1
|
Bhaduri-McIntosh S, Rousseau BA. KAP1/TRIM28 - antiviral and proviral protagonist of herpesvirus biology. Trends Microbiol 2024; 32:1179-1189. [PMID: 38871562 PMCID: PMC11620967 DOI: 10.1016/j.tim.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Dysregulation of the constitutive heterochromatin machinery (HCM) that silences pericentromeric regions and endogenous retroviral elements in the human genome has consequences for aging and cancer. By recruiting epigenetic regulators, Krüppel-associated box (KRAB)-associated protein 1 (KAP1/TRIM28/TIF1β) is integral to the function of the HCM. Epigenetically silencing DNA genomes of incoming herpesviruses to enforce latency, KAP1 and HCM also serve in an antiviral capacity. In addition to gene silencing, newer reports highlight KAP1's ability to directly activate cellular gene transcription. Here, we discuss the many facets of KAP1, including recent findings that unexpectedly connect KAP1 to the inflammasome, reveal KAP1 cleavage as a novel mode of regulation, and argue for a pro-herpesviral KAP1 function that ensures transition from transcription to replication of the herpesvirus genome.
Collapse
Affiliation(s)
- Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Beth A Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Xu H, Li X, Rousseau BA, Akinyemi IA, Frey TR, Zhou K, Droske LE, Mitchell JA, McIntosh MT, Bhaduri-McIntosh S. IFI16 Partners with KAP1 to Maintain Epstein-Barr Virus Latency. J Virol 2022; 96:e0102822. [PMID: 35969079 PMCID: PMC9472614 DOI: 10.1128/jvi.01028-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses establish latency to ensure permanent residence in their hosts. Upon entry into a cell, these viruses are rapidly silenced by the host, thereby limiting the destructive viral lytic phase while allowing the virus to hide from the immune system. Notably, although the establishment of latency by the oncogenic herpesvirus Epstein-Barr virus (EBV) requires the expression of viral latency genes, latency can be maintained with a negligible expression of viral genes. Indeed, in several herpesviruses, the host DNA sensor IFI16 facilitated latency via H3K9me3 heterochromatinization. This silencing mark is typically imposed by the constitutive heterochromatin machinery (HCM). The HCM, in an antiviral role, also silences the lytic phase of EBV and other herpes viruses. We investigated if IFI16 restricted EBV lytic activation by partnering with the HCM and found that IFI16 interacted with core components of the HCM, including the KRAB-associated protein 1 (KAP1) and the site-specific DNA binding KRAB-ZFP SZF1. This partnership silenced the EBV lytic switch protein ZEBRA, encoded by the BZLF1 gene, thereby favoring viral latency. Indeed, IFI16 contributed to H3K9 trimethylation at lytic genes of all kinetic classes. In defining topology, we found that IFI16 coenriched with KAP1 at the BZLF1 promoter, and while IFI16 and SZF1 were each adjacent to KAP1 in latent cells, IFI16 and SZF1 were not. Importantly, we also found that disruption of latency involved rapid downregulation of IFI16 transcription. These findings revealed a previously unknown partnership between IFI16 and the core HCM that supports EBV latency via antiviral heterochromatic silencing. IMPORTANCE The interferon-gamma inducible protein 16 (IFI16) is a nuclear DNA sensor that mediates antiviral responses by activating the inflammasome, triggering an interferon response, and silencing lytic genes of herpesviruses. The last, which helps maintain latency of the oncoherpesvirus Epstein-Barr virus (EBV), is accomplished via H3K9me3 heterochromatinization through unknown mechanisms. Here, we report that IFI16 physically partners with the core constitutive heterochromatin machinery to silence the key EBV lytic switch protein, thereby ensuring continued viral latency in B lymphocytes. We also find that disruption of latency involves rapid transcriptional downregulation of IFI16. These findings point to hitherto unknown physical and functional partnerships between a well-known antiviral mechanism and the core components of the constitutive heterochromatin machinery.
Collapse
Affiliation(s)
- Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ibukun A. Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Tiffany R. Frey
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Kevin Zhou
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Lauren E. Droske
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jennifer A. Mitchell
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Michael T. McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Reinhart NM, Akinyemi IA, Frey TR, Xu H, Agudelo C, Brathwaite J, Burton EM, Burgula S, McIntosh MT, Bhaduri-McIntosh S. The danger molecule HMGB1 cooperates with the NLRP3 inflammasome to sustain expression of the EBV lytic switch protein in Burkitt lymphoma cells. Virology 2021; 566:136-142. [PMID: 34922257 DOI: 10.1016/j.virol.2021.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
High mobility group box 1 (HMGB1) is an important chromatin protein and a pro-inflammatory molecule. Though shown to enhance target DNA binding by the Epstein-Barr virus (EBV) lytic switch protein ZEBRA, whether HMGB1 actually contributes to gammaherpesvirus biology is not known. In investigating the contribution of HMGB1 to the lytic phase of EBV, important for development of EBV-mediated diseases, we find that compared to latently-infected cells, lytic phase Burkitt lymphoma-derived cells and peripheral blood lytic cells during primary EBV infection express high levels of HMGB1. Our experiments place HMGB1 upstream of ZEBRA and reveal that HMGB1, through the NLRP3 inflammasome, sustains the expression of ZEBRA. These findings indicate that in addition to the NLRP3 inflammasome's recently discovered role in turning the EBV lytic switch on, NLRP3 cooperates with the danger molecule HMGB1 to also maintain ZEBRA expression, thereby sustaining the lytic signal.
Collapse
Affiliation(s)
- Nolan M Reinhart
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Tiffany R Frey
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Carolina Agudelo
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jozan Brathwaite
- Division of Neonatology, Department of Pediatrics, Stony Brook University, NY, USA
| | - Eric M Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Sandeepta Burgula
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University, NY, USA
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Prazoles Targeting Tsg101 Inhibit Release of Epstein-Barr Virus following Reactivation from Latency. J Virol 2021; 95:e0246620. [PMID: 33853959 DOI: 10.1128/jvi.02466-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus responsible for several diseases, including cancers of lymphoid and epithelial cells. EBV cancers typically exhibit viral latency; however, the production and release of EBV through its lytic phase are essential for cancer development. Antiviral agents that specifically target EBV production do not currently exist. Previously, we reported that the proton pump inhibitor tenatoprazole, which blocks the interaction of ubiquitin with the ESCRT-1 factor Tsg101, inhibits production of several enveloped viruses, including EBV. Here, we show that three structurally distinct prazoles impair mature particle formation postreactivation and identify the impact on stages of replication. The prazoles did not impair expression of lytic genes representative of the different kinetic classes but interfered with capsid maturation in the nucleus as well as virion transport from the nucleus. Replacement of endogenous Tsg101 with a mutant Tsg101 refractory to prazole-mediated inhibition rescued EBV release. These findings directly implicate Tsg101 in EBV nuclear egress and identify prazoles as potential therapeutic candidates for conditions that rely on EBV replication, such as chronic active EBV infection and posttransplant lymphoproliferative disorders. IMPORTANCE Production of virions is necessary for the ubiquitous Epstein-Barr virus (EBV) to persist in humans and can set the stage for development of EBV cancers in at-risk individuals. In our attempts to identify inhibitors of the EBV lytic phase, we previously found that a prazole proton pump inhibitor, known to block the interaction of ubiquitin with the ESCRT-1 factor Tsg101, blocks production of EBV. We now find that three structurally distinct prazoles impair maturation of EBV capsids and virion transport from the nucleus and, by interfering with Tsg101, prevent EBV release from lytically active cells. Our findings not only implicate Tsg101 in EBV production but also identify widely used prazoles as candidates to prevent development of posttransplant EBV lymphomas.
Collapse
|
6
|
Inflammasome, the Constitutive Heterochromatin Machinery, and Replication of an Oncogenic Herpesvirus. Viruses 2021; 13:v13050846. [PMID: 34066537 PMCID: PMC8148530 DOI: 10.3390/v13050846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
The success of long-term host–virus partnerships is predicated on the ability of the host to limit the destructive potential of the virus and the virus’s skill in manipulating its host to persist undetected yet replicate efficiently when needed. By mastering such skills, herpesviruses persist silently in their hosts, though perturbations in this host–virus equilibrium can result in disease. The heterochromatin machinery that tightly regulates endogenous retroviral elements and pericentromeric repeats also silences invading genomes of alpha-, beta-, and gammaherpesviruses. That said, how these viruses disrupt this constitutive heterochromatin machinery to replicate and spread, particularly in response to disparate lytic triggers, is unclear. Here, we review how the cancer-causing gammaherpesvirus Epstein–Barr virus (EBV) uses the inflammasome as a security system to alert itself of threats to its cellular home as well as to flip the virus-encoded lytic switch, allowing it to replicate and escape in response to a variety of lytic triggers. EBV provides the first example of an infectious agent able to actively exploit the inflammasome to spark its replication. Revealing an unexpected link between the inflammasome and the epigenome, this further brings insights into how the heterochromatin machinery uses differential strategies to maintain the integrity of the cellular genome whilst guarding against invading pathogens. These recent insights into EBV biology and host–viral epigenetic regulation ultimately point to the NLRP3 inflammasome as an attractive target to thwart herpesvirus reactivation.
Collapse
|
7
|
Burton EM, Akinyemi IA, Frey TR, Xu H, Li X, Su LJ, Zhi J, McIntosh MT, Bhaduri-McIntosh S. A heterochromatin inducing protein differentially recognizes self versus foreign genomes. PLoS Pathog 2021; 17:e1009447. [PMID: 33730092 PMCID: PMC8007004 DOI: 10.1371/journal.ppat.1009447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Krüppel-associated box-domain zinc finger protein (KRAB-ZFP) transcriptional repressors recruit TRIM28/KAP1 to heterochromatinize the mammalian genome while also guarding the host by silencing invading foreign genomes. However, how a KRAB-ZFP recognizes target sequences in the natural context of its own or foreign genomes is unclear. Our studies on B-lymphocytes permanently harboring the cancer-causing Epstein-Barr virus (EBV) have shown that SZF1, a KRAB-ZFP, binds to several lytic/replicative phase genes to silence them, thereby promoting the latent/quiescent phase of the virus. As a result, unless SZF1 and its binding partners are displaced from target regions on the viral genome, EBV remains dormant, i.e. refractory to lytic phase-inducing triggers. As SZF1 also heterochromatinizes the cellular genome, we performed in situ footprint mapping on both viral and host genomes in physically separated B-lymphocytes bearing latent or replicative/active EBV genomes. By analyzing footprints, we learned that SZF1 recognizes the host genome through a repeat sequence-bearing motif near centromeres. Remarkably, SZF1 does not use this motif to recognize the EBV genome. Instead, it uses distinct binding sites that lack obvious similarities to each other or the above motif, to silence the viral genome. Virus mutagenesis studies show that these distinct binding sites are not only key to maintaining the established latent phase but also silencing the lytic phase in newly-infected cells, thus enabling the virus to establish latency and transform cells. Notably, these binding sites on the viral genome, when also present on the human genome, are not used by SZF1 to silence host genes during latency. This differential approach towards target site recognition may reflect a strategy by which the host silences and regulates genomes of persistent invaders without jeopardizing its own homeostasis. Heterochromatin marks silenced portions of the human genome. Heterochromatin also serves as a defense strategy to silence foreign genomes. Yet, how the heterochromatin inducing KRAB-ZFP-TRIM28 machinery recognizes target sites on the native genome, whether self or foreign, is unclear. Using Epstein-Barr virus-infected cells in which a KRAB-ZFP, SZF1, silences lytic/replicative-phase genes of the virus, we performed in situ mapping of ZFP-footprints on cell and viral genomes. We find that while the ZFP uses a repeat sequence-bearing motif to target pericentromeric regions, it uses non-consensus sites to target viral genes. These findings point towards i) a mechanism for directing constitutive heterochromatin and ii) a strategy that allows the host to use the same heterochromatin machinery to regulate an invader without deregulating itself.
Collapse
Affiliation(s)
- Eric M. Burton
- Dept. of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ibukun A. Akinyemi
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Tiffany R. Frey
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Huanzhou Xu
- Division of Infectious Disease, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Xiaofan Li
- Division of Infectious Disease, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Lai Jing Su
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Jizu Zhi
- Dept of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael T. McIntosh
- Child Health Research Institute, Depts. of Pediatrics and of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MTM); (SB-M)
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Disease, Depts. of Pediatrics and of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MTM); (SB-M)
| |
Collapse
|
8
|
Nascent Transcriptomics Reveal Cellular Prolytic Factors Upregulated Upstream of the Latent-to-Lytic Switch Protein of Epstein-Barr Virus. J Virol 2020; 94:JVI.01966-19. [PMID: 31941784 DOI: 10.1128/jvi.01966-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Lytic activation from latency is a key transition point in the life cycle of herpesviruses. Epstein-Barr virus (EBV) is a human herpesvirus that can cause lymphomas, epithelial cancers, and other diseases, most of which require the lytic cycle. While the lytic cycle of EBV can be triggered by chemicals and immunologic ligands, the lytic cascade is activated only when expression of the EBV latent-to-lytic switch protein ZEBRA is turned on. ZEBRA then transcriptionally activates other EBV genes and, together with some of those gene products, ensures completion of the lytic cycle. However, not every latently infected cell exposed to a lytic trigger turns on the expression of ZEBRA, resulting in responsive and refractory subpopulations. What governs this dichotomy? By examining the nascent transcriptome following exposure to a lytic trigger, we find that several cellular genes are transcriptionally upregulated temporally upstream of ZEBRA. These genes regulate lytic susceptibility to various degrees in latently infected cells that respond to mechanistically distinct lytic triggers. While increased expression of these cellular genes defines a prolytic state, such upregulation also runs counter to the well-known mechanism of viral-nuclease-mediated host shutoff that is activated downstream of ZEBRA. Furthermore, a subset of upregulated cellular genes is transcriptionally repressed temporally downstream of ZEBRA, indicating an additional mode of virus-mediated host shutoff through transcriptional repression. Thus, increased transcription of a set of host genes contributes to a prolytic state that allows a subpopulation of cells to support the EBV lytic cycle.IMPORTANCE Transition from latency to the lytic phase is necessary for herpesvirus-mediated pathology as well as viral spread and persistence in the population at large. Yet, viral genomes in only some cells in a population of latently infected cells respond to lytic triggers, resulting in subpopulations of responsive/lytic and refractory cells. Our investigations into this partially permissive phenotype of the herpesvirus Epstein-Barr virus (EBV) indicate that upon exposure to lytic triggers, certain cellular genes are transcriptionally upregulated, while viral latency genes are downregulated ahead of expression of the viral latent-to-lytic switch protein. These cellular genes contribute to lytic susceptibility to various degrees. Apart from indicating that there may be a cellular "prolytic" state, our findings indicate that (i) early transcriptional upregulation of cellular genes counters the well-known viral-nuclease-mediated host shutoff and (ii) subsequent transcriptional downregulation of a subset of early upregulated cellular genes is a previously undescribed mode of host shutoff.
Collapse
|
9
|
Li X, Kozlov SV, El-Guindy A, Bhaduri-McIntosh S. Retrograde Regulation by the Viral Protein Kinase Epigenetically Sustains the Epstein-Barr Virus Latency-to-Lytic Switch To Augment Virus Production. J Virol 2019; 93:e00572-19. [PMID: 31189703 PMCID: PMC6694827 DOI: 10.1128/jvi.00572-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous, and infection by some, like Epstein-Barr virus (EBV), is nearly universal. To persist, EBV must periodically switch from a latent to a replicative/lytic phase. This productive phase is responsible for most herpesvirus-associated diseases. EBV encodes a latency-to-lytic switch protein which, upon activation, sets off a vectorially constrained cascade of gene expression that results in production of infectious virus. While triggering expression of the switch protein ZEBRA is essential to lytic cycle entry, sustaining its expression is equally important to avoid premature termination of the lytic cascade. We report that the viral protein kinase (vPK), encoded by a gene that is kinetically downstream of the lytic switch, sustains expression of ZEBRA, amplifies the lytic cascade, increasing virus production, and, importantly, prevents the abortive lytic cycle. We find that vPK, through a noncanonical site phosphorylation, activates the cellular phosphatidylinositol 3-kinase-related kinase ATM to cause phosphorylation of the heterochromatin enforcer KAP1/TRIM28 even in the absence of EBV genomes or other EBV proteins. Phosphorylation of KAP1 renders it unable to restrain ZEBRA, thereby further derepressing and sustaining its expression to culminate in virus production. This partnership with a host kinase and a transcriptional corepressor enables retrograde regulation by vPK of ZEBRA, an observation that is counter to the unidirectional regulation of gene expression reminiscent of most DNA viruses.IMPORTANCE Herpesviruses infect nearly all humans and persist quiescently for the life of the host. These viruses intermittently activate into the lytic phase to produce infectious virus, thereby causing disease. To ensure that lytic activation is not prematurely terminated, expression of the virally encoded lytic switch protein needs to be sustained. In studying Epstein-Barr virus, one of the most prevalent human herpesviruses that also causes cancer, we have discovered that a viral kinase activated by the viral lytic switch protein partners with a cellular kinase to deactivate a silencer of the lytic switch protein, thereby providing a positive feedback loop to ensure successful completion of the viral productive phase. Our findings highlight key nodes of interaction between the host and virus that could be exploited to treat lytic phase-associated diseases by terminating the lytic phase or kill cancer cells harboring herpesviruses by accelerating the completion of the lytic cascade.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sergei V Kozlov
- Radiation Biology and Oncology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Ayman El-Guindy
- Division of Infectious Diseases, Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Hoji A, Xu S, Bilben H, Rowe DT. Calcium mobilization is responsible for Thapsigargin induced Epstein Barr virus lytic reactivation in in vitro immortalized lymphoblstoid cell lines. Heliyon 2018; 4:e00917. [PMID: 30480154 PMCID: PMC6240808 DOI: 10.1016/j.heliyon.2018.e00917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/19/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
The latent state is a critical component of all herpesvirus infections, and its regulation remains one of the most active areas of Epstein-Barr Virus (EBV) research. In particular, identifying environmental factors that trigger EBV reactivation into a virus-productive state has become a central goal in EBV latency research. Recently, a category of chemicals known as inducers of the endoplasmic reticulum unfolded protein response (UPR) have been shown to trigger EBV lytic reactivation in various established EBV-associated lymphoma cell lines. This has led to the recent belief that UPR is a universal cellular signaling pathway that directly triggers EBV lytic reactivation irrespective of cell type. We tested the potency of several widely used UPR inducers for EBV lytic reactivation on virus-immortalized primary lymphoblastoid cell lines (LCLs) in vitro. We found that, with the exception of Thapsigargin (Tg), UPR inducers did not trigger significant increases in BZLF1 transcripts or changes in the numbers of EBV genomic copies/cell in our panel of primary LCLs. Further investigation revealed that induction of lytic reactivation by Tg appeared to be due to its ability to trigger intracellular Ca2+ mobilization rather than its ability to induce UPR, based on our observations in which UPR induction alone was not sufficient to trigger the EBV lytic cycle in our LCLs. EBV immortalized LCLs have rarely been included in the majority of the lytic reactivation studies yet the characteristics of latent infection in LCLs should resemble those of proliferating B cells in clinically encountered lymphoproliferative diseases. Based on these observations, we propose an alternative mechanism of action for Tg in triggering EBV lytic reactivation in LCLs, and suggest that the proposed use of any chemical inducers of UPR for a purpose of oncolytic/lytic induction therapy needs to be fully evaluated pre-clinically in a panel of LCLs.
Collapse
Affiliation(s)
- Aki Hoji
- University of Pittsburgh, The Graduate School of Public Health, Department of Infectious Diseases and Microbiology, 130 Desoto St., Pittsburgh, PA, 15261, USA
| | - Susie Xu
- University of Pittsburgh, The Graduate School of Public Health, Department of Infectious Diseases and Microbiology, 130 Desoto St., Pittsburgh, PA, 15261, USA
| | - Holly Bilben
- University of Pittsburgh, The Graduate School of Public Health, Department of Infectious Diseases and Microbiology, 130 Desoto St., Pittsburgh, PA, 15261, USA
| | - David T Rowe
- University of Pittsburgh, The Graduate School of Public Health, Department of Infectious Diseases and Microbiology, 130 Desoto St., Pittsburgh, PA, 15261, USA
| |
Collapse
|
11
|
KRAB-ZFP Repressors Enforce Quiescence of Oncogenic Human Herpesviruses. J Virol 2018; 92:JVI.00298-18. [PMID: 29695433 DOI: 10.1128/jvi.00298-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer-causing herpesviruses infect nearly every human and persist indefinitely in B lymphocytes in a quiescent state known as latency. A hallmark of this quiescence or latency is the presence of extrachromosomal viral genomes with highly restricted expression of viral genes. Silencing of viral genes ensures both immune evasion by the virus and limited pathology to the host, yet how multiple genes on multiple copies of viral genomes are simultaneously silenced is a mystery. In a unifying theme, we report that both cancer-causing human herpesviruses, despite having evolved independently, are silenced through the activities of two members of the Krüppel-associated box (KRAB) domain-zinc finger protein (ZFP) (KRAB-ZFP) epigenetic silencing family, revealing a novel STAT3-KRAB-ZFP axis of virus latency. This dual-edged antiviral strategy restricts the destructive ability of the lytic phase while promoting the cancer-causing latent phase. These findings also unveil roles for KRAB-ZFPs in silencing of multicopy foreign genomes with the promise of evicting herpesviruses to kill viral cancers bearing clonal viral episomes.IMPORTANCE Despite robust immune responses, cancer-causing viruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist for life. This persistence is accomplished partly through a stealth mechanism that keeps extrachromosomal viral genomes quiescent. Quiescence, or latency, ensures that not every cell harboring viral genomes is killed directly through lytic activation or indirectly via the immune response, thereby evicting virus from host. For the host, quiescence limits pathology. Thus, both virus and host benefit from quiescence, yet how quiescence is maintained through silencing of a large set of viral genes on multiple viral genomes is not well understood. Our studies reveal that members of a gene-silencing family, the KRAB-ZFPs, promote quiescence of both cancer-causing human viruses through simultaneous silencing of multiple genes on multicopy extrachromosomal viral genomes.
Collapse
|
12
|
Li X, Burton EM, Bhaduri-McIntosh S. Chloroquine triggers Epstein-Barr virus replication through phosphorylation of KAP1/TRIM28 in Burkitt lymphoma cells. PLoS Pathog 2017; 13:e1006249. [PMID: 28249048 PMCID: PMC5348047 DOI: 10.1371/journal.ppat.1006249] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/13/2017] [Accepted: 02/17/2017] [Indexed: 01/09/2023] Open
Abstract
Trials to reintroduce chloroquine into regions of Africa where P. falciparum has regained susceptibility to chloroquine are underway. However, there are long-standing concerns about whether chloroquine increases lytic-replication of Epstein-Barr virus (EBV), thereby contributing to the development of endemic Burkitt lymphoma. We report that chloroquine indeed drives EBV replication by linking the DNA repair machinery to chromatin remodeling-mediated transcriptional repression. Specifically, chloroquine utilizes ataxia telangiectasia mutated (ATM) to phosphorylate the universal transcriptional corepressor Krüppel-associated Box-associated protein 1/tripartite motif-containing protein 28 (KAP1/TRIM28) at serine 824 -a mechanism that typically facilitates repair of double-strand breaks in heterochromatin, to instead activate EBV. Notably, activation of ATM occurs in the absence of detectable DNA damage. These findings i) clarify chloroquine's effect on EBV replication, ii) should energize field investigations into the connection between chloroquine and endemic Burkitt lymphoma and iii) provide a unique context in which ATM modifies KAP1 to regulate persistence of a herpesvirus in humans.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY, United States of America
| | - Eric M. Burton
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY, United States of America
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
13
|
Li X, Bhaduri-McIntosh S. A Central Role for STAT3 in Gammaherpesvirus-Life Cycle and -Diseases. Front Microbiol 2016; 7:1052. [PMID: 27458446 PMCID: PMC4937026 DOI: 10.3389/fmicb.2016.01052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Having co-evolved with humans, herpesviruses have adapted to exploit the host molecular machinery to ensure viral persistence. The cellular protein Signal Transducer and Activator of Transcription 3 (STAT3) is a leading example. STAT3 is a prominent transcription factor that functions in a variety of physiologic processes including embryonic development, inflammation, immunity, and wound healing. Generally activated via growth factor and cytokine signaling, STAT3 can transcriptionally drive oncoproteins, pro-survival and pro-proliferative proteins as well as angiogenic factors, thereby contributing to cancer. As in most non-viral cancers, STAT3 is constitutively active in EBV-related B and epithelial cell cancers and in animal models of KSHV-cancers. Again, similar to non-viral cancers, STAT3 contributes to gammaherpesvirus (EBV and KSHV)-mediated cancers by driving cell proliferation, invasion and angiogenesis. Being herpesviruses, EBV and KSHV establish latency in humans with episodic lytic activation. Importantly, both viruses activate STAT3 almost immediately upon infection of primary cells. In the setting of infection of primary B cells by EBV, this rapidly activated STAT3 plays a key role in suppressing the DNA damage response (DDR) to EBV-oncogene triggered replication stress, thereby facilitating B cell proliferation and ultimately establishment of latency. STAT3 also contributes to maintenance of latency by curbing lytic activation of EBV and KSHV in latent cells that express high levels of STAT3. In this way, gammaherpesviruses exploit STAT3 to overcome cellular anti-proliferative and anti-lytic barriers to promote viral persistence. These investigations into gammaherpesviruses and STAT3 have simultaneously revealed a novel function for STAT3 in suppression of the DDR, a process fundamental to physiologic cell proliferation as well as development of cancer.
Collapse
Affiliation(s)
- Xiaofan Li
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine Stony Brook, NY, USA
| | - Sumita Bhaduri-McIntosh
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of MedicineStony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University School of MedicineStony Brook, NY, USA
| |
Collapse
|
14
|
Giunco S, Celeghin A, Gianesin K, Dolcetti R, Indraccolo S, De Rossi A. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis 2015; 6:e1774. [PMID: 26018735 PMCID: PMC4669716 DOI: 10.1038/cddis.2015.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Epstein–Barr virus (EBV)-associated malignancies, as well as lymphoblastoid cell lines (LCLs), obtained in vitro by EBV infection of B cells, express latent viral proteins and maintain their ability to grow indefinitely through inappropriate activation of telomere-specific reverse transcriptase (TERT), the catalytic component of telomerase. Our previous studies demonstrated that high levels of TERT expression in LCLs prevent the activation of EBV lytic cycle, which is instead triggered by TERT silencing. As lytic infection promotes the death of EBV-positive tumor cells, understanding the mechanism(s) by which TERT affects the latent/lytic status of EBV may be important for setting new therapeutic strategies. BATF, a transcription factor activated by NOTCH2, the major NOTCH family member in B cells, negatively affects the expression of BZLF1, the master regulator of viral lytic cycle. We therefore analyzed the interplay between TERT, NOTCH and BATF in LCLs and found that high levels of endogenous TERT are associated with high NOTCH2 and BATF expression levels. In addition, ectopic expression of TERT in LCLs with low levels of endogenous telomerase was associated with upregulation of NOTCH2 and BATF at both mRNA and protein levels. By contrast, infection of LCLs with retroviral vectors expressing functional NOTCH2 did not alter TERT transcript levels. Luciferase reporter assays, demonstrated that TERT significantly activated NOTCH2 promoter in a dose-dependent manner. We also found that NF-κB pathway is involved in TERT-induced NOTCH2 activation. Lastly, pharmacologic inhibition of NOTCH signaling triggers the EBV lytic cycle, leading to the death of EBV-infected cells. Overall, these results indicate that TERT contributes to preserve EBV latency in B cells mainly through the NOTCH2/BAFT pathway, and suggest that NOTCH2 inhibition may represent an appealing therapeutic strategy against EBV-associated malignancies.
Collapse
Affiliation(s)
- S Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - A Celeghin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - K Gianesin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - R Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - S Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - A De Rossi
- 1] Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy [2] Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| |
Collapse
|
15
|
Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes. J Virol 2015; 89:5002-11. [PMID: 25717101 DOI: 10.1128/jvi.00121-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/13/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED A major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV(+)) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV(+) cell lines from patients with hypomorphic STAT3 mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers. IMPORTANCE Most humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent virus is central to its life cycle and to most EBV-related diseases. However, a substantial fraction of EBV-infected B cells and tumor cells in a population is refractory to lytic activation. This resistance to lytic activation directly and profoundly impacts viral persistence and the effectiveness of oncolytic therapy for EBV(+) cancers. To identify the mechanisms that underlie susceptibility to EBV lytic activation, we used host gene and protein expression profiling of separated lytic and refractory cells. We find that STAT3, a transcription factor overactive in many cancers, regulates PCBP2, a protein important in RNA biogenesis, to regulate susceptibility to lytic cycle activation signals. These findings advance our understanding of EBV persistence and provide important leads on devising methods to improve viral oncolytic therapies.
Collapse
|
16
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
17
|
McAllister SC, Shedd D, Mueller NE, Chang ET, Miller G, Bhaduri-McIntosh S. Serum IgA to Epstein-Barr virus early antigen-diffuse identifies Hodgkin's lymphoma. J Med Virol 2014; 86:1621-8. [PMID: 24122847 PMCID: PMC3969873 DOI: 10.1002/jmv.23761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2013] [Indexed: 12/19/2022]
Abstract
Hodgkin's lymphoma is associated with immune dysregulation. Immune impairment often results in aberrant immune responses and lytic reactivation of ubiquitous Herpesviruses, such as Epstein-Barr virus (EBV) in mucosal tissues. Accordingly, the specificity of IgA to EBV early lytic antigens, which are important for reactivation, was evaluated to determine Hodgkin's lymphoma-specific sero-reactive patterns. Sera from 42 patients with Hodgkin's lymphoma were compared to sera from 17 patients with infectious mononucleosis (IM), another EBV-related condition that often presents in a similar manner; and to sera from 15 healthy EBV-seropositive subjects. Flow cytometry analysis demonstrated that like IM sera, most Hodgkin's lymphoma sera contained IgA that labeled cells expressing EBV early lytic antigens whereas healthy EBV-seropositive sera did not. Further evaluation to distinguish Hodgkin's lymphoma from IM showed that IgA in most Hodgkin's lymphoma, irrespective of the presence of EBV in primary tumors, detected only modified forms of EBV lytic Early Antigen-Diffuse (EA-D) while IM sera detected the un-modified form as well, further supporting the presence of immune dysregulation in Hodgkin's lymphoma patients. This IgA pattern distinguished Hodgkin's lymphoma from IM sera with a sensitivity of 92.9%, specificity 100%, positive predictive value 100%, and negative predictive value 85%. Our findings lay the groundwork for additional scientific and clinical investigation, particularly into the potential for developing Hodgkin's lymphoma-associated diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shane C. McAllister
- Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Duane Shedd
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Nancy E. Mueller
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Ellen T. Chang
- Exponent, Inc., Health Sciences Practice, 149 Commonwealth Drive, Menlo Park, CA and Division of Epidemiology, Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA
| | - George Miller
- Departments of Pediatrics, Molecular Biophysics and Biochemistry, and Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT
| | - Sumita Bhaduri-McIntosh
- Pediatric Infectious Diseases, Departments of Pediatrics and Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY
| |
Collapse
|
18
|
Quantitative PCR assays reveal high prevalence of lymphocryptovirus as well as lytic phase gene expression in peripheral blood cells of cynomolgus macaques. J Virol Methods 2014; 207:220-5. [PMID: 25064358 DOI: 10.1016/j.jviromet.2014.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
Abstract
Lymphocryptoviruses such as Epstein-Barr virus (EBV) are important pathogens in both human and non-human primates, particularly during immunosuppression. Immunomodulatory molecules that may suppress antiviral immunity are commonly tested in the cynomolgus macaque. To enable the study of lymphocryptovirus (LCV) in this non-clinical model, PCR-based assays were developed to measure LCV viral load, as well as transcripts for the lytic phase LCV gene, BALF-2. Results from studies employing these assays showed that LCV genome was detected in the oropharyngeal epithelium of all cynomolgus monkeys tested, and the majority had viral genome in peripheral blood mononuclear cells (PBMCs). The results also revealed LCV lytic phase gene expression not only in the oropharynx of most monkeys, but also in PBMCs of approximately one half of monkeys tested. This unexpected finding suggests that initiation of the lytic gene expression cascade occurs often in the peripheral blood cells of healthy monkeys.
Collapse
|
19
|
Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol 2014; 88:8028-44. [PMID: 24807711 DOI: 10.1128/jvi.00722-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process.
Collapse
|
20
|
Signal transducer and activator of transcription 3 limits Epstein-Barr virus lytic activation in B lymphocytes. J Virol 2013; 87:11438-46. [PMID: 23966384 DOI: 10.1128/jvi.01762-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic activation of Epstein-Barr virus (EBV) is central to its life cycle and to most EBV-related diseases. However, not every EBV-infected B cell is susceptible to lytic activation. This lack of uniform susceptibility to lytic activation also directly impacts the success of viral oncolytic therapy for EBV cancers, yet determinants of susceptibility to lytic induction signals are not well understood. To determine if host factors influence susceptibility to EBV lytic activation, we developed a technique to separate lytic from refractory cells and reported that EBV lytic activation occurs preferentially in cells with lower levels of signal transducer and activator of transcription 3 (STAT3). Using this tool to detect single cells, we now extend the correlation between STAT3 and lytic versus refractory states to EBV-infected circulating B cells in patients with primary EBV infection, leading us to investigate whether STAT3 controls susceptibility to EBV lytic activation. In loss-of-function and gain-of-function studies in EBV-positive B lymphoma and lymphoblastoid cells, we found that the levels of functional STAT3 regulate susceptibility to EBV lytic activation. This prompted us to identify a pool of candidate cellular genes that might be regulated by STAT3 to limit EBV lytic activation. From this pool, we confirmed increases in transcript levels in refractory cells of a set of genes known to participate in transcription repression. Taken together, our findings place STAT3 at a critical crossroads between EBV latency and lytic activation, processes fundamental to EBV lymphomagenesis.
Collapse
|
21
|
Kamperschroer C, O'Donnell LM, Schneider PA, Li D, Roy M, Coskran TM, Kawabata TT. Measuring T-cell responses against LCV and CMV in cynomolgus macaques using ELISPOT: potential application to non-clinical testing of immunomodulatory therapeutics. J Immunotoxicol 2013; 11:35-43. [PMID: 23461640 DOI: 10.3109/1547691x.2013.766287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A number of immunomodulatory therapeutics increase the risk of disease associated with latent herpesviruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV), a member of the lymphocryptovirus (LCV) family that infects humans. The diseases associated with loss of immunity to these viruses can have major impacts on patients as well as on the commercial viability of the immunomodulatory therapeutics. In an effort to develop non-clinical methods for measuring effects on anti-viral immunity, we have developed an interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISPOT) assay to quantify the number of CMV or LCV-reactive T-cells in peripheral blood of cynomolgus macaques. After optimization of various parameters, the IFN-γ ELISPOT assay was characterized for specificity, intra-assay, monkey-to-monkey, and longitudinal variability and sensitivity to immunosuppression. The results show that nearly all animals have detectable responses against both CMV and LCV and responses were derived from T-cells specific to the virus of interest. Analyses of variability show assay reproducibility (≤23% CV), and that variability over time in anti-viral responses in individual animals (larger for LCV than for CMV) was ∼2-fold in most animals over a 3-month time period, which is predicted to allow for detection of drug-induced changes when using group sizes typical of non-clinical studies. In addition, the IFN-γ ELISPOT assay was capable of detecting decreases in the numbers of CMV and LCV reactive T-cells induced by immunosuppressive drugs in vitro. This assay may allow for non-clinical assessment of the effects of immunomodulatory therapeutics on anti-viral T-cell immunity in monkeys, and may help determine if therapeutics increase the risk of reactivating latent viral infections.
Collapse
Affiliation(s)
- Cris Kamperschroer
- Drug Safety Research and Development, Pfizer Global Research and Development , Pfizer, Inc., Groton, CT , USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev 2011; 24:193-209. [PMID: 21233512 DOI: 10.1128/cmr.00044-10] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus that infects a large fraction of the human population. Primary infection is often asymptomatic but results in lifelong infection, which is kept in check by the host immune system. In some cases, primary infection can result in infectious mononucleosis. Furthermore, when host-virus balance is not achieved, the virus can drive potentially lethal lymphoproliferation and lymphomagenesis. In this review, we describe the biology of EBV and the host immune response. We review the diagnosis of EBV infection and discuss the characteristics and pathogenesis of infectious mononucleosis. These topics are approached in the context of developing therapeutic and preventative strategies.
Collapse
|
23
|
Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol 2010; 84:12405-18. [PMID: 20861250 DOI: 10.1128/jvi.01415-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Epstein-Barr virus (EBV) lytic activator genes bzlf1 and brlf1 are conventionally referred to as immediate-early (IE) genes. However, previous studies showed that the earliest expression of these genes was blocked by cycloheximide when the EBV lytic cycle was induced by histone deacetylase (HDAC) inhibitors and protein kinase C agonists. Anti-IgG activates a complex signal transduction pathway that leads to EBV lytic activation in the Akata cell line. Here we demonstrate that in Akata cells, where lytic cycle activation occurs very rapidly after anti-IgG treatment, de novo protein synthesis is also required for induction of bzlf1 and brlf1 expression. New protein synthesis is required up to 1.25 h after application of anti-IgG; bzlf1 and brlf1 mRNAs can be detected 1.5 h after anti-IgG. Five cellular IE genes were shown to be expressed by 1 h after addition of anti-IgG, and their expression preceded that of bzlf1 and brlf1. These include early growth response genes (egr1, egr2, and egr3) and nuclear orphan receptors (nr4a1 and nr4a3). These genes were activated by anti-IgG treatment of Akata cells with and without the EBV genome; therefore, their expression was not dependent on expression of any EBV gene product. EGR1, EGR2, and EGR3 proteins were kinetically upstream of ZEBRA and Rta proteins. Expression of EGR1, ZEBRA, and Rta proteins were inhibited by bisindolylmaleimide X, a selective inhibitor of PKC. The findings suggest a revised model in which the signal transduction cascade activated by cross-linking of the B cell receptor induces expression of cellular IE genes, such as early growth response and nuclear orphan receptor genes, whose products, in turn, regulate bzlf1 and brlf1 expression.
Collapse
|
24
|
Upregulation of STAT3 marks Burkitt lymphoma cells refractory to Epstein-Barr virus lytic cycle induction by HDAC inhibitors. J Virol 2009; 84:993-1004. [PMID: 19889776 DOI: 10.1128/jvi.01745-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental problem in studying the latent-to-lytic switch of Epstein-Barr virus (EBV) and the viral lytic cycle itself is the lack of a culture system fully permissive to lytic cycle induction. Strategies to target EBV-positive tumors by inducing the viral lytic cycle with chemical agents are hindered by inefficient responses to stimuli. In vitro, even in the most susceptible cell lines, more than 50% of cells latently infected with EBV are refractory to induction of the lytic cycle. The mechanisms underlying the refractory state are not understood. We separated lytic from refractory Burkitt lymphoma-derived HH514-16 cells after treatment with an HDAC inhibitor, sodium butyrate. Both refractory- and lytic-cell populations responded to the inducing stimulus by hyperacetylation of histone H3. However, analysis of host cell gene expression showed that specific cellular transcripts Stat3, Fos, and interleukin-8 (IL-8) were preferentially upregulated in the refractory-cell population, while IL-6 was upregulated in the lytic population. STAT3 protein levels were also substantially increased in refractory cells relative to untreated or lytic cells. This increase in de novo expression resulted primarily in unphosphorylated STAT3. Examination of single cells revealed that high levels of STAT3 were strongly associated with the refractory state. The refractory state is manifest in a unique subpopulation of cells that exhibits different cellular responses than do lytic cells exposed to the same stimulus. Identifying characteristics of cells refractory to lytic induction relative to cells that undergo lytic activation will be an important step in developing a better understanding of the regulation of the EBV latent to lytic switch.
Collapse
|
25
|
Stimulus duration and response time independently influence the kinetics of lytic cycle reactivation of Epstein-Barr virus. J Virol 2009; 83:10694-709. [PMID: 19656890 DOI: 10.1128/jvi.01172-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) can be reactivated from latency into the lytic cycle by many stimuli believed to operate by different mechanisms. Cell lines containing EBV differ in their responses to inducing stimuli, yet all stimuli require de novo protein synthesis (44). A crucial step preliminary to identifying these proteins and determining when they are required is to measure the duration of stimulus and response time needed for activation of expression of EBV BRLF1 and BZLF1, the earliest viral indicators of reactivation. Here we show, with four EBV-containing cell lines that respond to different inducing agents, that stimuli that are effective at reactivating EBV can be divided into two main groups. The histone deacetylase inhibitors sodium butyrate and trichostatin A require a relatively long period of exposure, from 2 to 4 h or longer. Phorbol esters, anti-immunoglobulin G (anti-IgG), and, surprisingly, 5-aza-2'-deoxycytidine require short exposures of 15 min or less. The cell/virus background influences the response time. Expression of the EBV BZLF1 and BRLF1 genes can be detected before 2 h in Akata cells treated with anti-IgG, but both long- and short-duration stimuli required 4 or more hr to activate BZLF1 and BRLF1 expression in HH514-16, Raji, or B95-8 cells. Thus, stimulus duration and response time are independent variables. Neither stimulus duration nor response time can be predicted by the number of cells activated into the lytic cycle. These experiments shed new light on the earliest events leading to lytic cycle reactivation of EBV.
Collapse
|
26
|
He Y, Cai S, Zhang G, Li X, Pan L, Du J. Interfering with cellular signaling pathways enhances sensitization to combined sodium butyrate and GCV treatment in EBV-positive tumor cells. Virus Res 2008; 135:175-80. [PMID: 18455826 DOI: 10.1016/j.virusres.2008.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
The combination of sodium butyrate (NaB) and ganciclovir (GCV) was considered to be a noteworthy therapeutic strategy in Epstein-Barr virus (EBV)-associated cancers. However, clinical studies have indicated that an extremely high dose of NaB is required to obtain the expected curative efficacy. This obviously limits the practical clinical application of the two drugs combined. In this study, we investigated the possibility of sensitizing tumor cells to NaB and GCV mediated cytotoxicity by modulating intracellular signal pathways. The results showed that the disruption of Ras/Raf activity by expressing dominant negative forms of both Ras and Raf-1 did not alter the potency of the NaB and GCV combination in the EBV-positive cell line, B95-8. However, blocking Akt activity by expressing its dominant negative form remarkably promoted NaB and GCV-mediated cytotoxicity via a thymidine kinase (TK)-independent mechanism. Interestingly, it was found that the constitutive activation of mitogen-activated protein kinase kinase kinase 1 (MEKK1) dramatically enhanced the sensitization of the cells to the combination of NaB and GCV, accompanied with an increase in TK expression in B95-8 cells. These results suggest that interfering with either the Akt or MEKK1 signaling pathway may be a useful therapeutic strategy to increase the sensitivity of EBV-positive tumor cells to the combination of NaB and GCV.
Collapse
Affiliation(s)
- Yuwen He
- Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, 510080 Guangzhou, China
| | | | | | | | | | | |
Collapse
|
27
|
Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol 2008; 82:4706-19. [PMID: 18337569 DOI: 10.1128/jvi.00116-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the Epstein-Barr virus (EBV) lytic cycle is mediated through the combined actions of ZEBRA and Rta, the products of the viral BZLF1 and BRLF1 genes. During latency, these two genes are tightly repressed. Histone deacetylase inhibitors (HDACi) can activate viral lytic gene expression. Therefore, a widely held hypothesis is that Zp and Rp, the promoters for BZLF1 and BRLF1, are repressed by chromatin and that hyperacetylation of histone tails, by allowing the access of positively acting factors, leads to transcription of BZLF1 and BRLF1. To investigate this hypothesis, we used chromatin immunoprecipitation (ChIP) to examine the acetylation and phosphorylation states of histones H3 and H4 on Zp and Rp in three cell lines, Raji, B95-8, and HH514-16, which differ in their response to EBV lytic induction by HDACi. We studied the effects of three HDACi, sodium butyrate (NaB), trichostatin A (TSA), and valproic acid (VPA). We also examined the effects of tetradecanoyl phorbol acetate (TPA) and 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, on histone modification. In Raji cells, TPA and NaB act synergistically to activate the EBV lytic cycle and promote an increase in histone H3 and H4 acetylation and phosphorylation at Zp and Rp. Surprisingly, however, when Raji cells were treated with NaB or TSA, neither of which is sufficient to activate the lytic cycle, an increase of comparable magnitude of hyperacetylated and phosphorylated histone H3 at Zp and Rp was observed. In B95-8 cells, NaB inhibited lytic induction by TPA, yet NaB promoted hyperacetylation of H3 and H4. In HH514-16 cells, NaB and TSA strongly activated the EBV lytic cycle and caused hyperacetylation of histone H3 on Zp and Rp. However, when HH514-16 cells were treated with VPA, lytic cycle mRNAs or proteins were not induced, although histone H3 was hyperacetylated as measured by immunoblotting or by ChIP on Zp and Rp. Taken together, our data suggest that open chromatin at EBV BZLF1 and BRLF1 promoters is not sufficient to activate EBV lytic cycle gene expression.
Collapse
|
28
|
Repertoire and frequency of immune cells reactive to Epstein-Barr virus-derived autologous lymphoblastoid cell lines. Blood 2007; 111:1334-43. [PMID: 17942757 DOI: 10.1182/blood-2007-07-101907] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Answers to questions about frequency and repertoire of immune cells, relative contributions made by different types of immune cells toward the total Epstein-Barr virus (EBV)-directed response and the variation of such responses in healthy persons have been elusive because of disparities in assays, antigen presenting cells, and antigenic sources used in previous experiments. In this study, we addressed these questions using an assay that allowed direct comparison of responses generated by different types of cells of the immune system. This short-term (20-hour) ex vivo assay measured interferon-gamma production by blood cells in response to autologous EBV-transformed lymphoblastoid cell lines (LCLs). Our experiments defined the variation in responses among persons and clearly distinguished 10 healthy EBV-immune from 10 healthy EBV-naive persons. In EBV-immune persons, 33% of responding cells were CD4(+), 43.3% were CD8(+), and 12.9% were gamma-delta T cells. LCL-reactive CD8(+) T cells were only 1.7-fold more frequent than similarly reactive CD4(+)T cells. Responses by gamma-delta T cells were 6-fold higher in seropositive than in seronegative persons. Our findings emphasize the importance of CD4(+) and gamma-delta T-cell responses and have implications for immunotherapy and for identifying defects in T-cell populations that might predispose to development of EBV-associated lymphomas.
Collapse
|
29
|
Ye J, Gradoville L, Daigle D, Miller G. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol 2007; 81:9279-91. [PMID: 17596302 PMCID: PMC1951462 DOI: 10.1128/jvi.00982-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle gene expression of the two viruses differs and suggest that EBV but not KSHV requires one or more proteins to be newly synthesized between 4 and 6 h after application of an inducing stimulus.
Collapse
Affiliation(s)
- Jianjiang Ye
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|