intermediate-grade cells. Both treatments also reduced invasiveness, associated with decreased MMP-9 production. Furthermore, M. brumae inhibited anchorage-independent growth across all BC lines, while M. bovis BCG had a more selective effect, primarily inhibiting growth in high-grade cells. In conclusion, both mycobacteria reduce migration, invasion, and anchorage-independent growth of BC cells, with their effectiveness varying by species and tumor differentiation grade.
Collapse
Affiliation(s)
- Marc Bach-Griera
- Microbiology Unit, Department of Genetics and Microbiology, Biosciences School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Alba Hernández
- Genetics Unit, Department of Genetics and Microbiology, Biosciences School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Julián
- Microbiology Unit, Department of Genetics and Microbiology, Biosciences School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Ahmed S, Nemr WA, El-Shershaby A, Fouad EAM, Mahmoud MAEF, Liaqat F, Wijewardana V, Unger H. Gamma Irradiated Pasteurella multocida Vaccine induces strong humoral immunity and protects rabbits from disease. Vet Res Commun 2024; 48:2227-2242. [PMID: 38709372 PMCID: PMC11315709 DOI: 10.1007/s11259-024-10388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Pasteurella multocida is affecting a multitude of animals and severely affects livestock production. Existing vaccines are mostly chemically inactivated and do not lead to wide protection. Irradiated vaccines are enjoying a renaissance and the concept of "replication defficient but metabolically active" vaccines was recently evaluated in several vaccine trials. P. multocida was isolated from the nasal swab, blood, and lung swab samples from infected rabbits. Gamma irradiation of P. multocida for inhibition of replication was evaluated at an optimized irradiation dose of 10 Kgy established. Four groups of rabbits were (mock) vaccinated with a commercial P. multocida vaccine and three irradiated formulations as liquid, lyophilized formulations with added Trehalose and lyophilized-Trehalose with an "activation" culturing the irradiated bacteria for 24 in broth. Evaluation of humoral immune response by ELISA showed that all three irradiated vaccines produced an effective, protective, and continued IgG serum level after vaccination and bacterial challenge. The IFN-γ expression is maintained at a normal level, within each individual group however, the lyophilized trehalose irradiated vaccine showed peak mean of IFN-γ titer at one week after booster dose (day 21) which was statistically significant. Cumulatively, the results of this study show that gamma-irradiated P. multocida vaccines are safe and protect rabbits against disease. Moreover, Rabbits' immunization with the three irradiated formulations avoided adverse side effects as compared to commercial polyvalent vaccine, the body weight gain for the irradiated vaccine groups indicates less stress compared to the commercial polyvalent vaccine.
Collapse
Affiliation(s)
- Sahar Ahmed
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Giza, Egypt.
| | - Waleed Abdelgaber Nemr
- Department of Radiation Microbiology, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa El-Shershaby
- Department of Molecular Biology, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ehab Ali Mohamed Fouad
- Department of Zoonosis, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed Abd El-Fatah Mahmoud
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Fatima Liaqat
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO, IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO, IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Hermann Unger
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO, IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
5
|
Baghdasaryan O, Khan S, Lin JC, Lee-Kin J, Hsu CY, Hu CMJ, Tan C. Synthetic control of living cells by intracellular polymerization. Trends Biotechnol 2024; 42:241-252. [PMID: 37743158 PMCID: PMC11132853 DOI: 10.1016/j.tibtech.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
An emerging cellular engineering method creates synthetic polymer matrices inside cells. By contrast with classical genetic, enzymatic, or radioactive techniques, this materials-based approach introduces non-natural polymers inside cells, thus modifying cellular states and functionalities. Here, we cover various materials and chemistries that have been exploited to create intracellular polymer matrices. In addition, we discuss emergent cellular properties due to the intracellular polymerization, including nonreplicating but active metabolism, maintenance of membrane integrity, and resistance to environmental stressors. We also discuss past work and future opportunities for developing and applying synthetic cells that contain intracellular polymers. The materials-based approach will usher in new applications of synthetic cells for broad biotechnological applications.
Collapse
Affiliation(s)
- Ofelya Baghdasaryan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Shahid Khan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Jared Lee-Kin
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, Davis, CA 95616-5270, USA.
| |
Collapse
|
6
|
Gamma-Irradiated Non-Capsule Group B Streptococcus Promotes T-Cell Dependent Immunity and Provides a Cross-Protective Reaction. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium commonly found in the genitourinary tract and is also a leading cause of neonatal sepsis and pneumonia. Despite the current antibiotic prophylaxis (IAP), the disease burdens of late-onset disease in newborns and non-pregnant adult infections are increasing. Recently, inactivation of the pathogens via gamma radiation has been proven to eliminate their replication ability but cause less damage to the antigenicity of the key epitopes. In this study, the non-capsule GBS strain was inactivated via radiation (Rad-GBS) or formalin (Che-GBS), and we further determined its immunogenicity and protective efficacy as vaccines. Notably, Rad-GBS was more immunogenic and gave rise to higher expression of costimulatory molecules in BMDCs in comparison with Che-GBS. Flow cytometric analysis revealed that Rad-GBS induced a stronger CD4+ IFN-γ+ and CD4+IL-17A+ population in mice. The protective efficacy was measured through challenge with the highly virulent strain CNCTC 10/84, and the adoptive transfer results further showed that the protective role is reversed by functionally neutralizing antibodies and T cells. Finally, cross-protection against challenges with prevalent serotypes of GBS was induced by Rad-GBS. The higher opsonophagocytic killing activity of sera against multiple serotypes was determined in sera from mice immunized with Rad-GBS. Overall, our results showed that the inactivated whole-cell encapsulated GBS could be an alternative strategy for universal vaccine development against invasive GBS infections.
Collapse
|
7
|
Campo-Pérez V, Guallar-Garrido S, Luquin M, Sánchez-Chardi A, Julián E. The High Plasticity of Nonpathogenic Mycobacterium brumae Induces Rapid Changes in Its Lipid Profile during Pellicle Maturation: The Potential of This Bacterium as a Versatile Cell Factory for Lipid Compounds of Therapeutic Interest. Int J Mol Sci 2022; 23:13609. [PMID: 36362396 PMCID: PMC9655737 DOI: 10.3390/ijms232113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/08/2024] Open
Abstract
The immunomodulatory potential of mycobacteria to be used for therapeutic purposes varies by species and culture conditions and is closely related to mycobacterial lipid composition. Although the lipids present in the mycobacterial cell wall are relevant, lipids are mainly stored in intracellular lipid inclusions (ILIs), which have emerged as a crucial structure in understanding mycobacteria-host interaction. Little is known about ILI ultrastructure, production, and composition in nonpathogenic species. In this study, we compared the lipid profiles of the nonpathogenic immunomodulatory agent Mycobacterium brumae during pellicle maturation under different culture conditions with qualitative and quantitative approaches by using high-resolution imaging and biochemical and composition analyses to understand ILI dynamics. The results showed wax esters, mainly in early stages of development, and acylglycerols in mature ILI composition, revealing changes in dynamics, amount, and morphometry, depending on pellicle maturation and the culture media used. Low-glycerol cultures induced ILIs with lower molecular weights which were smaller in size in comparison with the ILIs produced in glycerol-enriched media. The data also indicate the simple metabolic plasticity of lipid synthesis in M. brumae, as well as its high versatility in generating different lipid profiles. These findings provide an interesting way to enhance the production of key lipid structures via the simple modulation of cell culture conditions.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
9
|
Kremenovic M, Chan AA, Feng B, Bäriswyl L, Robatel S, Gruber T, Tang L, Lee DJ, Schenk M. BCG hydrogel promotes CTSS-mediated antigen processing and presentation, thereby suppressing metastasis and prolonging survival in melanoma. J Immunother Cancer 2022; 10:jitc-2021-004133. [PMID: 35732347 PMCID: PMC9226922 DOI: 10.1136/jitc-2021-004133] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/31/2022] Open
Abstract
Background The use of intralesional Mycobacterium bovis BCG (intralesional live BCG) for the treatment of metastatic melanoma resulted in regression of directly injected, and occasionally of distal lesions. However, intralesional-BCG is less effective in patients with visceral metastases and did not significantly improve overall survival. Methods We generated a novel BCG lysate and developed it into a thermosensitive PLGA-PEG-PLGA hydrogel (BCG hydrogel), which was injected adjacent to the tumor to assess its antitumor effect in syngeneic tumor models (B16F10, MC38). The effect of BCG hydrogel treatment on contralateral tumors, lung metastases, and survival was assessed to evaluate systemic long-term efficacy. Gene expression profiles of tumor-infiltrating immune cells and of tumor-draining lymph nodes from BCG hydrogel-treated mice were analyzed by single-cell RNA sequencing (scRNA-seq) and CD8+ T cell receptor (TCR) repertoire diversity was assessed by TCR-sequencing. To confirm the mechanistic findings, RNA-seq data of biopsies obtained from in-transit cutaneous metastases of patients with melanoma who had received intralesional-BCG therapy were analyzed. Results Here, we show that BCG lysate exhibits enhanced antitumor efficacy compared to live mycobacteria and promotes a proinflammatory tumor microenvironment and M1 macrophage (MΦ) polarization in vivo. The underlying mechanisms of BCG lysate-mediated tumor immunity are dependent on MΦ and dendritic cells (DCs). BCG hydrogel treatment induced systemic immunity in melanoma-bearing mice with suppression of lung metastases and improved survival. Furthermore, BCG hydrogel promoted cathepsin S (CTSS) activity in MΦ and DCs, resulting in enhanced antigen processing and presentation of tumor-associated antigens. Finally, BCG hydrogel treatment was associated with increased frequencies of melanoma-reactive CD8+ T cells. In human patients with melanoma, intralesional-BCG treatment was associated with enhanced M1 MΦ, mature DC, antigen processing and presentation, as well as with increased CTSS expression which positively correlated with patient survival. Conclusions These findings provide mechanistic insights as well as rationale for the clinical translation of BCG hydrogel as cancer immunotherapy to overcome the current limitations of immunotherapies for the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Mirela Kremenovic
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alfred A Chan
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
| | - Bing Feng
- Institute of Bioengineering and Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Lukas Bäriswyl
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland
| | - Steve Robatel
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland.,Graduate School Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland
| | - Li Tang
- Institute of Bioengineering and Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
| | - Mirjam Schenk
- Experimental Pathology, University of Bern Institute of Pathology, Bern, Switzerland
| |
Collapse
|
10
|
Porfiri L, Burtscher J, Kangethe RT, Verhovsek D, Cattoli G, Domig KJ, Wijewardana V. Irradiated Non-replicative Lactic Acid Bacteria Preserve Metabolic Activity While Exhibiting Diverse Immune Modulation. Front Vet Sci 2022; 9:859124. [PMID: 35664846 PMCID: PMC9158532 DOI: 10.3389/fvets.2022.859124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
In the recent years, safety concerns regarding the administration of probiotics led to an increased interest in developing inactivated probiotics, also called “paraprobiotics”. Gamma irradiation represents a promising tool that can be used to produce safe paraprobiotics by inhibiting replication while preserving the structure, the metabolic activity, and the immunogenicity of bacteria. In this study, we evaluated the ability of four strains of lactic acid bacteria (LAB: Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, and Lacticaseibacillus paracasei) in preserving the metabolic activity and the immune modulation of swine porcine peripheral blood mononuclear cells, after gamma irradiation or heat inactivation. Our results show that all four strains retained the metabolic activity following gamma irradiation but not after heat inactivation. In terms of immune-modulatory capacity, irradiated L. acidophilus and Lc. paracasei were able to maintain an overall gene expression pattern similar to their live state, as heat inactivation did with Lc. casei. Moreover, we show that the two inactivation methods applied to the same strain can induce an opposed expression of key genes involved in pro-inflammatory response (e.g., IFNα and interleukin-6 for Lc. casei), whereas gamma irradiation of L. acidophilus and Lc. paracasei was able to induce a downregulation of the anti-inflammatory TGFβ. Taken together, our data show that immune modulation can be impacted not only by different inactivation methods but also by the strain of LAB selected. This study highlights that gamma irradiation harbors the potential to produce safe non-replicative metabolically active LAB and identifies immunomodulatory capacities that may be applied as vaccine adjuvants.
Collapse
Affiliation(s)
- Luca Porfiri
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard T. Kangethe
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Doris Verhovsek
- VetFarm Medau, University of Veterinary Medicine Vienna, Berndorf, Austria
| | - Giovanni Cattoli
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Konrad J. Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- *Correspondence: Viskam Wijewardana
| |
Collapse
|
11
|
Bhatia SS, Pillai SD. Ionizing Radiation Technologies for Vaccine Development - A Mini Review. Front Immunol 2022; 13:845514. [PMID: 35222438 PMCID: PMC8873931 DOI: 10.3389/fimmu.2022.845514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Given the current pandemic the world is struggling with, there is an urgent need to continually improve vaccine technologies. Ionizing radiation technology has a long history in the development of vaccines, dating back to the mid-20th century. Ionizing radiation technology is a highly versatile technology that has a variety of commercial applications around the world. This brief review summarizes the core technology, the overall effects of ionizing radiation on bacterial cells and reviews vaccine development efforts using ionizing technologies, namely gamma radiation, electron beam, and X-rays.
Collapse
Affiliation(s)
- Sohini S. Bhatia
- National Center for Electron Beam Research, an International Atomic Energy Agency (IAEA) Collaborating Center for Electron Beam Technology, Texas A&M University, College Station, TX, United States
| | - Suresh D. Pillai
- National Center for Electron Beam Research, an International Atomic Energy Agency (IAEA) Collaborating Center for Electron Beam Technology, Texas A&M University, College Station, TX, United States
- Department of Food Science and Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat Rev Urol 2020; 17:513-525. [PMID: 32678343 DOI: 10.1038/s41585-020-0346-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Intravesical BCG instillation is the gold-standard adjuvant immunotherapy for patients with high-risk non-muscle-invasive bladder cancer. However, the precise mechanism of action by which BCG asserts its beneficial effects is still unclear. BCG has been shown to induce a non-specific enhancement of the biological function in cells of the innate immune system, creating a de facto heterologous immunological memory that has been termed trained immunity. Trained immunity or innate immune memory enables innate immune cells to mount a more robust response to secondary non-related stimuli after being initially primed (or trained) by a challenge such as BCG. BCG-induced trained immunity is characterized by the metabolic rewiring of monocyte intracellular metabolism and epigenetic modifications, which subsequently lead to functional reprogramming effects, such as an increased production of cytokines, on restimulation. Results from BCG vaccination studies in humans show that trained immunity might at least partly account for the heterologous beneficial effects of BCG vaccination. Additionally, immunity might have a role in the effect of BCG immunotherapy for bladder cancer. Based on these indications, we propose that trained immunity could be one of the important mechanisms mediating BCG immunotherapy and could provide a basis for further improvements towards a personalized approach to BCG therapy in non-muscle-invasive bladder cancer.
Collapse
|
13
|
Bickett TE, McLean J, Creissen E, Izzo L, Hagan C, Izzo AJ, Silva Angulo F, Izzo AA. Characterizing the BCG Induced Macrophage and Neutrophil Mechanisms for Defense Against Mycobacterium tuberculosis. Front Immunol 2020; 11:1202. [PMID: 32625209 PMCID: PMC7314953 DOI: 10.3389/fimmu.2020.01202] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The live attenuated Mycobacterium bovis strain, Bacille Calmette Guérin (BCG) is a potent innate immune stimulator. In the C57BL/6 mouse model of tuberculosis, BCG vaccination leads to a significant reduction of Mycobacterium tuberculosis burden after aerogenic infection. Our studies indicated that BCG induced protection against pulmonary tuberculosis was independent of T cells and present as early as 7 days after vaccination. This protection showed longevity, as it did not wane when conventional T cell and TNF-α deficient mice were infected 30 days post-vaccination. As BCG induced mycobacterial killing after 7 days, this study investigated the contributions of the innate immune system after BCG vaccination to better understand mechanisms required for mycobacterial killing. Subcutaneous BCG inoculation resulted in significant CD11b+F4/80+ monocyte subset recruitment into the lungs within 7 days. Further studies revealed that killing of mycobacteria was dependent on the viability of BCG, because irradiated BCG did not have the same effect. Although others have identified BCG as a facilitator of trained innate immunity, we found that BCG reduced the mycobacterial burden in the absence of mechanisms required for trained innate immunity, highlighting a role for macrophages and neutrophils for vaccine induced killing of M. tuberculosis.
Collapse
Affiliation(s)
- Thomas E Bickett
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jennifer McLean
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth Creissen
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Linda Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Cassidy Hagan
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Antonio J Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Fabiola Silva Angulo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Angelo A Izzo
- Department of Microbiology Immunology and Pathology, Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
14
|
Guallar-Garrido S, Campo-Pérez V, Sánchez-Chardi A, Luquin M, Julián E. Each Mycobacterium Requires a Specific Culture Medium Composition for Triggering an Optimized Immunomodulatory and Antitumoral Effect. Microorganisms 2020; 8:microorganisms8050734. [PMID: 32423030 PMCID: PMC7284523 DOI: 10.3390/microorganisms8050734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) remains the first treatment option for non-muscle-invasive bladder cancer (BC) patients. In research laboratories, M. bovis BCG is mainly grown in commercially available media supplemented with animal-derived agents that favor its growth, while biomass production for patient treatment is performed in Sauton medium which lacks animal-derived components. However, there is not a standardized formulation of Sauton medium, which could affect mycobacterial characteristics. Here, the impact of culture composition on the immunomodulatory and antitumor capacity of M. bovis BCG and Mycolicibacterium brumae, recently described as efficacious for BC treatment, has been addressed. Both mycobacteria grown in Middlebrook and different Sauton formulations, differing in the source of nitrogen and amount of carbon source, were studied. Our results indicate the relevance of culture medium composition on the antitumor effect triggered by mycobacteria, indicating that the most productive culture medium is not necessarily the formulation that provides the most favorable immunomodulatory profile and the highest capacity to inhibit BC cell growth. Strikingly, each mycobacterial species requires a specific culture medium composition to provide the best profile as an immunotherapeutic agent for BC treatment. Our results highlight the relevance of meticulousness in mycobacteria production, providing insight into the application of these bacteria in BC research.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.G.-G.); (V.C.-P.); (M.L.)
| | - Víctor Campo-Pérez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.G.-G.); (V.C.-P.); (M.L.)
- Bacterial Infections and Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.G.-G.); (V.C.-P.); (M.L.)
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.G.-G.); (V.C.-P.); (M.L.)
- Correspondence: ; Tel.: +34-93-5814870
| |
Collapse
|
15
|
Intravesical Mycobacterium brumae triggers both local and systemic immunotherapeutic responses against bladder cancer in mice. Sci Rep 2018; 8:15102. [PMID: 30305693 PMCID: PMC6180069 DOI: 10.1038/s41598-018-33253-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
The standard treatment for high-risk non-muscle invasive bladder cancer (BC) is the intravesical administration of live Mycobacterium bovis BCG. Previous studies suggest improving this therapy by implementing non-pathogenic mycobacteria, such as Mycobacterium brumae, and/or different vehicles for mycobacteria delivery, such as an olive oil (OO)-in-water emulsion. While it has been established that BCG treatment activates the immune system, the immune effects of altering the mycobacterium and/or the preparation remain unknown. In an orthotopic murine BC model, local immune responses were assessed by measuring immune cells into the bladder and macromolecules in the urine by flow cytometry and multiplexing, respectively. Systemic immune responses were analyzed by quantifying sera anti-mycobacteria antibody levels and recall responses of ex vivo splenocytes cultured with mycobacteria antigens. In both BCG- and M. brumae-treated mice, T, NK, and NKT cell infiltration in the bladder was significantly increased. Notably, T cell infiltration was enhanced in OO-in-water emulsified mycobacteria-treated mice, and urine IL-6 and KC concentrations were elevated. Furthermore, mycobacteria treatment augmented IgG antibody production and splenocyte proliferation, especially in mice receiving OO-in-water emulsified mycobacteria. Our data demonstrate that intravesical mycobacterial treatment triggers local and systemic immune responses, which are most significant when OO-in-water emulsified mycobacteria are used.
Collapse
|
16
|
Hieke ASC, Pillai SD. Escherichia coli Cells Exposed to Lethal Doses of Electron Beam Irradiation Retain Their Ability to Propagate Bacteriophages and Are Metabolically Active. Front Microbiol 2018; 9:2138. [PMID: 30250460 PMCID: PMC6139317 DOI: 10.3389/fmicb.2018.02138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Reports in the literature suggest that bacteria exposed to lethal doses of ionizing radiation, i.e., electron beams, are unable to replicate yet they remain metabolically active. To investigate this phenomenon further, we electron beam irradiated Escherichia coli cells to a lethal dose and measured their membrane integrity, metabolic activity, ATP levels and overall cellular functionality via bacteriophage infection. We also visualized the DNA double-strand breaks in the cells. We used non-irradiated (live) and heat-killed cells as positive and negative controls, respectively. Our results show that the membrane integrity of E. coli cells is maintained and that the cells remain metabolically active up to 9 days post-irradiation when stored at 4°C. The ATP levels in lethally irradiated cells are similar to non-irradiated control cells. We also visualized extensive DNA damage within the cells and confirmed their cellular functionality based on their ability to propagate bacteriophages for up to 9 days post-irradiation. Overall, our findings indicate that lethally irradiated E. coli cells resemble live non-irradiated cells more closely than heat-killed (dead) cells.
Collapse
Affiliation(s)
- Anne-Sophie Charlotte Hieke
- National Center for Electron Beam Research (an IAEA Collaborating Centre for Electron Beam Technology), Texas A&M University, College Station, TX, United States.,Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, United States
| | - Suresh D Pillai
- National Center for Electron Beam Research (an IAEA Collaborating Centre for Electron Beam Technology), Texas A&M University, College Station, TX, United States.,Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis. Sci Rep 2017; 7:42225. [PMID: 28176867 PMCID: PMC5296737 DOI: 10.1038/srep42225] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions.
Collapse
|
18
|
Pandey A, Cabello A, Akoolo L, Rice-Ficht A, Arenas-Gamboa A, McMurray D, Ficht TA, de Figueiredo P. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis. PLoS Negl Trop Dis 2016; 10:e0004572. [PMID: 27537413 PMCID: PMC4990199 DOI: 10.1371/journal.pntd.0004572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms.
Collapse
Affiliation(s)
- Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| | - Ana Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lavoisier Akoolo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Allison Rice-Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Angela Arenas-Gamboa
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| |
Collapse
|
19
|
Sousa-Vasconcelos PDS, Seguins WDS, Luz EDS, Pinho RTD. Pattern of cytokine and chemokine production by THP-1 derived macrophages in response to live or heat-killed Mycobacterium bovis bacillus Calmette-Guérin Moreau strain. Mem Inst Oswaldo Cruz 2016; 110:809-13. [PMID: 26517663 PMCID: PMC4667587 DOI: 10.1590/0074-02760140420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis has great public health impact with high rates of mortality and the only
prophylactic measure for it is the Mycobacterium bovisbacillus
Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines
[interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage
inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived
macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa
de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare
the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported
to lose viability during the lyophilisation process and during storage, we examined
whether exposing BCG to different temperatures also triggers differences in the
expression of some important cytokines and chemokines of the immune response.
Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine
production in a different pattern from that observed with live mycobacteria.
Collapse
Affiliation(s)
| | | | - Eduardo de Souza Luz
- Laboratório de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Rosa Teixeira de Pinho
- Laboratório de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Decaestecker K, Oosterlinck W. Managing the adverse events of intravesical bacillus Calmette-Guérin therapy. Res Rep Urol 2015; 7:157-63. [PMID: 26605208 PMCID: PMC4630183 DOI: 10.2147/rru.s63448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This paper provides recommendations on the management of complications arising from intravesical treatment with bacillus Calmette–Guérin (BCG) for nonmuscle-invasive bladder tumors. There is minimal recommendations currently available as randomized trials on the side effects of intravesical BCG are lacking and severe complications are usually described in case reports only. All physicians giving intravesical BCG should be aware of the possible complications that could arise and how to treat these. The incidence of bladder irritation, general malaise, and fever is very high, while severe complications remain rare. Approximately 8% of patients have to stop treatment because of these complications. BCG infections and reactions can occur anywhere in the body, and may happen straight away or even several months or years after BCG treatment, making early diagnosis difficult. Additionally, correct diagnosis is hampered by the uncertain appearance of BCG in tissue and body fluid. An essential step in the management complications arising from BCG is written information for both the family doctor and the patient on the possible adverse events and their management. Recent data demonstrated that none of the earlier advocated methods to prevent BCG toxicity are valid: lowering the dose, tuberculostatic drugs, or oxybutynin. Severe complications are treated with three or four tuberculostatics over 3–12 months, depending on the severity of the situation. Corticosteroids are an essential therapy in BCG septicemia. Nonsteroidal anti-inflammatory drugs and corticosteroids can manage efficiently the immunological complications.
Collapse
|
21
|
Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette–Guerin and recombinant bacillus Calmette–Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 2015. [DOI: 10.1586/14760584.2015.1068124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan-qiang Zheng
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Youssef W Naguib
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yixuan Dong
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yan-chun Shi
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Shorgan Bou
- 3National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Zhengrong Cui
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
Seo HS. Application of radiation technology in vaccines development. Clin Exp Vaccine Res 2015; 4:145-58. [PMID: 26273573 PMCID: PMC4524899 DOI: 10.7774/cevr.2015.4.2.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/10/2015] [Accepted: 06/20/2015] [Indexed: 12/11/2022] Open
Abstract
One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology.
Collapse
Affiliation(s)
- Ho Seong Seo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
23
|
Noguera-Ortega E, Rabanal RM, Secanella-Fandos S, Torrents E, Luquin M, Julián E. γ Irradiated Mycobacteria Enhance Survival in Bladder Tumor Bearing Mice Although Less Efficaciously than Live Mycobacteria. J Urol 2015; 195:198-205. [PMID: 26165584 DOI: 10.1016/j.juro.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE γ Irradiated Mycobacterium bovis bacillus Calmette-Guérin has shown in vitro and ex vivo antitumor activity. However, to our knowledge the potential antitumor capacity has not been demonstrated in vivo. We studied the in vivo potential of γ irradiated bacillus Calmette-Guérin and γ irradiated M. brumae, a saprophytic mycobacterium that was recently described as an immunotherapeutic agent. MATERIALS AND METHODS The antitumor capacity of γ irradiated M. brumae was first investigated by analyzing the in vitro inhibition of bladder tumor cell proliferation and the ex vivo cytotoxic effect of M. brumae activated peripheral blood cells. The effect of γ irradiated M. brumae or bacillus Calmette-Guérin intravesical treatment was then compared to treatment with live mycobacteria in the orthotopic murine model of bladder cancer. RESULTS Nonviable M. brumae showed a capacity to inhibit in vitro bladder cancer cell lines similar to that of live mycobacteria. However, its capacity to induce cytokine production was decreased compared to that of live M. brumae. γ Irradiated M. brumae could activate immune cells to inhibit tumor cell growth, although to a lesser extent than live mycobacteria. Finally, intravesical treatment with γ irradiated M. brumae or bacillus Calmette-Guérin significantly increased survival with respect to that of nontreated tumor bearing mice. Both γ irradiated mycobacteria showed lower survival rates than those of live mycobacteria but the minor efficacy of γ irradiated vs live mycobacteria was only significant for bacillus Calmette-Guérin. CONCLUSIONS Our results show that although γ irradiated mycobacteria is less efficacious than live mycobacteria, it induces an antitumor effect in vivo, avoiding the possibility of further mycobacterial infections.
Collapse
Affiliation(s)
- Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Secanella-Fandos
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Noguera-Ortega E, Secanella-Fandos S, Eraña H, Gasión J, Rabanal RM, Luquin M, Torrents E, Julián E. Nonpathogenic Mycobacterium brumae Inhibits Bladder Cancer Growth In Vitro, Ex Vivo, and In Vivo. Eur Urol Focus 2015; 2:67-76. [PMID: 28723453 DOI: 10.1016/j.euf.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/02/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) prevents tumour recurrence and progression in non-muscle-invasive bladder cancer (BC). However, common adverse events occur, including BCG infections. OBJECTIVE To find a mycobacterium with similar or superior antitumour activity to BCG but with greater safety. DESIGN In vitro, ex vivo, and in vivo comparisons of the antitumour efficacy of nonpathogenic mycobacteria and BCG. INTERVENTION The in vitro antitumour activity of a broad set of mycobacteria was studied in seven different BC cell lines. The most efficacious was selected and its ex vivo capacity to activate immune cells and its in vivo antitumour activity in an orthotopic murine model of BC were investigated. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Growth inhibition of BC cells was the primary outcome measurement. Parametric and nonparametric tests were use to analyse the in vitro results, and a Kaplan-Meier test was applied to measure survival in mycobacteria-treated tumour-bearing mice. RESULTS AND LIMITATIONS Mycobacterium brumae is superior to BCG in inhibiting low-grade BC cell growth, and has similar effects to BCG against high-grade cells. M. brumae triggers an indirect antitumour response by activating macrophages and the cytotoxic activity of peripheral blood cells against BC cells. Although no significant differences were observed between BCG and M. brumae treatments in mice, M. brumae treatment prolonged survival in comparison to BCG treatment in tumour-bearing mice. In contrast to BCG, M. brumae does not persist intracellularly or in tumour-bearing mice, so the risk of infection is lower. CONCLUSIONS Our preclinical data suggest that M. brumae represents a safe and efficacious candidate as a therapeutic agent for non-muscle-invasive BC. PATIENT SUMMARY We investigated the antitumour activity of nonpathogenic mycobacteria in in vitro and in vivo models of non-muscle-invasive bladder cancer. We found that Mycobacterium brumae effectively inhibits bladder cancer growth and helps the host immune system to eradicate cancer cells, and is a promising agent for antitumour immunotherapy.
Collapse
Affiliation(s)
- Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silvia Secanella-Fandos
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Hasier Eraña
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jofre Gasión
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosa M Rabanal
- Unitat de Patologia Murina i Comparada,, Departament de Medicina Animal i Cirurgia, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
25
|
Liu X, Dowell AC, Patel P, Viney RP, Foster MC, Porfiri E, James ND, Bryan RT. Cytokines as effectors and predictors of responses in the treatment of bladder cancer by bacillus Calmette-Guérin. Future Oncol 2015; 10:1443-56. [PMID: 25052754 DOI: 10.2217/fon.14.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The most effective intravesical treatment of non-muscle-invasive bladder cancer is instillation of live Mycobacterium bovis bacillus Calmette-Guérin (BCG). BCG stimulates the release of cytokines, contributing directly or indirectly to its effectiveness. However, the function of specific cytokines is not well understood. We have undertaken a nonsystematic review of primary evidence regarding cytokine detection, activation and response in BCG patients. Cytokines IL-2, IL-8 and TNF-α appear to be essential for effective BCG therapy and nonrecurrence, while IL-10 may have an inhibitory effect on BCG responses. IL-2, IL-8, TRAIL and TNF-α are potentially predictive of response to BCG. Alterations in genes encoding cytokines may also affect responses. There are significant data showing the association of certain cytokines with successful BCG treatment, and which may be useful predictive markers. Isolating those cytokines mediating efficacy may hold the key to ameliorating BCG's side effects and improving efficacy and patient compliance.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- The Medical School, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Andersson KE. This Month in Investigative Urology. J Urol 2014. [DOI: 10.1016/j.juro.2014.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|