1
|
Yan R, Song A, Zhang C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int J Mol Sci 2024; 25:9519. [PMID: 39273465 PMCID: PMC11395150 DOI: 10.3390/ijms25179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The number of patients with end-stage renal disease (ESRD) requiring hemodialysis is increasing worldwide. Although arteriovenous fistula (AVF) is the best and most important vascular access (VA) for hemodialysis, its primary maturation failure rate is as high as 60%, which seriously endangers the prognosis of hemodialysis patients. After AVF establishment, the venous outflow tract undergoes hemodynamic changes, which are translated into intracellular signaling pathway cascades, resulting in an outward and inward remodeling of the vessel wall. Outward remodeling refers to the thickening of the vessel wall and the dilation of the lumen to accommodate the high blood flow in the AVF, while inward remodeling is mainly characterized by intimal hyperplasia. More and more studies have shown that the two types of remodeling are closely related in the occurrence and development of, and jointly determining the final fate of, AVF. Therefore, it is essential to investigate the underlying mechanisms involved in outward and inward remodeling for identifying the key targets in alleviating AVF dysfunction. In this review, we summarize the current clinical diagnosis, monitoring, and treatment techniques for AVF dysfunction and discuss the possible pathological mechanisms related to improper outward and inward remodeling in AVF dysfunction, as well as summarize the similarities and differences between the two remodeling types in molecular mechanisms. Finally, the representative therapeutic targets of potential clinical values are summarized.
Collapse
Affiliation(s)
- Ruiwei Yan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Zhui L, Yuling C, Hansheng W, Xiangjie L. Omentin reduces venous neointimal hyperplasia in arteriovenous fistula through hypoxia-inducible factor-1 alpha inhibition. Microvasc Res 2024; 154:104688. [PMID: 38640999 DOI: 10.1016/j.mvr.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Arteriovenous fistula (AVF) failure often involves venous neointimal hyperplasia (VNH) driven by elevated hypoxia-inducible factor-1 alpha (HIF-1α) in the venous wall. Omentin, known for its anti-inflammatory and anti-hyperplasia properties, has an uncertain role in early AVF failure. This study investigates omentin's impact on VNH using a chronic renal failure (CRF) rabbit model. The CRF rabbit model of AVF received omentin-expressing adenoviral vector or control β-gal vector to assess omentin's effects on VNH. Human vascular smooth muscle cells (HVSMCs), stimulated with tumor necrosis factor-α (TNF-α), were exposed to recombinant human omentin (Rh-OMT) to study its influence on cell proliferation and migration. The AMP-activated protein kinase (AMPK) inhibitor compound C and the mammalian target of rapamycin (mTOR) activator MHY1485 were employed to explore omentin's mechanisms in VNH reduction through HIF-1α inhibition. Omentin treatment reduced VNH in CRF rabbits, concomitant with HIF-1α down-regulation and the suppression of downstream factors, including vascular endothelial growth factor and matrix metalloproteinases. Rh-OMT inhibited TNF-α-induced HVSMC proliferation and migration by modulating both cell cycle and cell adhesion proteins. Additionally, omentin reduced HIF-1α expression through the AMPK/mTOR pathway activation. Notably, the blockade of AMPK/mTOR signaling reversed omentin-mediated inhibition of VNH, cell proliferation, and migration, both in vivo and in vitro. In conclusion, omentin mitigates VNH post-AVF creation by restraining HIF-1α via AMPK/mTOR signaling. Strategies boosting circulating omentin levels may offer promise in averting AVF failure.
Collapse
MESH Headings
- Animals
- Hyperplasia
- Neointima
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Cytokines/metabolism
- Rabbits
- Humans
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/pharmacology
- GPI-Linked Proteins/genetics
- Disease Models, Animal
- Cell Proliferation/drug effects
- Signal Transduction
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Lectins/pharmacology
- Lectins/metabolism
- Cell Movement/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- AMP-Activated Protein Kinases/metabolism
- Cells, Cultured
- Arteriovenous Shunt, Surgical/adverse effects
- Male
- Kidney Failure, Chronic/pathology
- TOR Serine-Threonine Kinases/metabolism
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/prevention & control
- Graft Occlusion, Vascular/metabolism
- Graft Occlusion, Vascular/physiopathology
- Jugular Veins/pathology
- Jugular Veins/metabolism
- Jugular Veins/transplantation
Collapse
Affiliation(s)
- Li Zhui
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Chen Yuling
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wang Hansheng
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Xiangjie
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Ren W, Sands M, Han X, Tsipursky M, Irudayaraj J. Hydrogel-Based Oxygen and Drug Delivery Dressing for Improved Wound Healing. ACS OMEGA 2024; 9:24095-24104. [PMID: 38854553 PMCID: PMC11154931 DOI: 10.1021/acsomega.4c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Herein, we propose a Carbopol hydrogel-based oxygen nanodelivery "nanohyperbaric" system as a wound dressing material for an enhanced wound healing process. Oxygen nanobubbles (ONBs) were used to supply oxygen, and collagenase was added in the gel as a drug model. Both oxygen and collagenase would benefit the wound healing process, and the Carbopol hydrogel serves as the matrix to load ONBs and collagenase in the wound dressing. The obtained ONB-embedded Carbopol hydrogel with collagenase (ONB-CC) could provide 12.08 ± 0.75 μg of oxygen from 1 mL of ONB-CC and exhibited a notable capacity to prolong the oxygen holding for up to 3 weeks and maintained the enzymatic activity of collagenase at more than 0.05 U per 0.1 mL of ONB-CC for up to 17 days. With HDFa cells, the ONB-CC did not show a notable effect on the cell viability. In a scratch assay, the oxygen from ONBs or collagenase aided cell migration; further, the ONB-CC induced the most obvious scratch closure, indicating an improvement in wound healing as a cocktail in the ONB-CC. The mRNA expression further demonstrated the effectiveness of the ONB-CC. Studies in rats with punched wounds treated with the ONB-CC dressing showed improved wound closure. Histopathological images showed that the ONB-CC dressing enhanced re-epithelization and formation of new blood vessels and hair follicles. The proposed ONB-CC has excellent potential as an ideal wound dressing material to accelerate wound healing by integration of multiple functions.
Collapse
Affiliation(s)
- Wen Ren
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Champaign, Illinois 61801, United States
| | - Mia Sands
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Champaign, Illinois 61801, United States
| | - Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Champaign, Illinois 61801, United States
| | - Michael Tsipursky
- Vitreo-Retinal
Surgery, Ophthalmology Department, Carle
Foundation Hospital, Champaign, Illinois 61802, United States
- Carle-Illinois
College of Medicine, Champaign, Illinois 61820, United States
- Revive
Biotechnology, Inc., EnterpriseWorks, 60 Hazelwood Drive, Champaign, Illinois 61820, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Champaign, Illinois 61801, United States
- Carle-Illinois
College of Medicine, Champaign, Illinois 61820, United States
- Beckman
Institute, Carl Woese Institute of Genomic Biology, & Micro and
Nanotechnology Laboratory, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois (CCIL), University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Applewhite B, Andreopoulos F, Vazquez-Padron RI. Periadventitial biomaterials to improve arteriovenous fistula and graft outcomes. J Vasc Access 2024; 25:713-727. [PMID: 36349745 DOI: 10.1177/11297298221135621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Periadventitial biomaterials have been employed for nearly three decades to promote adaptive venous remodeling following hemodialysis vascular access creation in preclinical models and clinical trials. These systems are predicated on the combination of scaffolds, hydrogels, and/or particles with therapeutics (small molecules, proteins, genes, and cells) to prevent venous stenosis and subsequent maturation failure. Periadventitial biomaterial therapies have evolved from simple drug delivery vehicles for traditional drugs to more thoughtful designs tailored to the pathophysiology of access failure. The emergence of tissue engineering strategies and gene therapies are another exciting new direction. Despite favorable results in experimental and preclinical studies, no periadventitial therapy has been clinically approved to improve vascular access outcomes. After conducting an exhaustive review of the literature, we identify the seminal studies and clinical trials that utilize periadventitial biomaterials and discuss the key features of each biomaterial format and their respective shortcomings as they pertain to access maturation. This review provides a foundation from which clinicians, surgeons, biologists, and engineers can refer to and will hopefully inspire thoughtful, translatable treatments to finally address access failure.
Collapse
Affiliation(s)
- Brandon Applewhite
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA
| | - Fotios Andreopoulos
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA
| | - Roberto I Vazquez-Padron
- Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA
| |
Collapse
|
5
|
Li Y, Hu K, Li Y, Lu C, Guo Y, Wang W. The rodent models of arteriovenous fistula. Front Cardiovasc Med 2024; 11:1293568. [PMID: 38304139 PMCID: PMC10830807 DOI: 10.3389/fcvm.2024.1293568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients with end-stage renal disease; however, their maturation and long-term patency still fall short of clinical needs. Rodent models are irreplaceable to facilitate the study of mechanisms and provide reliable insights into clinical problems. The ideal rodent AVF model recapitulates the major features and pathology of human disease as closely as possible, and pre-induction of the uremic milieu is an important addition to AVF failure studies. Herein, we review different surgical methods used so far to create AVF in rodents, including surgical suturing, needle puncture, and the cuff technique. We also summarize commonly used evaluations after AVF placement. The aim was to provide recent advances and ideas for better selection and induction of rodent AVF models. At the same time, further improvements in the models and a deeper understanding of AVF failure mechanisms are expected.
Collapse
Affiliation(s)
- Yuxuan Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hu
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of General Vascular Surgery, Wuhan No.1 Hospital & Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weici Wang
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zhang L, Wang Z, Li S, Liu X, Xu C, Li L. The Potential Roles of CHI3L1 in Failed Autologous Arteriovenous Fistula in End-Stage Renal Disease. TOHOKU J EXP MED 2023; 259:253-261. [PMID: 36642504 DOI: 10.1620/tjem.2022.j120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autologous arteriovenous fistula (AVF) is commonly placed for hemodialysis treatment. Recent studies show that increased baseline serum level of Chitinase-3-like protein 1 (CHI3L1) is independently associated with a higher risk of the early failure of forearm AVFs. However, the changes and mechanisms of CHI3LI in local vascular tissues of failed AVF have not be revealed. This study aims to conduct the expression and mechanism of CHI3L1 in vascular tissues from patients. Immunoreactivity of CHI3L1, matrix metalloproteinase 2 (MMP-2) and vascular endothelial growth factor-A (VEGF-A) were detected in vascular tissues collected from nine patients with AVF surgery. Due to the significant stenosis clinically, six of the nine patients received arteriovenous fistula reconstruction. The expression differences of CHI3L1 between the initial vascular tissues and failed AVF are significant (P < 0.05). Failed AVF due to stenosis shows intraluminal thrombus, collagen fiber rupture, fibrous connective tissue hyperplasia, tube wall thickening, neovascularization, scattered inflammatory cell infiltration in the tunica media as well as high CHI3L1 expression level, and the expression of MMP-2 (r = 0.9022, P = 0.0139) and VEGF-A (r = 0.8355, P = 0.0393) was positively correlated with CHI3L1. CHI3L1 expression in vascular tissues possibly plays an important role in AVF failure. MMP-2 and VEGF-A may participate in venous stenosis with CHI3L1.
Collapse
Affiliation(s)
- Lingge Zhang
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| | - Zhanghua Wang
- Department of Nephrology, the 986 Hospital, Air Force Medical University
| | - Shasha Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| | - Xiaoxi Liu
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| | - Chennian Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University.,Department of Cardiothoracic Surgery, 79th Group Army Hospital of PLA Army
| | - Lu Li
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University
| |
Collapse
|
7
|
Khattri RB, Kim K, Anderson EM, Fazzone B, Harland KC, Hu Q, Palzkill VR, Cort TA, O'Malley KA, Berceli SA, Scali ST, Ryan TE. Metabolomic profiling reveals muscle metabolic changes following iliac arteriovenous fistula creation in mice. Am J Physiol Renal Physiol 2022; 323:F577-F589. [PMID: 36007889 PMCID: PMC9602894 DOI: 10.1152/ajprenal.00156.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/31/2022] Open
Abstract
End-stage kidney disease, the most advanced stage of chronic kidney disease (CKD), requires renal replacement therapy or kidney transplant to sustain life. To accomplish durable dialysis access, the creation of an arteriovenous fistula (AVF) has emerged as a preferred approach. Unfortunately, a significant proportion of patients that receive an AVF experience some form of hand dysfunction; however, the mechanisms underlying these side effects are not understood. In this study, we used nuclear magnetic resonance spectroscopy to investigate the muscle metabolome following iliac AVF placement in mice with CKD. To induce CKD, C57BL6J mice were fed an adenine-supplemented diet for 3 wk and then randomized to receive AVF or sham surgery. Two weeks following surgery, the quadriceps muscles were rapidly dissected and snap frozen for metabolite extraction and subsequent nuclear magnetic resonance analysis. Principal component analysis demonstrated clear separation between groups, confirming a unique metabolome in mice that received an AVF. AVF creation resulted in reduced levels of creatine, ATP, and AMP as well as increased levels of IMP and several tricarboxylic acid cycle metabolites suggesting profound energetic stress. Pearson correlation and multiple linear regression analyses identified several metabolites that were strongly linked to measures of limb function (grip strength, gait speed, and mitochondrial respiration). In summary, AVF creation generates a unique metabolome profile in the distal skeletal muscle indicative of an energetic crisis and myosteatosis.NEW & NOTEWORTHY Creation of an arteriovenous fistula (AVF) is the preferred approach for dialysis access, but some patients experience hand dysfunction after AVF creation. In this study, we provide a detailed metabolomic analysis of the limb muscle in a murine model of AVF. AVF creation resulted in metabolite changes associated with an energetic crisis and myosteatosis that associated with limb function.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Kenneth C Harland
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Qiongyao Hu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
- Center for Exercise Science, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Hu K, Guo Y, Li Y, Lu C, Cai C, Zhou S, Ke Z, Li Y, Wang W. Oxidative stress: An essential factor in the process of arteriovenous fistula failure. Front Cardiovasc Med 2022; 9:984472. [PMID: 36035909 PMCID: PMC9403606 DOI: 10.3389/fcvm.2022.984472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
For more than half a century, arteriovenous fistula (AVFs) has been recognized as a lifeline for patients requiring hemodialysis (HD). With its higher long-term patency rate and lower probability of complications, AVF is strongly recommended by guidelines in different areas as the first choice for vascular access for HD patients, and its proportion of application is gradually increasing. Despite technological improvements and advances in the standards of postoperative care, many deficiencies are still encountered in the use of AVF related to its high incidence of failure due to unsuccessful maturation to adequately support HD and the development of neointimal hyperplasia (NIH), which narrows the AVF lumen. AVF failure is linked to the activation and migration of vascular cells and the remodeling of the extracellular matrix, where complex interactions between cytokines, adhesion molecules, and inflammatory mediators lead to poor adaptive remodeling. Oxidative stress also plays a vital role in AVF failure, and a growing amount of data suggest a link between AVF failure and oxidative stress. In this review, we summarize the present understanding of the pathophysiology of AVF failure. Furthermore, we focus on the relation between oxidative stress and AVF dysfunction. Finally, we discuss potential therapies for addressing AVF failure based on targeting oxidative stress.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunchang Zhou
- Center of Experimental Animals, Huazhong University of Science and Technology, Wuhan, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yiqing Li,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Weici Wang,
| |
Collapse
|
9
|
Chen Q, Liang L, Zhang Z, Du J, Tang L, Cao W, Kong X, Xu D. Pathological analysis of vascularization of the arterialized veins in failed arteriovenous fistulas among uremic patients. J Vasc Interv Radiol 2022; 33:904-912.e1. [PMID: 35605817 DOI: 10.1016/j.jvir.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To assess venous wall vascularization and its correlation with neointimal hyperplasia (NIH) in failed arteriovenous fistulas (AVFs). METHODS A total of 43 uremic patients who received a first AVF creation and 39 patients who received reconstruction of failed fistulas were enrolled in the study. A 5-10 mm vein segment adjacent to future fistula creation or reconstruction site was surgically removed and assessed using histopathological analyses and stained by immunohistochemistry to quantify vasa vasorum density (VVD). RESULTS Both the intimal thickness (70.68 [28.81-99.54] vs. 4.53 [2.69-7.30] μm, P < 0.001) and the intimal thickness/medial thickness ratio (2.20 [0.77-4.36] vs. 0.15 [0.10-0.30], P < 0.001) were higher in failed AVFs than in pre-access veins. CD31 and factor VIII marked VVDs both in the intima (6.31 [1.62-12.53] vs. 0.0 [0.0-0.0], P < 0.001; 7.82 [3.33-11.61] vs. 0.0 [0.0-0.0], P < 0.001) and media (10.0 [7.59-12.95] vs. 3.71 [2.44-4.87], P < 0.001; 8.33 [5.55-13.0] vs. 3.57 [2.53-4.82], P < 0.001), and the intimal VVD/medial VVD ratio (0.67 [0.19-1.08] vs. 0.0 [0.0-0.0], P < 0.001; 0.71 [0.39-1.14] vs. 0.0 [0.0-0.0], P < 0.001) were significantly higher in failed AVFs than in pre-access veins. There was also a positive relationship between the intimal VVD/medial VVD ratio and the intimal thickness/medial thickness ratio (P < 0.001). In addition, compared to pre-access veins, vascular endothelial cell growth factor-A (VEGF-A) expression was higher in failed AVFs. CONCLUSIONS Vascularization of the vessel wall was noticeably more developed in the arterialized veins, especially among the NIH regions in failed AVFs.
Collapse
Affiliation(s)
- Qinlan Chen
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No.44, Wenhua West Road, Jinan, China
| | - Liming Liang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, PR China; Nephrology Research Institute of Shandong Province, No.16766, Jingshi Road, Jinan, 250014, PR China
| | - Ziheng Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, No.44, Wenhua West Road, Jinan, China
| | - Jing Du
- Department of Blood Purification Center, Weifang People's Hospital, No.151, Guangwen Street, Kuiwen District, Weifang, China
| | - Lijun Tang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, PR China; Nephrology Research Institute of Shandong Province, No.16766, Jingshi Road, Jinan, 250014, PR China
| | - Wei Cao
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, PR China; Nephrology Research Institute of Shandong Province, No.16766, Jingshi Road, Jinan, 250014, PR China
| | - Xianglei Kong
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, PR China; Nephrology Research Institute of Shandong Province, No.16766, Jingshi Road, Jinan, 250014, PR China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, No.16766, Jingshi Road, Jinan, 250014, PR China; Nephrology Research Institute of Shandong Province, No.16766, Jingshi Road, Jinan, 250014, PR China
| |
Collapse
|
10
|
Martinez L, Perla M, Tabbara M, Duque JC, Rojas MG, Falcon NS, Pereira-Simon S, Salman LH, Vazquez-Padron RI. Systemic Profile of Cytokines in Arteriovenous Fistula Patients and Their Associations with Maturation Failure. KIDNEY360 2022; 3:677-686. [PMID: 35721613 PMCID: PMC9136910 DOI: 10.34067/kid.0006022021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
Background Systemic cytokines are elevated in patients with chronic kidney disease (CKD) and on hemodialysis compared with the general population. However, whether cytokine levels interfere with vascular remodeling, increasing the risk of arteriovenous fistula (AVF) failure, remains unknown. Methods This is a case-control study of 64 patients who underwent surgery for AVF creation (32 with AVF maturation failure and 32 matching controls with successful maturation). A total of 74 cytokines, including chemokines, interferons, interleukins, and growth factors, were measured in preoperative plasma samples using multiplex assays. Sixty-two patients were included in the statistical analyses. Associations with AVF failure were assessed using paired comparisons and conditional logistic regressions accounting for paired strata. Results Seven cytokines were significantly higher in patients with AVF maturation failure than in matching controls (G-CSF, IL-6, MDC, RANTES, SDF-1α/β, TGFα, and TPO). Of these, G-CSF (odds ratio [OR]=1.71; 95% confidence interval [95% CI], 1.05 to 2.79 per 10 pg/ml), MDC (OR=1.60, 95% CI, 1.08 to 2.38 per 100 pg/ml), RANTES (OR=1.55, 95% CI, 1.10 to 2.17 per 100 pg/ml), SDF-1α/β (OR=1.18, 95% CI, 1.04 to 1.33 per 1000 pg/ml), and TGFα (OR=1.39, 95% CI 1.003, 1.92 per 1 pg/ml) showed an incremental association by logistic regression. Conclusions This study identified a profile of plasma cytokines associated with adverse maturation outcomes in AVFs. These findings may open the doors for future therapeutics and markers for risk stratification.
Collapse
Affiliation(s)
- Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Mikael Perla
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, University of Miami, Miami, Florida
| | - Miguel G Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, New York
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida.,Bruce W. Carter VA Medical Center, Department of Veterans Affairs, Miami, Florida
| |
Collapse
|
11
|
Novotny T, Eckhardt A, Doubkova M, Knitlova J, Vondrasek D, Vanaskova E, Ostadal M, Uhlik J, Bacakova L, Musilkova J. The possible role of hypoxia in the affected tissue of relapsed clubfoot. Sci Rep 2022; 12:4462. [PMID: 35292718 PMCID: PMC8924187 DOI: 10.1038/s41598-022-08519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Our aim was to study the expression of hypoxia-related proteins as a possible regulatory pathway in the contracted side tissue of relapsed clubfoot. We compared the expression of hypoxia-related proteins in the tissue of the contracted (medial) side of relapsed clubfoot, and in the tissue of the non-contracted (lateral) side of relapsed clubfoot. Tissue samples from ten patients were analyzed by immunohistochemistry and image analysis, Real-time PCR and Mass Spectrometry to evaluate the differences in protein composition and gene expression. We found a significant increase in the levels of smooth muscle actin, transforming growth factor-beta, hypoxia-inducible factor 1 alpha, lysyl oxidase, lysyl oxidase-like 2, tenascin C, matrix metalloproteinase-2, matrix metalloproteinase-9, fibronectin, collagen types III and VI, hemoglobin subunit alpha and hemoglobin subunit beta, and an overexpression of ACTA2, FN1, TGFB1, HIF1A and MMP2 genes in the contracted medial side tissue of clubfoot. In the affected tissue, we have identified an increase in the level of hypoxia-related proteins, together with an overexpression of corresponding genes. Our results suggest that the hypoxia-associated pathway is potentially a factor contributing to the etiology of clubfoot relapses, as it stimulates both angioproliferation and fibroproliferation, which are considered to be key factors in the progression and development of relapses.
Collapse
Affiliation(s)
- Tomas Novotny
- Department of Orthopaedics, University J.E. Purkinje and Masaryk Hospital, Usti nad Labem, Czech Republic.,Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adam Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. .,Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jarmila Knitlova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Vondrasek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Eliska Vanaskova
- Department of Orthopaedics, University J.E. Purkinje and Masaryk Hospital, Usti nad Labem, Czech Republic
| | - Martin Ostadal
- Department of Orthopaedics, University Hospital Bulovka, Charles University, Prague, Czech Republic
| | - Jiri Uhlik
- Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Huang X, Guan J, Sheng Z, Wang M, Xu T, Guo G, Wan P, Tian B, Zhou J, Huang A, Hao J, Yao L. Effect of local anti-vascular endothelial growth factor therapy to prevent the formation of stenosis in outflow vein in arteriovenous fistula. J Transl Int Med 2021; 9:307-317. [PMID: 35136729 PMCID: PMC8802407 DOI: 10.2478/jtim-2021-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Vascular stenosis and angiogenesis are the major causes of short expectancy of arteriovenous fistula (AVF). Increased expression of vascular endothelial growth factor-A (VEGF-A) has been suggested to play an important role in the pathophysiologic process. Anti-VEGF has been proved to be effective on anti-angiogenesis and applied in clinical practice, but its effect on anti-stenosis remains to be verified before it could be applied to prevent stenosis of AVF. This study was aimed to evaluate the effect of local anti-VEGF therapy to prevent the formation of stenosis in the outflow vein in AVF and its mechanism. METHODS Bioinformatics of VEGF-A and its downstream-regulated molecules from the STRING PPI database were analyzed in this study. The biopsy samples from outflow veins of AVF in patients and C57BL/6 mouse models were analyzed to examine the mechanisms of pathologic vascular stenosis associated with VEGF pathways and their potential therapeutic targets. RESULTS We found that the reduction of VEGF-A could downregulate downstream molecules and subsequently reduce the intimal hyperplasia and abnormal vascular remodeling by analyzing the STRING PPI database. Venous wall thickening, intimal neointima formation, and apoptosis of vascular endothelial cells in the proliferative outflow vein of the AVF were significantly more obvious, and upregulation of expression of VEGF was observed in dysfunctional AVF in patients. In mouse models, the expression of VEGF, Ephrin receptor B4 (EphB4), matrix metalloproteinase (MMP)2, MMP9, tissue inhibitor of metalloproteinase (TIMP)1, TIMP2, and caspase 3 in the control-shRNA surgical group was significantly higher than in the sham group (P < 0.05), and all of these indicators were significantly lower in lentiviral transfection group and Avastin group than in control-shRNA surgical group (P < 0.05) on the 14th day after AVF operation. CONCLUSION VEGF expression is significantly increased in vascular endothelial cells in stenosed or occluded outflow veins of dysfunctional AVF. Local injection of Avastin into the adventitia of the proximal outflow vein in autologous AVF procedure has an excellent potential to prevent the subsequent local stenosis of the proximal outflow vein.
Collapse
Affiliation(s)
- Xin Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jibin Guan
- College of Pharmacy, University of Minnesota, Minneapolis55455, MN, USA
| | - Zitong Sheng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Menghua Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Pengzhi Wan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Binyao Tian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Junlei Zhou
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Junfeng Hao
- Department of Nephrology, Jinqiu Hospital Liaoning Province, Shenyang110016, Liaoning Province, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
13
|
Zhao Z, Fu Q, Hu L, Liu Y. Identification of the Crucial Gene in Overflow Arteriovenous Fistula by Bioinformatics Analysis. Front Physiol 2021; 12:621830. [PMID: 34421628 PMCID: PMC8371383 DOI: 10.3389/fphys.2021.621830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim was to study the preliminary screening of the crucial genes in intimal hyperplasia in the venous segment of arteriovenous (AV) fistula and the underlying potential molecular mechanisms of intimal hyperplasia with bioinformatics analysis. Methods: The gene expression profile data (GSE39488) was analyzed to identify differentially expressed genes (DEGs). We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DEGs. Gene set enrichment analysis (GSEA) was used to understand the potential activated signaling pathway. The protein-protein interaction (PPI) network was constructed with the STRING database and Cytoscape software. The Venn diagram between 10 hub genes and gene sets of 4 crucial signaling pathways was used to obtain core genes and relevant potential pathways. Furthermore, GSEAs were performed to understand their biological functions. Results: A total of 185 DEGs were screened in this study. The main biological function of the 111 upregulated genes in AV fistula primarily concentrated on cell proliferation and vascular remodeling, and the 74 downregulated genes in AV fistula were enriched in the biological function mainly relevant to inflammation. GSEA found four signaling pathways crucial for intimal hyperplasia, namely, MAPK, NOD-like, Cell Cycle, and TGF-beta signaling pathway. A total of 10 hub genes were identified, namely, EGR1, EGR2, EGR3, NR4A1, NR4A2, DUSP1, CXCR4, ATF3, CCL4, and CYR61. Particularly, DUSP1 and NR4A1 were identified as core genes that potentially participate in the MAPK signaling pathway. In AV fistula, the biological processes and pathways were primarily involved with MAPK signaling pathway and MAPK-mediated pathway with the high expression of DUSP1 and were highly relevant to cell proliferation and inflammation with the low expression of DUSP1. Besides, the biological processes and pathways in AV fistula with the high expression of NR4A1 similarly included the MAPK signaling pathway and the pathway mediated by MAPK signaling, and it was mainly involved with inflammation in AV fistula with the low expression of NR4A1. Conclusion: We screened four potential signaling pathways relevant to intimal hyperplasia and identified 10 hub genes, including two core genes (i.e., DUSP1 and NR4A1). Two core genes potentially participate in the MAPK signaling pathway and might serve as the therapeutic targets of intimal hyperplasia to prevent stenosis after AV fistula creation.
Collapse
Affiliation(s)
- Zhengde Zhao
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qining Fu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangzhu Hu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Vascular Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yangdong Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Vascular Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Tan L, Xie Y, Yuan Y, Hu K. LncRNA GAS5 as miR-26a-5p Sponge Regulates the PTEN/PI3K/Akt Axis and Affects Extracellular Matrix Synthesis in Degenerative Nucleus Pulposus Cells in vitro. Front Neurol 2021; 12:653341. [PMID: 34413821 PMCID: PMC8369364 DOI: 10.3389/fneur.2021.653341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
The role of lncRNA growth arrest specific 5 (GAS5) in degenerative nucleus pulposus cell (NPC) apoptosis has been reported, but the mechanism of GAS5 in extracellular matrix (ECM) synthesis in intervertebral disc degeneration (IDD) remains unknown. We aimed to investigate the mechanism of GAS5 in ECM synthesis in degenerative NPCs. GAS5 expression was measured in degenerative NPCs (CP-H170) and normal NPCs (CP-H097). siRNA-mediated GAS5 knockdown was transfected to NPCs to detect cell viability and the expression of ECM-related genes (Collagen II, aggrecan, Collagen I, and MMP-3). Subcellular localization of GAS5 was analyzed. The downstream gene and pathway of GAS5 in degenerative NPCs were explored. As our results indicated, lncRNA GAS5 was upregulated in degenerative NPCs. Silencing GAS5 improved the viability of degenerative NPCs and increased ECM synthesis. GAS5 was mainly located in the cytoplasm of NPCs. LncRNA GAS5 sponged miR-26a-5p to regulate PTEN. Overexpression of miR-26a-5p promoted ECM synthesis in degenerative NPCs. Akt inhibitor LY294002 reversed the promotion of silencing GAS5 on ECM synthesis of degenerative NPCs. In conclusion, lncRNA GAS5 sponged miR-26a-5p to upregulate PTEN and inhibit the PI3K/Akt pathway, thus inhibiting ECM synthesis of degenerative NPCs.
Collapse
Affiliation(s)
- Liang Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yifang Xie
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| | - Ye Yuan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| | - Kai Hu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| |
Collapse
|
15
|
Misra S, Kilari S, Yang B, Sharma A, Wu CC, Vazquez-Padron RI, Broadwater J. Anti Human CX3CR1 VHH Molecule Attenuates Venous Neointimal Hyperplasia of Arteriovenous Fistula in Mouse Model. J Am Soc Nephrol 2021; 32:1630-1648. [PMID: 33893223 PMCID: PMC8425661 DOI: 10.1681/asn.2020101458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Fractalkine receptor 1 (CX3CR1) mediates macrophage infiltration and accumulation, causing venous neointimal hyperplasia (VNH)/venous stenosis (VS) in arteriovenous fistula (AVF). The effect of blocking CX3CR1 using an anti-human variable VHH molecule (hCX3CR1 VHH, BI 655088) on VNH/VS was determined using a humanized mouse in which the human CX3CR1 (hCX3CR1) gene was knocked in (KI). METHODS Whole-transcriptomic RNA sequencing with bioinformatics analysis was used on human stenotic AVF samples, C57BL/6J, hCX3CR1 KI mice with AVF and CKD, and in in vitro experiments to identify the pathways involved in preventing VNH/VS formation after hCX3CR1 VHH administration. RESULTS Accumulation of CX3CR1 and CD68 was significantly increased in stenotic human AVFs. In C57BL/6J mice with AVF, there was increased Cx3cr1, Cx3cl1, Cd68, and Tnf-α gene expression, and increased immunostaining of CX3CR1 and CD68. In hCX3CR1-KI mice treated with hCX3CR1 VHH molecule (KI-A), compared with vehicle controls (KI-V), there was increased lumen vessel area and patency, and decreased neointima in the AVF outflow veins. RNA-seq analysis identified TNF-α and NF-κB as potential targets of CX3CR1 inhibition. In KI-A-treated vessels compared with KI-V, there was decreased gene expression of Tnf- α, Mcp-1, and Il-1 β; with reduction of Cx3cl1, NF-κB, and Cd68; decreased M1, Ly6C, smooth muscle cells, fibroblast-activated protein, fibronectin, and proliferation; and increased TUNEL and M2 staining. In cell culture, monocytes stimulated with PMA and treated with hCX3CR1 VHH had decreased TNF- α, CD68, proliferation, and migration. CONCLUSIONS CX3CR1 blockade reduces VNH/VS formation by decreasing proinflammatory cues.
Collapse
Affiliation(s)
- Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Amit Sharma
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Chih-Cheng Wu
- Cardiovascular Center, National Taiwan University Hospital, Hsin-chu, Taiwan
| | - Roberto I. Vazquez-Padron
- Division of Vascular Surgery, Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - John Broadwater
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
16
|
Singh AK, Cai C, Kilari S, Zhao C, Simeon ML, Takahashi E, Edelman ER, Kong H(J, Macedo T, Singh RJ, Urban MW, Kumar R, Misra S. 1α,25-Dihydroxyvitamin D 3 Encapsulated in Nanoparticles Prevents Venous Neointimal Hyperplasia and Stenosis in Porcine Arteriovenous Fistulas. J Am Soc Nephrol 2021; 32:866-885. [PMID: 33627344 PMCID: PMC8017547 DOI: 10.1681/asn.2020060832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Few therapies prevent venous neointimal hyperplasia (VNH) and venous stenosis (VS) formation in arteriovenous fistulas (AVF). Expression of the immediate early response gene X-1 (Iex-1), also known as Ier3, is associated with VNH and stenosis in murine AVFs. The study aimed to determine if local release of Ier3 long-acting inhibitor 1α,25(OH)2D3 from poly(lactic-co-glycolic acid) (PLGA) nanoparticles embedded in a thermosensitive Pluronic F127 hydrogel (1,25 NP) could affect VNH/VS formation in a large animal model. METHODS Immediately after AVF creation in a porcine model of renal failure, 1,25 NP or vehicle control was injected into the adventitia space of AVF outflow veins. Scanning electron microscopy and dynamic light scattering characterized drug and control nanoparticles. Animals were sacrificed 3 and 28 days later for gene expression, immunohistologic, magnetic resonance imaging and angiography, and ultrasound analyses. Whole transcriptome RNA sequencing with differential gene expression analysis was performed on outflow veins of AVF. RESULTS Encapsulation of 1α,25(OH)2D3 in PLGA nanoparticles formed nanoparticles of uniform size that were similar to nanoparticles without 1α,25(OH)2D3. The 1,25 NP-treated AVFs exhibited lower VNH/VS, Ier3 gene expression, and IER-3, MCP-1, CD68, HIF-1α, and VEGF-A immunostaining, fibrosis, and proliferation. Blood flow and lumen area increased significantly, whereas peak systolic velocity and wall shear stress decreased. Treatment increased Young's modulus and correlated with histologic assessment of fibrosis and with no evidence of vascular calcification. RNA sequencing analysis showed changes in the expression of genes associated with inflammatory, TGFβ1, and apoptotic pathways. CONCLUSIONS Local release of 1,25 NP improves AVF flow and hemodynamics, and reduces stenosis in association with reduction in inflammation, apoptosis, and fibrosis in a porcine model of arteriovenous fistula.
Collapse
Affiliation(s)
- Avishek K. Singh
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Chuanqi Cai
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Sreenivasulu Kilari
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Chenglei Zhao
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael L. Simeon
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Edwin Takahashi
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts,Department of Internal Medicine, Brigham and Women’s Hospital, Massachusetts, Boston, Massachusetts
| | - Hyunjoon (Joon) Kong
- Chemical and Biomolecular Engineering, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Thanila Macedo
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Matthew W. Urban
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sanjay Misra
- Department of Radiology, Vascular and Interventional Translational Laboratory, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Sadaghianloo N, Contenti J, Declemy S, Ambrosetti D, Zdralevic M, Tannour-Louet M, Fabbri L, Pagès G, Bost F, Hassen-Khodja R, Pouysségur J, Jean-Baptiste E, Dardik A, Mazure NM. Hypoxia and hypoxia-inducible factors promote the development of neointimal hyperplasia in arteriovenous fistula. J Physiol 2021; 599:2299-2321. [PMID: 33608879 PMCID: PMC8297161 DOI: 10.1113/jp281218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Patients with end-stage renal failure need arteriovenous fistulas (AVF) to undergo dialysis. However, AVFs present a high rate of failure as a result of excessive venous thickness. Excessive venous thickness may be a consequence of surgical dissection and change in oxygen concentration within the venous wall. We show that venous cells adapt their metabolism and growth depending on oxygen concentration, and drugs targeting the hypoxic response pathway modulate this response in vitro. We used the same drugs on a mouse model of AVF and show that direct or indirect inhibition of the hypoxia-inducible factors (HIFs) help decrease excessive venous thickness. Hypoxia and HIFs can be targets of therapeutic drugs to prevent excessive venous thickness in patients undergoing AVF surgical creation. ABSTRACT Because the oxygen concentration changes in the venous wall, surrounding tissue and the blood during surgical creation of arteriovenous fistula (AVF), we hypothesized that hypoxia could contribute to AVF failure as a result of neointimal hyperplasia. We postulated that modulation of the hypoxia-inducible factors (HIF) with pharmacological compounds could promote AVF maturation. Fibroblasts [normal human fibroblasts (NHF)], smooth muscle cells [human umbilical vein smooth muscle cells (HUVSMC)] and endothelial cells [human umbilical vein endothelial cells (HUVEC)], representing the three layers of the venous wall, were tested in vitro for proliferation, cell death, metabolism, reactive oxygen species production and migration after silencing of HIF1/2-α or after treatment with deferioxamine (DFO), everolimus (Eve), metformin (Met), N-acetyl-l-cysteine (NAC) and topoisomerase I (TOPO), which modulate HIF-α stability or activity. Compounds that were considered to most probably modify intimal hyperplasia were applied locally to the vessels in a mouse model of aortocaval fistula. We showed, in vitro, that NHF and HUVSMC can adapt their metabolism and thus their growth depending on oxygen concentration, whereas HUVEC appears to be less flexible. siHIF1/2α, DFO, Eve, Met, NAC and TOPO can modulate metabolism and proliferation depending on the cell type and the oxygen concentration. In vivo, siHIF1/2α, Eve and TOPO decreased neointimal hyperplasia by 32%-50%, 7 days after treatment. Within the vascular wall, hypoxia and HIF-1/2 mediate early failure of AVF. Local delivery of drugs targeting HIF-1/2 could inhibit neointimal hyperplasia in a mouse model of AVF. Such compounds may be delivered during the surgical procedure for AVF creation to prevent early AVF failure.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
- Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, Nice, France
| | - Julie Contenti
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
- Centre Hospitalier Universitaire de Nice, Department of Emergency Medicine, Nice, France
| | - Serge Declemy
- Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, Nice, France
| | - Damien Ambrosetti
- Centre Hospitalier Universitaire de Nice, Department of Pathology, Nice, France
| | - Masa Zdralevic
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
- University of Montenegro, Faculty of Medicine, Krusevac bb, 81000 Podgorica, Montenegro
| | - Mounia Tannour-Louet
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
| | - Lucilla Fabbri
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
| | - Gilles Pagès
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
- Centre Scientifique de Monaco (CSM), Monaco
| | - Frédéric Bost
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
| | - Réda Hassen-Khodja
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
- Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, Nice, France
| | - Jacques Pouysségur
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
- Centre Scientifique de Monaco (CSM), Monaco
| | - Elixène Jean-Baptiste
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
- Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, Nice, France
| | - Alan Dardik
- Yale University, Department of Surgery, Vascular Biology and Therapeutics Program, New Haven, CT, USA
- VA Connecticut Healthcare Systems, Department of Vascular Surgery, New Haven, CT, USA
| | - Nathalie M. Mazure
- Present address: Université Côte d’Azur, Centre de Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
- Université Côte d’Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave de Valombrose, 06189 Nice, France
| |
Collapse
|
18
|
Ruan L, Yao X, Li W, Zhang L, Yang H, Sun J, Li A. Effect of galectin-3 in the pathogenesis of arteriovenous fistula stenosis formation. Ren Fail 2021; 43:566-576. [PMID: 33757402 PMCID: PMC7993384 DOI: 10.1080/0886022x.2021.1902822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective This study sought to investigate the effect of local expression of galectin-3 in the development of stenotic arteriovenous fistula (AVF). Methods We collected stenotic venous tissues, adjacent nonstenotic venous tissues, and blood samples from end-stage renal disease (ESRD) patients with AVF stenosis, while normal venous tissues and blood samples were collected from ESRD patients before AVF creation as controls. Also blood samples were collected from ESRD patients with nonstenosis functional AVF. Galectin-3, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase-9 (MMP-9), and α-SMA expression in the venous tissues were examined by immunohistochemistry, and the ERK1/2 pathway activity in the intima was accessed by western blot. Serum galectin-3 level was measured by ELISA. Thereafter, human pulmonary arterial smooth muscle cells (HPASMCs) were cultured in vitro, and the interaction between Galectin-3 and ERK1/2 pathway in HPASMCs was estimated by western blot. Results ESRD patients with stenotic AVF had a significant higher serum galectin-3 level than normal controls, and patients with non-stenotic functional AVF. The expression levels of galectin-3, phosphorylated ERK1/2, PCNA, MMP-9, and α-SMA in the stenotic venous tissues were higher than that in the normal venous tissues or the adjacent nonstenotic AVF venous tissues. Correlation analysis showed that the expression of galectin-3 of the neointima was positively correlated with PCNA and α-SMA in the stenotic AVF venous tissues. In HPASMCs, galectin-3 can increase the activity of phosphorylated ERK1/2 and promote the expression of α-SMA. Conclusion In the stenotic AVF of ESRD patients, expression of the galectin-3 was significantly increased, showing a positive relation with neointima development.
Collapse
Affiliation(s)
- Lin Ruan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China.,Nephrology Department, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| | - Xiaoguang Yao
- Surgery Department, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang
| | - Wen Li
- Nephrology Department, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| | - Lihong Zhang
- Nephrology Department, Hebei Medical University First Hospital, Shijiazhuang, Hebei, China
| | - Hongxia Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Jiahuan Sun
- Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Brahmbhatt AN, Misra S. Stem Cell Delivery for the Treatment of Arteriovenous Fistula Failure. STEM CELL THERAPY FOR VASCULAR DISEASES 2021:281-297. [DOI: 10.1007/978-3-030-56954-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
20
|
Zhao C, Zuckerman ST, Cai C, Kilari S, Singh A, Simeon M, von Recum HA, Korley JN, Misra S. Periadventitial Delivery of Simvastatin-Loaded Microparticles Attenuate Venous Neointimal Hyperplasia Associated With Arteriovenous Fistula. J Am Heart Assoc 2020; 9:e018418. [PMID: 33283594 PMCID: PMC7955373 DOI: 10.1161/jaha.120.018418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Venous neointimal hyperplasia and venous stenosis (VS) formation can result in a decrease in arteriovenous fistula (AVF) patency in patients with end‐stage renal disease. There are limited therapies that prevent VNH/VS. Systemic delivery of simvastatin has been shown to reduce VNH/VS but local delivery may help decrease the side effects associated with statin use. We determined if microparticles (MP) composed of cyclodextrins loaded with simvastatin (MP‐SV) could reduce VS/VNH using a murine arteriovenous fistula model with chronic kidney disease. Methods and Results Male C57BL/6J mice underwent nephrectomy to induce chronic kidney disease. Four weeks later, an arteriovenous fistula was placed and animals were randomized to 3 groups: 20 μL of PBS or 20 μL of PBS with 16.6 mg/mL of either MP or MP‐SV. Animals were euthanized 3 days later and the outflow veins were harvested for quantitative reverse transcriptase–polymerase chain reaction analysis and 28 days later for immunohistochemistical staining with morphometric analysis. Doppler ultrasound was performed weekly. Gene expression of vascular endothelial growth factor‐A (Vegf‐A), matrix metalloproteinase‐9 (Mmp‐9), transforming growth factor beta 1 (Tgf‐β1), and monocyte chemoattractant protein‐1 (Mcp‐1) were significantly decreased in MP‐SV treated vessels compared with controls. There was a significant decrease in the neointimal area, cell proliferation, inflammation, and fibrosis, with an increase in apoptosis and peak velocity in MP‐SV treated outflow veins. MP‐SV treated fibroblasts when exposed to hypoxic injury had decreased gene expression of Vegf‐A and Mmp‐9. Conclusions In experimental arteriovenous fistulas, periadventitial delivery of MP‐SV decreased gene expression of Vegf‐A, Mmp‐9, Tgf‐β1 and Mcp‐1, VNH/VS, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Chenglei Zhao
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery The Second Xiangya HospitalCentral South University Changsha Hunan China
| | | | - Chuanqi Cai
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Avishek Singh
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Michael Simeon
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Horst A von Recum
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH
| | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN
| |
Collapse
|
21
|
Eroglu E, Kocyiğit I, Karakukcu C, Tuncay A, Zararsiz G, Eren D, Kahriman G, Hayri Sipahioglu M, Tokgoz B, Tasdemir K, Oymak O. Hypoxia-inducible factors in arteriovenous fistula maturation: A prospective cohort study. Eur J Clin Invest 2020; 50:e13350. [PMID: 32652532 DOI: 10.1111/eci.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neointimal hyperplasia is the main cause of arteriovenous fistula (AVF) failure. Hypoxia-inducible factors (HIFs) factors are associated with neointimal hyperplasia. Thus, we investigated the association between HIF-2 alpha (HIF-2α) and AVF maturation in end-stage kidney disease (ESKD) patients. METHODS This prospective cohort study was conducted in 21 voluntary healthy subjects and 50 patients with ESKD who were eligible for AVF creation. Inclusion criteria were being ESKD patients without a history of AVF surgery and dialysis. Eight patients excluded from the study due to having unavailable veins six patients were excluded due to acute thrombosis after surgery. One patient lost to follow-up. A total of 35 patients were included in final analysis. The blood samples were collected a day before the AVF surgery for biochemical parameters and HIF-2α measurement. HIF-2α levels were measured by the ELISA method. RESULTS Compared with healthy subjects, ESKD patients had a significantly higher level of HIF-2α. [1.3 (1.0-1.9) vs 2.2 (1.6-3.0)] (P = .002). Patients were divided into two groups after the evaluation of AVF maturation, as the mature group (n = 19) and the failure group (n = 16). Serum HIF-2α level was 1.7 (1.1-1.8) in the mature group; however, it was 3.1 (2.8-3.3 in failure group (P < .001). Multiple logistic regression analyses showed that HIF-2α independently predicted AVF maturation. The ROC curve analysis showed that HIF-2α > 2.65 predicted AVF maturation failure with the 87% sensitivity and 94% specificity [AUC:0.947, 95% CI (0.815-0.994), P < .001]. CONCLUSIONS HIF-2-α levels were higher in ESKD patients than healthy subjects. HIF-2-α could be a marker of AVF maturation failure.
Collapse
Affiliation(s)
- Eray Eroglu
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey.,Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| | - Ismail Kocyiğit
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Kayseri City Hospital, Kayseri, Turkey
| | - Aydin Tuncay
- Department of Cardiovascular Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | - Gokmen Zararsiz
- Roche Diagnostics GmbH, Personalized Health Care, Munich, Germany
| | - Davut Eren
- Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey
| | - Guven Kahriman
- Department of Radiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Murat Hayri Sipahioglu
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Bulent Tokgoz
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Kutay Tasdemir
- Department of Cardiovascular Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | - Oktay Oymak
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
22
|
Eroglu E, Kocyigit I, Kahriman G, Karakukcu C, Tuncay A, Zararsiz GE, Eren D, Kalay N, Sipahioglu MH, Oymak O, Tokgoz B. Soluble vascular endothelial growth factor receptor-1 as a novel marker of arteriovenous fistula stenosis in hemodialysis patients. Hemodial Int 2020; 25:164-172. [PMID: 33155365 DOI: 10.1111/hdi.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Arteriovenous fistula (AVF) stenosis is one of the most important clinical problems in hemodialysis patients. The histopathological findings of neointimal hyperplasia and impaired angiogenesis have been well established in stenotic AVFs. Soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) has been implicated in pathological angiogenesis. Thus, we aimed to investigate the association between sVEGFR-1 and AVF stenosis in hemodialysis patients. METHODS This prospective cohort study included 70 patients with end-stage renal disease. Forty-five patients were included in the final analysis, and the median follow-up period was 36 months. Venous stenosis was detected by physical examination and documented by fistulography. Blood samples were analyzed a day before the fistula operation, and serum levels of sVEGFR-1 were measured. FINDINGS The median sVEGFR-1 level was higher in the stenosis group than in the nonstenosis group (17 pg/mL [89.5%] vs. 5 pg/mL [19.2%], respectively; P < 0.001]. According to body mass index (BMI) categories, obese patients (BMI > 30 kg/m2 ) had the shortest stenosis-free survival (20 months [9.35-30.65]). Multivariate Cox analysis showed that sVEGFR-1, serum creatinine, and parathyroid hormone levels were associated with AVF stenosis risk. Kaplan-Meier survival curves showed that patients with less than the median value of sVEGFR-1 (<6093.07 pg/mL) had longer cumulative stenosis-free survival than patients with sVEGFR-1 levels above the median value (P < 0.001). DISCUSSION Increased levels of sVEGFR-1 and obesity were found to be associated with AVF stenosis in hemodialysis patients.
Collapse
Affiliation(s)
- Eray Eroglu
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey.,Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| | - Ismail Kocyigit
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Guven Kahriman
- Department of Radiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Kayseri City Hospital, Kayseri, Turkey
| | - Aydin Tuncay
- Department of Cardiovascular Surgery, Erciyes University School of Medicine, Kayseri, Turkey
| | | | - Davut Eren
- Department of Internal Medicine, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nihat Kalay
- Department of Cardiology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Murat Hayri Sipahioglu
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Oktay Oymak
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Bulent Tokgoz
- Department of Internal Medicine, Division of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
23
|
Cai C, Kilari S, Singh AK, Zhao C, Simeon ML, Misra A, Li Y, Misra S. Differences in Transforming Growth Factor-β1/BMP7 Signaling and Venous Fibrosis Contribute to Female Sex Differences in Arteriovenous Fistulas. J Am Heart Assoc 2020; 9:e017420. [PMID: 32757791 PMCID: PMC7660821 DOI: 10.1161/jaha.120.017420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Women have decreased hemodialysis arteriovenous fistula (AVF) maturation and patency rates. We determined the mechanisms responsible for the sex‐specific differences in AVF maturation and stenosis formation by performing whole transcriptome RNA sequencing with differential gene expression and pathway analysis, histopathological changes, and in vitro cell culture experiments from male and female smooth muscle cells. Methods and Results Mice with chronic kidney disease and AVF were used. Outflow veins were evaluated for gene expression, histomorphometric analysis, Doppler ultrasound, immunohistologic analysis, and fibrosis. Primary vascular smooth muscle cells were collected from female and male aorta vessels. In female AVFs, RNA sequencing with real‐time polymerase chain reaction analysis demonstrated a significant decrease in the average gene expression of BMP7 (bone morphogenetic protein 7) and downstream IL17Rb (interleukin 17 receptor b), with increased transforming growth factor‐β1 (Tgf‐β1) and transforming growth factor‐β receptor 1 (Tgfβ‐r1). There was decreased peak velocity, negative vascular remodeling with higher venous fibrosis and an increase in synthetic vascular smooth muscle cell phenotype, decrease in proliferation, and increase in apoptosis in female outflow veins at day 28. In vitro primary vascular smooth muscle cell experiments performed under hypoxic conditions demonstrated, in female compared with male cells, that there was increased gene expression of Tgf‐β1, Tgfβ‐r1, andCol1 with increased migration. Conclusions In female AVFs, there is decreased gene expression of BMP7 and IL17Rb with increased Tgf‐β1 and Tgfβ‐r1, and the cellular and vascular differences result in venous fibrosis with negative vascular remodeling.
Collapse
Affiliation(s)
- Chuanqi Cai
- Department of Vascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China.,Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Avishek K Singh
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Chenglei Zhao
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery The Second Xiangya HospitalCentral South University Changsha Hunan China
| | - Michael L Simeon
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Avanish Misra
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Yiqing Li
- Department of Vascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN.,Department of Radiology, Vascular and Interventional Radiology Mayo Clinic Rochester MN
| |
Collapse
|
24
|
Kudze T, Ono S, Fereydooni A, Gonzalez L, Isaji T, Hu H, Yatsula B, Taniguchi R, Koizumi J, Nishibe T, Dardik A. Altered hemodynamics during arteriovenous fistula remodeling leads to reduced fistula patency in female mice. JVS Vasc Sci 2020; 1:42-56. [PMID: 32754721 PMCID: PMC7402599 DOI: 10.1016/j.jvssci.2020.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective The arteriovenous fistula (AVF) is the preferred method of dialysis access because of its proven superior long-term outcomes. However, women have lower rates of AVF patency and utilization than men. We used a novel mouse AVF model that recapitulates human AVF maturation to determine whether there are differences in AVF patency in female and male mice. Methods Aortocaval fistulas were created in female and male C57BL/6 mice (9-10 weeks). At days 0, 3, 7, and 21, infrarenal inferior vena cava (IVC) and aortic diameters and flow velocity were monitored by Doppler ultrasound and used to calculate the vessel diameter, blood flow, and shear stress. AVF were harvested, and expression of proteins was examined by proteomic analysis and immunofluorescence and of messenger RNA by quantitative polymerase chain reaction analysis. Results At baseline, female mice weighed less and had lower IVC velocity and smaller magnitudes of shear stress, but there was no significant difference in IVC diameter and thickness. After AVF creation, both female and male mice had similar IVC dilation and thickening with no significant differences in IVC wall thickness at day 21. However, female mice had diminished AVF patency by day 42 (25.7% vs 64.3%; P = .039). During fistula remodeling, female mice had lower IVC mean velocity and shear stress magnitude and increased spectral broadening (days 0-21). Messenger RNA and protein expression of Krüppel-like factor 2, endothelial nitric oxide synthase, and vascular cell adhesion molecule 1 was similar at baseline in female and male mice but increased in the AVF only in male mice but not in female mice (day 21). Proteomic analysis of female and male mice detected 56 proteins expressed at significantly higher levels in the IVC of female mice and 67 proteins expressed at significantly higher levels in the IVC of male mice (day 7); function-specific analysis showed that the IVC of male mice overexpressed proteins that belong to pathways implicated in the regulation of vascular function, thrombosis, response to flow, and vascular remodeling. Conclusions AVF in female mice have diminished patency, preceded by lower velocity, reduced magnitudes of shear stress, and less laminar flow during remodeling. There is also sex-specific differential expression of proteins involved in thrombosis, response to laminar flow, inflammation, and proliferation. These findings suggest that hemodynamic changes during fistula maturation may play an important role underlying the diminished rates of AVF utilization in women. Women have lower rates of arteriovenous fistula (AVF) utilization than men. Using a mouse AVF model that recapitulates human AVF maturation, we show that female mice have similar AVF remodeling but diminished patency. AVF remodeling in female mice is associated with reduced shear stress and laminar flow; lack of increased transcription and translation of several anti-inflammatory, antiproliferative, and laminar flow response proteins (endothelial nitric oxide synthase, Krüppel-like factor 2, and vascular cell adhesion molecule 1); and different patterns of expression of pathways that regulate thrombosis and venous remodeling. Identifying downstream targets involved in these mechanisms may improve AVF outcomes in female patients.
Collapse
Affiliation(s)
- Tambudzai Kudze
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Shun Ono
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Haidi Hu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven
| | - Jun Koizumi
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara
| | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven.,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven
| |
Collapse
|
25
|
Duque JC, Martinez L, Tabbara M, Parikh P, Paez A, Selman G, Salman LH, Velazquez OC, Vazquez-Padron RI. Vascularization of the arteriovenous fistula wall and association with maturation outcomes. J Vasc Access 2020; 21:161-168. [PMID: 31608758 PMCID: PMC10970689 DOI: 10.1177/1129729819863584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The venous vasa vasorum is the mesh of microvessels that provide oxygen and nutrients to the walls of large veins. Whether changes to the vasa vasorum have any effects on human arteriovenous fistula outcomes remains undetermined. In this study, we challenged the hypothesis that inadequate vascularization of the arteriovenous fistula wall is associated with maturation failure. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS This case-control pilot study includes pre-access veins and arteriovenous fistula venous samples (i.e. tissue pairs) from 30 patients undergoing two-stage arteriovenous fistula creation (15 matured and 15 failed to mature). Using anti-CD31 immunohistochemistry, we quantified vasa vasorum density and luminal area (vasa vasorum area) in the intima, media, and adventitia of pre-access veins and fistulas. We evaluated the association of pre-existing and postoperative arteriovenous fistula vascularization with maturation failure and with postoperative morphometry. RESULTS Vascularization of veins and arteriovenous fistulas was predominantly observed in the outer media and adventitia. Only the size of the microvasculature (vasa vasorum area), but not the number of vessels (vasa vasorum density), increased after arteriovenous fistula creation in the adventitia (median vasa vasorum area 1366 µm2/mm2 (interquartile range 495-2582) in veins versus 3077 µm2/mm2 (1812-5323) in arteriovenous fistulas, p < 0.001), while no changes were observed in the intima and media. Postoperative intimal thickness correlated with lower vascularization of the media (r 0.53, p = 0.003 for vasa vasorum density and r 0.37, p = 0.045 for vasa vasorum area). However, there were no significant differences in pre-existing, postoperative, or longitudinal change in vascularization between arteriovenous fistulas with distinct maturation outcomes. CONCLUSION The lack of change in intimal and medial vascularization after arteriovenous fistula creation argues against higher oxygen demand in the inner walls of the fistula during the vein to arteriovenous fistula transformation. Postoperative intimal hyperplasia in the arteriovenous fistula wall appears to thrive under hypoxic conditions. Vasa vasorum density and area by themselves are not predictive of maturation outcomes.
Collapse
Affiliation(s)
- Juan C Duque
- Katz Family Division of Nephrology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Punam Parikh
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Angela Paez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, NY, USA
| | - Omaida C Velazquez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
26
|
Sadaghianloo N, Contenti J, Dufies M, Parola J, Rouleau M, Lee S, Peyron J, Fabbri L, Hassen‐Khodja R, Pouysségur J, Bost F, Jean‐Baptiste E, Dardik A, Mazure NM. Co-culture of human fibroblasts, smooth muscle and endothelial cells promotes osteopontin induction in hypoxia. J Cell Mol Med 2020; 24:2931-2941. [PMID: 32032472 PMCID: PMC7077551 DOI: 10.1111/jcmm.14905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Department of Vascular SurgeryCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Julie Contenti
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Department of Emergency MedicineCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | | | - Julien Parola
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
| | | | - Shinrong Lee
- Department of Surgery and the Vascular Biology and Therapeutics ProgramYale UniversityNew HavenCTUSA
- Department of Vascular SurgeryVA Connecticut Healthcare SystemsWest HavenCTUSA
| | - Jean‐François Peyron
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
| | - Lucilla Fabbri
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Réda Hassen‐Khodja
- Department of Vascular SurgeryCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Jacques Pouysségur
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Centre Scientifique de Monaco (CSM)MonacoMonaco
| | - Frédéric Bost
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
| | - Elixène Jean‐Baptiste
- Department of Vascular SurgeryCentre Hospitalier Universitaire de NiceNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics ProgramYale UniversityNew HavenCTUSA
- Department of Vascular SurgeryVA Connecticut Healthcare SystemsWest HavenCTUSA
| | - Nathalie M. Mazure
- Université Côte d’AzurInstitute for Research on Cancer and Aging of Nice (IRCAN)CNRS‐UMR 7284‐Inserm U1081Centre Antoine LacassagneUniversity of Nice Sophia‐AntipolisNiceFrance
- Present address:
Centre de Méditerranéen de Médecine Moléculaire (C3M)INSERM U1065Université Côte d’AzurNice Cedex 03France
| |
Collapse
|
27
|
Cai C, Zhao C, Kilari S, Sharma A, Singh AK, Simeon ML, Misra A, Li Y, Misra S. Effect of sex differences in treatment response to angioplasty in a murine arteriovenous fistula model. Am J Physiol Renal Physiol 2019; 318:F565-F575. [PMID: 31813252 DOI: 10.1152/ajprenal.00474.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Failure to mature and venous neointimal hyperplasia formation are the two major causes of hemodialysis arteriovenous fistula (AVF) vascular access failure. Percutaneous transluminal angioplasty (PTA) is the firstline treatment for both of these conditions, but, clinically, women have decreased patency rates compared with men. The hypothesis to be tested in the present study was that female mice after PTA of venous areas of higher intimal thickening have increased gene expression of transforming growth factor-β1 (TGF-β1) and TGF-β receptor 1 (TGFβ-R1) accompanied with histological changes of fibrosis compared with male mice. Seventeen male and eighteen female C57BL/6J mice were used in this study. Chronic kidney disease was induced by partial nephrectomy, and, 28 days later, an AVF was created to connect the left carotid artery to the right jugular vein. Two weeks later, the higher intimal thickening area was treated with PTA, and mice were euthanized 3 days later for gene expression analysis or 14 days later for histopathological analysis. Doppler ultrasound was performed weekly after AVF creation. At day 3, female AVF had significantly higher average gene expression of TGF-β1 and TGFβ-R1 compared with male AVF. At day 14, female outflow veins had a smaller venous diameter, lumen vessel area, decreased wall shear stress, lower average peak systolic velocity, and an increased neointima area-to-media area ratio. Moreover, female outflow veins showed a significant increase in α-smooth muscle actin and fibroblast-specific protein-1. There was a decrease in M1/M2 with an increase in CD68.
Collapse
Affiliation(s)
- Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Chenglei Zhao
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota.,Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Amit Sharma
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Avishek K Singh
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Michael L Simeon
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Avanish Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota.,Department of Radiology, Vascular and Interventional Radiology, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
28
|
Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int J Mol Sci 2019; 20:ijms20215387. [PMID: 31671790 PMCID: PMC6862436 DOI: 10.3390/ijms20215387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Julie Contenti
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Emergency Medicine, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA.
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA.
| | - Nathalie M Mazure
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| |
Collapse
|
29
|
Vascular access animal models used in research. Ann Anat 2019; 225:65-75. [DOI: 10.1016/j.aanat.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
|
30
|
Ghanem S, Somogyi V, Tanczos B, Szabo B, Deak A, Nemeth N. Modulation of micro-rheological and hematological parameters in the presence of artificial carotid-jugular fistula in rats. Clin Hemorheol Microcirc 2019; 71:325-335. [PMID: 29914014 DOI: 10.3233/ch-180411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Arteriovenous fistula (AVF) may affect erythrocytes through many pathways (e.g., mechanical, inflammatory). However, these effects haven't been elucidated completely yet. OBJECTIVE To follow-up the hemorheological and the hematological changes in the presence of artificial carotid-jugular fistula in rats. METHODS Female Wistar rats were subjected to sham-operated group (SG, n = 6) and to fistula group (FG, n = 10). Under general anesthesia, the right carotid artery and jugular vein were isolated via a neck incision, and in the FG carotid-jugular fistula was performed by microsurgical techniques. Hematological variables, red blood cell (RBC) deformability and membrane (mechanical) stability parameters were determined before operation and on the 1st and 6th postoperative weeks. Density separated samples ('young' and 'old' RBCs) were also tested. RESULTS In FG group hematocrit, RBC and platelet counts increased gradually to reach highly significant level of increment on the 6th postoperative week. RBC deformability significantly was impaired. The membrane stability test showed lower deformability values after applying mechanical shearing. No significant differences were observed between density separated RBC subpopulations. CONCLUSIONS The presence of arteriovenous fistula may lead to an increment of RBC mass and impairment of RBC deformability. These changes could be one of the pathways through which the fistula influences the microcirculation.
Collapse
Affiliation(s)
- Souleiman Ghanem
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Tanczos
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Institute of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
The Role of MicroRNA-21 in Venous Neointimal Hyperplasia: Implications for Targeting miR-21 for VNH Treatment. Mol Ther 2019; 27:1681-1693. [PMID: 31326400 PMCID: PMC6731518 DOI: 10.1016/j.ymthe.2019.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
The molecular mechanism of hemodialysis access arteriovenous fistula (AVF) failure due to venous neointimal hyperplasia (VNH) is not known. The role of microRNA-21 (miR-21) in VNH associated with AVF failure was investigated by performing in vivo and in vitro experiments. In situ hybridization results revealed that miR-21 expression increased and was associated with fibroblasts in failed AVFs from patients. In a murine AVF model, qRT-PCR gene expression results showed a significant increase in miR-21 and a decrease in miR-21 target genes in graft veins (GVs) compared to contralateral veins in mouse AVF. miR-21 knockdown in GVs was performed using a lentivirus-mediated small hairpin RNA (shRNA), and this improved AVF patency with a decrease in neointima compared to control GVs. Moreover, loss of miR-21 in GVs significantly decreased the Tgfβ1, Col-Ia, and Col-Iva genes. Immunohistochemistry demonstrated a significant decrease in myofibroblasts and proliferation with an increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining in miR-21-knockdown vessels, along with a decrease in hypoxia-inducible factor-1 alpha (HIF-1α) and phospho-SMAD2 (pSMAD-2) and phospho-SMAD3 (pSMAD-3) and an increase in phosphatase and tensin homolog (PTEN) staining. Hypoxic fibroblast knockdown for miR-21 showed a significant decrease in Tgfβ-1 expression and pSMAD-2 and -3 levels and a decrease in myofibroblasts. These results indicate that miR-21 upregulation causes VNH formation by fibroblast-to-myofibroblast differentiation.
Collapse
|
32
|
Gameiro J, Ibeas J. Factors affecting arteriovenous fistula dysfunction: A narrative review. J Vasc Access 2019; 21:134-147. [PMID: 31113281 DOI: 10.1177/1129729819845562] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular access dysfunction is one of the most important causes of morbidity and mortality in haemodialysis patients, contributing to up to one third of hospitalisations and accounting for a significant amount of the health care costs of these patients. In the past decades, significant scientific advances in understanding mechanisms of arteriovenous fistula maturation and failure have contributed to an increase in the amount of research into techniques for creation and strategies for arteriovenous fistula dysfunction prevention and treatment, in order to improve patient care and outcomes. The aim of this review is to describe the pathogenesis of vascular access failure and provide a comprehensive analysis of the associated risk factors and causes of vascular access failure, in order to interpret possible future therapeutic approaches. Arteriovenous fistula failure is a multifactorial process resulting from the combination of upstream and downstream events with consequent venous neo-intimal hyperplasia and/or inadequate outward remodelling. Inflammation appears to be central in the biology of arteriovenous fistula dysfunction but important triggers still need to be revealed. Given the significant association of arteriovenous fistula failure and patient's prognosis, it is therefore imperative to further research in this area in order to improve prevention, surveillance and treatment, and ultimately patient care and outcomes.
Collapse
Affiliation(s)
- Joana Gameiro
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Lisboa, Portugal
| | - Jose Ibeas
- Nephrology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
33
|
Armutcu F, Demircan K, Yildirim U, Namuslu M, Yagmurca M, Celik HT. Hypoxia causes important changes of extracellular matrix biomarkers and ADAMTS proteinases in the adriamycin-induced renal fibrosis model. Nephrology (Carlton) 2019; 24:863-875. [PMID: 30719800 DOI: 10.1111/nep.13572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
AIM Renal fibrosis is a common cause of renal dysfunction with chronic kidney diseases. This process is characterized by excessive production of extracellular matrix (ECM) or inhibition of ECM degradation. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteinases, which are widely presented in mammals, have very critical roles in ECM remodelling. We aimed to study the role of ADAMTS proteinases and some of the ECM markers in the pathogenesis of renal fibrosis and to investigate the effects of hypoxia on these biomarkers. METHODS In addition to the control group, Adriamycin (ADR) treated rats were divided into four groups as ADR, sham and two hypoxia groups. Renal nephropathy was assessed biochemical assays, pathological and immunohistochemical staining methods. The expression of ADAMTSs and mRNA were determined using Western blotting and real-time PCR, respectively. RESULTS Renal dysfuntion and tissue damage in favour of ECM accumulation and renal fibrosis were observed in the ADR group. This was approved by remarkable changes in the expression of ADAMTS such as increased ADAMTS-1, -12 and -15. In addition, it was found that hypoxia and duration of hypoxia enhanced markers of tubulointerstitial fibrosis in the rat kidney tissues. Also, expression differences especially in ADAMTS-1, -6 and -15 were observed in the hypoxia groups. The variable and different expression patterns of ADAMTS proteinases in the ADR-induced renal fibrosis suggest that ADAMTS family members are involved in the development and progression of fibrosis. CONCLUSION The expression changes of ADAMTS proteinases in kidney and association with hypoxia have potential clues to contribute to the early diagnosis and treatment options of renal fibrosis.
Collapse
Affiliation(s)
- Ferah Armutcu
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kadir Demircan
- Department of Medical Biology, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| | - Umran Yildirim
- Department of Pathology, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| | - Mehmet Namuslu
- Department of Biochemistry, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| | - Murat Yagmurca
- Health Sciences University, Higher Specialization Training and Research Hospital, Histology and Embryology Clinic, Bursa, Turkey
| | - Hüseyin T Celik
- Department of Biochemistry, Turgut Ozal University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
34
|
Endovascular Biopsy and Endothelial Cell Gene Expression Analysis of Dialysis Arteriovenous Fistulas: A Feasibility Study. J Vasc Interv Radiol 2018; 29:1403-1409.e2. [PMID: 30174159 DOI: 10.1016/j.jvir.2018.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To demonstrate feasibility of endothelial cell (EC) biopsy from dialysis arteriovenous fistulas (AVFs) with the use of guidewires and to characterize gene expression differences between ECs from stenotic and nonstenotic outflow vein segments. MATERIALS AND METHODS Nine consecutive patients undergoing fistulography for AVF dysfunction from June to August 2016 were enrolled. ECs were biopsied with the use of guidewires from venous outflow stenoses and control outflow veins central to the stenoses. ECs were sorted with the use of flow cytometry, and the Fluidigm Biomark HD system was used for single-cell quantitative polymerase chain reaction (qPCR) analysis of gene expression. Forty-eight genes were assessed and were selected based on different cellular functions and previous literature. Linear mixed models (LMMs) were used to identify differential gene expression between the groups, and self-organizing maps (SOMs) were used to identify cell clusters based on gene coexpression profiles. RESULTS A total of 219 and 213 ECs were sampled from venous outflow stenoses and control vein segments, respectively. There were no immediate biopsy-related complications. Forty-eight cells per patient were sorted for qPCR analysis. LMM identified 7 genes with different levels of expression at stenotic segments (P < .05), including AGTR-2, HMOX-2, MTHFR, SERPINC-1, SERPINE-1, SMAD-4, and VWF. SOM analysis identified 4 cell clusters with unique gene expression profiles, each containing stenotic and control ECs. CONCLUSIONS EC biopsy from dialysis AVFs with the use of guidewires is feasible. Gene expression data suggest that genes involved in multiple cellular functions are dysregulated in stenotic areas. SOMs identified 4 unique clusters of cells, indicating EC phenotypic heterogeneity in outflow veins.
Collapse
|
35
|
Yang B, Kilari S, Brahmbhatt A, McCall DL, Torres EN, Leof EB, Mukhopadhyay D, Misra S. CorMatrix Wrapped Around the Adventitia of the Arteriovenous Fistula Outflow Vein Attenuates Venous Neointimal Hyperplasia. Sci Rep 2017; 7:14298. [PMID: 29085001 PMCID: PMC5662725 DOI: 10.1038/s41598-017-14696-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Venous neointimal hyperplasia (VNH) at the outflow vein of hemodialysis AVF is a major factor contributing to failure. CorMatrix is an extracellular matrix that has been used in cardiovascular procedures primarily as scaffolding during surgery. In the present study, we sought to determine whether CorMatrix wrapped around the outflow vein of arteriovenous fistula (AVF) at the time of creation could reduce VNH. In mice, the carotid artery to the ipsilateral jugular vein was connected to create an AVF, and CorMatrix scaffold was wrapped around the outflow vein compared to control mice that received no scaffolding. Immunohistochemistry, Western blot, and qRT-PCR were performed on the outflow vein at 7 and 21 days after AVF creation. In outflow veins treated with CorMatrix, there was an increase in the mean lumen vessel area with a decrease in the ratio of neointima area/media + adventitia area (P < 0.05). Furthermore, there was a significant increase in apoptosis, with a reduction in cell density and proliferation in the outflow veins treated with CorMatrix compared to controls (P < 0.05). Immunohistochemical analysis revealed a significant reduction in fibroblasts, myofibroblasts, macrophages, and leukocytes with a reduction in Tnf-α gene expression (P < 0.05). In conclusion, outflow veins treated with CorMatrix have reduced VNH.
Collapse
Affiliation(s)
- Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Deborah L McCall
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Evelyn Nieves Torres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA
| | - Edward B Leof
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Rochester, Minnesota, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
36
|
Wang X, Lv G, Li J, Wang B, Zhang Q, Lu C. LncRNA-RP11-296A18.3/miR-138/HIF1A Pathway Regulates the Proliferation ECM Synthesis of Human Nucleus Pulposus Cells (HNPCs). J Cell Biochem 2017; 118:4862-4871. [PMID: 28543639 DOI: 10.1002/jcb.26166] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
During the process of Intervertebral disc degeneration (IDD), nucleus pulposus apoptosis increases, extracellular matrix (ECM) alters and/or degrades, abnormal proliferation of cells forms cell clusters, and the expression of various inflammatory factors increases. Thus, regulation of human nucleus pulposus cell (HNPC) proliferation and ECM synthesis present promising strategies for IDD treatment. Accumulating evidence indicates that non-coding RNAs are involved in various cellular processes, including cell proliferation, differentiation, apoptosis, and metastasis. High expression of long non-coding RNA (lncRNA) RP11-296A18.3, as well as a low expression of miR-138 during the IDD process has been reported; yet their functional roles in HNPC proliferation and ECM synthesis still remain unclear. MTT and BrdU assays showed that knockdown of RP11-296A18.3 inhibited the proliferation of HNPC. The ECM marker, MMP-13 and Collagen I expressions were also reduced. Bioinformatics target prediction, qPCR, and luciferase assays identified LncRNA-RP11-296A18.3 interacted with miR-138. Moreover, RP11-296A18.3 regulates HNPC proliferation and ECM synthesis through miR-138. As the target gene of miR-138, hypoxia-inducible factor 1-alpha (HIF1A) was closely associated with cell proliferation which was also regulated by RP11-296A18.3 via miR-138. Immunochemistry and qPCR results showed that miR-138 expression was inversely correlated to RP11-296A18.3 and HIF1A in IDD tissues, respectively; RP11-296A18.3 was positively correlated to HIF1A. We revealed that RP11-296A18.3 promote HIF1A expression through sponging miR-138, thus to promote HNPC proliferation and ECM synthesis. Targeting RP11-296A18.3 to rescue miR-138 expression in HNPCs and IDD tissues presents a promising strategy for IDD improvement. J. Cell. Biochem. 118: 4862-4871, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chang Lu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
37
|
Sadaghianloo N, Yamamoto K, Bai H, Tsuneki M, Protack CD, Hall MR, Declemy S, Hassen-Khodja R, Madri J, Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Ann Vasc Surg 2017; 41:225-234. [PMID: 28163173 PMCID: PMC5411319 DOI: 10.1016/j.avsg.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The poor clinical results that are frequently reported for arteriovenous fistulae (AVF) for hemodialysis are typically due to failure of AVF maturation. We hypothesized that early AVF maturation is associated with generation of reactive oxygen species and activation of the hypoxia-inducible factor-1 (HIF-1) pathway, potentially promoting neointimal hyperplasia. We tested this hypothesis using a previously reported mouse AVF model that recapitulates human AVF maturation. METHODS Aortocaval fistulae were created in C57Bl/6 mice and compared with sham-operated mice. AVFs or inferior vena cavas were analyzed using a microarray, Amplex Red for extracellular H2O2, quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting for HIF-1α and immunofluorescence for NOX-2, nitrotyrosine, heme oxygenase-1 (HO-1), and vascular endothelial growth factor (VEGF)-A. RESULTS Oxidative stress was higher in AVF than that in control veins, with more H2O2 (P = 0.007) and enhanced nitrotyrosine immunostaining (P = 0.005). Immunohistochemistry and immunoblot showed increased HIF-1α immunoreactivity in the AVF endothelium; HIF-1 targets NOX-2, HO-1 and VEGF-A were overexpressed in the AVF (P < 0.01). AVF expressed increased numbers of HIF-1α (P < 0.0001) and HO-1 (P < 0.0001) messenger RNA transcripts. CONCLUSIONS Oxidative stress increases in mouse AVF during early maturation, with increased expression of HIF-1α and its target genes NOX-2, HO-1, and VEGF-A. These results suggest that clinical strategies to improve AVF maturation could target the HIF-1 pathway.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France.
| | - Kota Yamamoto
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Masayuki Tsuneki
- National Cancer Center Research Institute, Tokyo, Japan; Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Clinton D Protack
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Michael R Hall
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Serge Declemy
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Réda Hassen-Khodja
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Joseph Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
38
|
Li Z, Li M, Li X, Zhang M, Zhao Y, Ren W, Cheng J, Wang X. Hyperbaric oxygen inhibits venous neointimal hyperplasia following arteriovenous fistulization. Int J Mol Med 2017; 39:1299-1306. [PMID: 28393184 DOI: 10.3892/ijmm.2017.2948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
Abstract
Hypoxia following arteriovenous fistulization results in venous neointimal hyperplasia (VNH), potentially causing early arteriovenous fistula (AVF) dysfunction. In this study, we used hyperbaric oxygen (HBO) in a rabbit model of AVF to determine whether it could ameliorate early AVF failure. Chronic renal failure was induced by adenine in 96 adult rabbits randomly divided into 3 groups (n=32 in each group). The sham + HBO group underwent sham operation and received HBO. The AVF alone group underwent fistulization, but did not receive HBO. The AVF + HBO group underwent fistulization and received HBO. Each group was further divided into 4 subgroups of 8 rabbits each that were euthanized at 1, 7, 14 or 28 days post-operatively. At each time point, blood flow changes in the AVF venous segment were detected using a high-frequency duplex ultrasonography system. Immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and hematoxylin and eosin staining were performed to evaluate VNH. Western blot analysis was performed to confirm the expression of hypoxia-inducible factor (HIF)-1α. At 14 and 28 days following HBO treatment, blood flow in the AVF + HBO group was greater than that at day 0. The AVF + HBO group had a smaller ratio of intima to media area, a lower HIF-1α protein expression, and a smaller percentage of PCNA-positive cells in the proximal vein than did the AVF alone group. Our results thus suggest that continuous HBO treatment following AVF significantly inhibits VNH and promotes blood flow. Therefore, early AVF failure may be prevented by the use of HBO therapy.
Collapse
Affiliation(s)
- Zhui Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Maoping Li
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xiangjie Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Mao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Wei Ren
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Jun Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xuehu Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
39
|
Brahmbhatt A, Remuzzi A, Franzoni M, Misra S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int 2017; 89:303-316. [PMID: 26806833 PMCID: PMC4734360 DOI: 10.1016/j.kint.2015.12.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/20/2015] [Indexed: 01/01/2023]
Abstract
The arteriovenous fistula has been used for more than 50 years to provide vascular access for patients undergoing hemodialysis. More than 1.5 million patients worldwide have end stage renal disease and this population will continue to grow. The arteriovenous fistula is the preferred vascular access for patients, but its patency rate at 1 year is only 60%. The majority of arteriovenous fistulas fail because of intimal hyperplasia. In recent years, there have been many studies investigating the molecular mechanisms responsible for intimal hyperplasia and subsequent thrombosis. These studies have identified common pathways including inflammation, uremia, hypoxia, sheer stress, and increased thrombogenicity. These cellular mechanisms lead to increased proliferation, migration, and eventually stenosis. These pathways work synergistically through shared molecular messengers. In this review, we will examine the literature concerning the molecular basis of hemodialysis vascular access malfunction.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Remuzzi
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
- Engineering Department, University of Bergamo, Dalmine, Italy
| | - Marco Franzoni
- Biomedical Engineering Department, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Lee T, Misra S. New Insights into Dialysis Vascular Access: Molecular Targets in Arteriovenous Fistula and Arteriovenous Graft Failure and Their Potential to Improve Vascular Access Outcomes. Clin J Am Soc Nephrol 2016; 11:1504-1512. [PMID: 27401527 PMCID: PMC4974876 DOI: 10.2215/cjn.02030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular access dysfunction remains a major cause of morbidity and mortality in hemodialysis patients. At present there are few effective therapies for this clinical problem. The poor understanding of the pathobiology that leads to arteriovenous fistula (AVF) and graft (AVG) dysfunction remains a critical barrier to development of novel and effective therapies. However, in recent years we have made substantial progress in our understanding of the mechanisms of vascular access dysfunction. This article presents recent advances and new insights into the pathobiology of AVF and AVG dysfunction and highlights potential therapeutic targets to improve vascular access outcomes.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
- Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Chen YW, Wu YT, Lin JS, Yang WC, Hsu YH, Lee KH, Ou SM, Chen YT, Shih CJ, Lee PC, Chan CH, Chung MY, Lin CC. Association of Genetic Polymorphisms of Renin-Angiotensin-Aldosterone System-Related Genes with Arterio-Venous Fistula Malfunction in Hemodialysis Patients. Int J Mol Sci 2016; 17:ijms17060833. [PMID: 27240348 PMCID: PMC4926367 DOI: 10.3390/ijms17060833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
Hemodialysis (HD) is the most commonly-used renal replacement therapy for patients with end-stage renal disease worldwide. Arterio-venous fistula (AVF) is the vascular access of choice for HD patients with lowest risk of infection and thrombosis. In addition to environmental factors, genetic factors may also contribute to malfunction of AVF. Previous studies have demonstrated the effect of genotype polymorphisms of angiotensin converting enzyme on vascular access malfunction. We conducted a multicenter, cross-sectional study to evaluate the association between genetic polymorphisms of renin-angiotensin-aldosterone system and AVF malfunction. Totally, 577 patients were enrolled. Their mean age was 60 years old and 53% were male. HD patients with AVF malfunction had longer duration of HD (92.5 ± 68.1 vs. 61.2 ± 51.9 months, p < 0.001), lower prevalence of hypertension (44.8% vs. 55.3%, p = 0.025), right-sided (31.8% vs. 18.4%, p = 0.002) and upper arm AVF (26.6% vs. 9.7%, p < 0.001), and higher mean dynamic venous pressure (DVP) (147.8 ± 28.3 vs. 139.8 ± 30.0, p = 0.021). In subgroup analysis of different genders, location of AVF and DVP remained significant clinical risk factors of AVF malfunction in univariate and multivariate binary logistic regression in female HD patients. Among male HD patients, univariate binary logistic regression analysis revealed that right-side AVF and upper arm location are two important clinical risk factors. In addition, two single nucleotide polymorphisms (SNPs), rs275653 (Odds ratio 1.90, p = 0.038) and rs1492099 (Odds ratio 2.29, p = 0.017) of angiotensin II receptor 1 (AGTR1), were associated with increased risk of AVF malfunction. After adjustment for age and other clinical factors, minor allele-containing genotype polymorphisms (AA and CA) of rs1492099 still remained to be a significant risk factor of AVF malfunction (Odds ratio 3.63, p = 0.005). In conclusion, we demonstrated that rs1492099, a SNP of AGTR1 gene, could be a potential genetic risk factor of AVF malfunction in male HD patients.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yu-Te Wu
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jhin-Shyaun Lin
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wu-Chang Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Kuo-Hua Lee
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shou-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yung-Tai Chen
- Division of Nephrology, Department of Medicine, Taipei City Hospital, He-Ping Branch, Taipei 100, Taiwan.
| | - Chia-Jen Shih
- Division of Nephrology, Department of Medicine, Yuan-Shan Branch, Taipei Veterans General Hospital, I-Lan 264, Taiwan.
| | - Pui-Ching Lee
- Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chia-Hao Chan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ming-Yi Chung
- Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
42
|
Abstract
Arteriovenous fistulas (AVFs) are essential for patients and clinicians faced with end-stage renal disease (ESRD). While this method of vascular access for hemodialysis is preferred to others due to its reduced rate of infection and complications, they are plagued by intimal hyperplasia. The pathogenesis of intimal hyperplasia and subsequent thrombosis is brought on by uremia, hypoxia, and shear stress. These forces upregulate inflammatory and proliferative cytokines acting on leukocytes, fibroblasts, smooth muscle cells, and platelets. This activation begins initially with the progression of uremia, which induces platelet dysfunction and primes the body for an inflammatory response. The vasculature subsequently undergoes changes in oxygenation and shear stress during AVF creation. This propagates a strong inflammatory response in the vessel leading to cellular proliferation. This combined response is then further subjected to the stressors of cannulation and dialysis, eventually leading to stenosis and thrombosis. This review aims to help interventional radiologists understand the biological changes and pathogenesis of access failure.
Collapse
Affiliation(s)
- Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Janardhanan R, Kilari S, Leof EB, Misra S. Hyperglycemia-Induced Modulation of the Physiognomy and Angiogenic Potential of Fibroblasts Mediated by Matrix Metalloproteinase-2: Implications for Venous Stenosis Formation Associated with Hemodialysis Vascular Access in Diabetic Milieu. J Vasc Res 2016; 52:334-46. [PMID: 26985676 PMCID: PMC8965729 DOI: 10.1159/000443886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose: It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-2 (Mmp-2) silencing in fibroblasts cultured under hyperglycemia and euglycemia with hypoxic and normoxic stimuli. Materials and Methods: AKR-2B fibroblasts were stably transduced using lentivirus-mediated shRNA-Mmp-2 or scrambled controls and subjected to hypoxia or normoxia under hyperglycemic or euglycemic conditions for 24 and 72 h. Gene expression of vascular endothelial growth factor-A (Vegf-A), Vegfr-1, Mmp-2, Mmp-9 and tissue inhibitors of matrix metalloproteinases (Timps) were determined by RT-PCR. Collagen I and IV secretion and cellular proliferation and migration were determined. Results: Under hyperglycemic conditions, there is a significant reduction in the average gene expression of Vegf-A and Mmp-9, with an increase in Timp-1 at 24 h of hypoxia (p < 0.05) in Mmp-2-silenced fibroblasts when compared to controls. In addition, there is a decrease in collagen I and IV secretion and cellular migration. The euglycemic cells were able to reverse these findings. Conclusion: These findings demonstrate the rationale for using anti-Mmp-2 therapy in dialysis patients with hemodialysis vascular access in helping to reduce stenosis formation.
Collapse
Affiliation(s)
- Rajiv Janardhanan
- Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | | | | | | |
Collapse
|
44
|
Janardhanan R, Yang B, Kilari S, Leof EB, Mukhopadhyay D, Misra S. The Role of Repeat Administration of Adventitial Delivery of Lentivirus-shRNA-Vegf-A in Arteriovenous Fistula to Prevent Venous Stenosis Formation. J Vasc Interv Radiol 2016; 27:576-83. [PMID: 26948326 DOI: 10.1016/j.jvir.2015.12.751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine if a second dose of a lentivirus mediated small hairpin RNA that inhibits Vegf-A gene expression (LV-shRNA-Vegf-A) can improve lumen vessel area (LVA) of the outflow vein of an arteriovenous fistula (AVF) and decrease venous neointimal hyperplasia. MATERIALS AND METHODS Chronic kidney disease was created in C57BL/6 mice; 28 days later, an AVF was created by connecting the right carotid artery to the ipsilateral jugular vein. Immediately after AVF creation, 5 × 10(6) plaque-forming units of LV-shRNA-Vegf-A or control shRNA was administered to the adventitia of the outflow vein, and a second dose of the same treatment was administered 14 days later. Animals were sacrificed at 21 days, 28 days, and 42 days after AVF creation for reverse transcription polymerase chain reaction and histomorphometric analyses. RESULTS By day 21, there was a 125% increase in the average LVA (day 21, P = .11), with a decrease in cell proliferation (day 21, P = .0079; day 28, P = .28; day 42, P = .5), decrease in α-smooth muscle cell actin staining (day 21, P < .0001; day 28, P < .05; day 42, P = .59), and decrease in hypoxic stress (day 21, P < .001; day 28, P = .28; day 42, P = .46) in LV versus control shRNA vessels. CONCLUSIONS A second dose of LV-shRNA-Vegf-A administration results in a moderate improvement in LVA at day 21.
Collapse
Affiliation(s)
- Rajiv Janardhanan
- Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Vascular and Interventional Radiology Translational Laboratory Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Binxia Yang
- Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Vascular and Interventional Radiology Translational Laboratory Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Sreenivasulu Kilari
- Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Vascular and Interventional Radiology Translational Laboratory Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Edward B Leof
- Department of Radiology, and Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Debabrata Mukhopadhyay
- Department of Radiology, and Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Sanjay Misra
- Amity Institute of Public Health, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Vascular and Interventional Radiology Translational Laboratory Mayo Clinic, 200 First Street SW, Rochester, MN 55905; Department of Radiology, and Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905.
| |
Collapse
|
45
|
Turkoglu SA, Kockar F. SP1 and USF differentially regulate ADAMTS1 gene expression under normoxic and hypoxic conditions in hepatoma cells. Gene 2016; 575:48-57. [PMID: 26299656 DOI: 10.1016/j.gene.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/30/2015] [Accepted: 08/18/2015] [Indexed: 01/28/2023]
Abstract
ADAM metallopeptidase with thrombospondin type I motif, 1 (ADAMTS1) that has both antiangiogenic and aggrecanase activity was dysregulated in many pathophysiologic circumstances. However, there is limited information available on the transcriptional regulation of ADAMTS1 gene. Therefore, this study mainly aimed to identify regulatory regions important for the regulation of ADAMTS1 gene under normoxic and hypoxic conditions in human hepatoma cells (HEP3B). Cultured HEP3B cells were exposed to normal oxygen condition, and Cobalt chloride (CoCl2) induced the hypoxic condition, which is an HIF-1 inducer. The cocl2-induced hypoxic condition led to the induced ADAMTS1 mRNA and protein expression in Hepatoma cells. Differential regulation of SP1 and USF transcription factors on ADAMTS1 gene expression was determined by transcriptional activity, mRNA and protein level of ADAMTS1 gene. Ectopic expression of SP1 and USF transcription factors resulted in the decrease in ADAMTS1 transcriptional activity of all promoter constructs consistent with mRNA and protein level in normoxic condition. However, overexpression of SP1 and USF led to the increase of ADAMTS1 gene expressions at mRNA and protein level in hypoxic condition. On the other hand, C/EBPα transcription factor didn't show any statistically significant effect on ADAMTS1 gene expression at mRNA, protein and transcriptional level under normoxic and hypoxic condition.
Collapse
Affiliation(s)
- Sumeyye Aydogan Turkoglu
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey
| | - Feray Kockar
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey.
| |
Collapse
|
46
|
Rajan DK, Ebner A, Desai SB, Rios JM, Cohn WE. Percutaneous creation of an arteriovenous fistula for hemodialysis access. J Vasc Interv Radiol 2015; 26:484-90. [PMID: 25805537 DOI: 10.1016/j.jvir.2014.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Arteriovenous fistulae (AVFs) created by conventional surgical techniques are associated with suboptimal short- and long-term patency. This study investigated the feasibility of creating fistulae with a percutaneous system and evaluated the utility of percutaneous AVFs (pAVFs) in providing hemodialysis access. MATERIALS AND METHODS From August 2012 to September 2013, a percutaneous system was used to attempt pAVF creation between the proximal ulnar artery and a closely associated ulnar vein in 33 patients. Technical success, adverse events, and time to pAVF maturity were recorded, as was clinical effectiveness at 6 months. RESULTS A pAVF was successfully created in 32 of 33 patients (97%). Four patients died during the follow-up period from causes unrelated to the procedure; one patient was lost to follow-up. Of the remaining 27 patients, 24 were undergoing successful dialysis via their pAVF at 6 months. Two additional patients had usable access but did not initiate dialysis during the study. One spontaneous pAVF thrombosis occurred in a patient with preexisting central vein stenosis. Cumulative pAVF patency at 6 months was 96.2% (26 of 27; standard error, 3.8%). Mean time to pAVF maturation was 58 days (range, 37-168 d). There was one serious procedure-related adverse event and five minor procedure-related adverse events. CONCLUSIONS Although larger studies are required to validate efficacy in a wide range of patients, this study demonstrates hemodialysis access successfully created with an endovascular catheter-based system. Patency of pAVFs and time to maturation were superior to published results of surgical techniques.
Collapse
Affiliation(s)
- Dheeraj K Rajan
- Division of Vascular and Interventional Radiology, Peter Munk Cardiac Center, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Ebner
- Cardiovascular Services, Italian Hospital, Asuncion, Paraguay
| | - Sudhen B Desai
- Vascular Access Centers, Texas Heart Institute, Baylor College of Medicine, 6770 Bertner Ave., MC 2-114, Houston, TX 77030
| | - Jesus M Rios
- Center for Technology and Innovation, Texas Heart Institute, Baylor College of Medicine, 6770 Bertner Ave., MC 2-114, Houston, TX 77030
| | - William E Cohn
- Division of Cardiovascular Surgery, Texas Heart Institute, Baylor College of Medicine, 6770 Bertner Ave., MC 2-114, Houston, TX 77030..
| |
Collapse
|
47
|
Yang B, Brahmbhatt A, Nieves Torres E, Thielen B, McCall DL, Engel S, Bansal A, Pandey MK, Dietz AB, Leof EB, DeGrado TR, Mukhopadhyay D, Misra S. Tracking and Therapeutic Value of Human Adipose Tissue-derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. Radiology 2015; 279:513-22. [PMID: 26583911 DOI: 10.1148/radiol.2015150947] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine if adventitial transplantation of human adipose tissue-derived mesenchymal stem cells (MSCs) to the outflow vein of B6.Cg-Foxn1(nu)/J mice with arteriovenous fistula (AVF) at the time of creation would reduce monocyte chemoattractant protein-1 (Mcp-1) gene expression and venous neointimal hyperplasia. The second aim was to track transplanted zirconium 89 ((89)Zr)-labeled MSCs serially with positron emission tomography (PET) for 21 days. MATERIALS AND METHODS All animal experiments were performed according to protocols approved by the institutional animal care and use committee. Fifty B6.Cg-Foxn1(nu)/J mice were used to accomplish the study aims. Green fluorescent protein was used to stably label 2.5 × 10(5) MSCs, which were injected into the adventitia of the outflow vein at the time of AVF creation in the MSC group. Eleven mice died after AVF placement. Animals were sacrificed on day 7 after AVF placement for real-time polymerase chain reaction (n = 6 for MSC and control groups) and histomorphometric (n = 6 for MSC and control groups) analyses and on day 21 for histomorphometric analysis only (n = 6 for MSC and control groups). In a separate group of experiments (n = 3), animals with transplanted (89)Zr-labeled MSCs were serially imaged with PET for 3 weeks. Multiple comparisons were performed with two-way analysis of variance, followed by the Student t test with post hoc Bonferroni correction. RESULTS In vessels with transplanted MSCs compared with control vessels, there was a significant decrease in Mcp-1 gene expression (day 7: mean reduction, 62%; P = .029), with a significant increase in the mean lumen vessel area (day 7: mean increase, 176% [P = .013]; day 21: mean increase, 415% [P = .011]). Moreover, this was accompanied by a significant decrease in Ki-67 index (proliferation on day 7: mean reduction, 81% [P = .0003]; proliferation on day 21: mean reduction, 60%, [P = .016]). Prolonged retention of MSCs at the adventitia was evidenced by serial PET images of (89)Zr-labeled cells. CONCLUSION Adventitial transplantation of MSCs decreases Mcp-1 gene expression, accompanied by a reduction in venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Binxia Yang
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Akshaar Brahmbhatt
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Evelyn Nieves Torres
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Brian Thielen
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Deborah L McCall
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sean Engel
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Aditya Bansal
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Mukesh K Pandey
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Allan B Dietz
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Edward B Leof
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Timothy R DeGrado
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Debabrata Mukhopadhyay
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sanjay Misra
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
48
|
Wong CY, Rothuizen TC, de Vries MR, Rabelink TJ, Hamming JF, van Zonneveld AJ, Quax PHA, Rotmans JI. Elastin is a key regulator of outward remodeling in arteriovenous fistulas. Eur J Vasc Endovasc Surg 2015; 49:480-6. [PMID: 25701072 DOI: 10.1016/j.ejvs.2014.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/15/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Maturation failure is the major limitation of arteriovenous fistulas (AVFs) as hemodialysis access conduits. Indeed, 30-50% of AVFs fail to mature due to intimal hyperplasia and insufficient outward remodeling. Elastin has emerged as an important determinant of vascular remodeling. Here the role of elastin in AVF remodeling in elastin haplodeficient (eln(+/-)) mice undergoing AVF surgery has been studied. METHODS Unilateral AVFs between the branch of the jugular vein and carotid artery in an end to side manner were created in wild-type (WT) C57BL/6 (n = 11) and in eln(+/-) mice (n = 9). Animals were killed at day 21 and the AVFs were analyzed histologically and at an mRNA level using real-time quantitative polymerase chain reaction. RESULTS Before AVF surgery, a marked reduction in elastin density in the internal elastic lamina (IEL) of eln(+/-) mice was observed. AVF surgery resulted in fragmentation of the venous internal elastic lamina in both groups while the expression of the tropoelastin mRNA was 53% lower in the eln(+/-) mice than in WT mice (p < .001). At 21 days after AVF surgery, the circumference of the venous outflow tract of the AVF was 21% larger in the eln(+/-) mice than in the WT mice (p = .037), indicating enhanced outward remodeling in the eln(+/-) mice. No significant difference in intimal hyperplasia was observed. The venous lumen of the AVF in the eln(+/-) mice was 53% larger than in the WT mice, although this difference was not statistically significant (eln(+/-), 350,116 ± 45,073 μm(2); WT, 229,405 ± 40,453 μm(2); p = .064). CONCLUSIONS In a murine model, elastin has an important role in vascular remodeling following AVF creation, in which a lower amount of elastin results in enhanced outward remodeling. Interventions targeting elastin degradation might be a viable option in order to improve AVF maturation.
Collapse
Affiliation(s)
- C Y Wong
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - T C Rothuizen
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - M R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - T J Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - J F Hamming
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - A J van Zonneveld
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands
| | - P H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J I Rotmans
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden Medical Center, Leiden, The Netherlands.
| |
Collapse
|
49
|
Nieves Torres EC, Yang B, Brahmbhatt A, Mukhopadhyay D, Misra S. Blood outgrowth endothelial cells reduce hypoxia-mediated fibroblast to myofibroblast conversion by decreasing proangiogenic cytokines. J Vasc Res 2015; 51:458-67. [PMID: 25677750 DOI: 10.1159/000369929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Hypoxic conditions cause fibroblasts to differentiate into alpha smooth-muscle cell actin (α -SMA)-positive cells, i.e. myofibroblasts. This process is a hallmark of venous neointimal hyperplasia (VNH) associated with hemodialysis vascular access. The purpose of this study was to determine if blood outgrowth endothelial cells (BOEC) may reduce the conversion of fibroblasts into myofibroblasts under hypoxic conditions, and to determine the potential mechanisms involved. METHODS An experimental model was used, in which fibroblasts and BOEC were subjected to hypoxia under contact and transwell conditions to determine if BOEC reduce the conversion of fibroblasts into myofibroblasts under hypoxic conditions. Gene expression under different conditions was performed. In addition, functional assays including cell proliferation and migration were determined. RESULTS This study demonstrates that contact needs to occur between BOEC and fibroblasts for the reduction of the hypoxia-driven conversion of fibroblasts into α-SMA. This is associated with a decrease in several proangiogenic genes including vascular endothelial growth factor A, platelet-derived growth factor, fibroblast growth factor and matrix metalloproteinase 2 in fibroblasts in contact with BOEC when compared to fibroblasts alone. In addition, migration is significantly reduced while proliferation remains unchanged. CONCLUSION This study helps provide rationale for using BOEC delivered to the adventitia of the outflow vein of hemodialysis vascular access to reduce VNH.
Collapse
Affiliation(s)
- Evelyn C Nieves Torres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minn., USA
| | | | | | | | | |
Collapse
|
50
|
Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr 2015; 3:33. [PMID: 25964891 PMCID: PMC4408850 DOI: 10.3389/fped.2015.00033] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications of a new method for therapeutic angiogenesis using HIF stabilizers.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine , New Haven, CT , USA ; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|