1
|
Zhang Y, Cheng J, Liu W, Zhou L, Yang C, Li Y, Du E. Identification of three novel B cell epitopes targeting the bovine viral diarrhea virus NS3 protein for use in diagnostics and vaccine development. Int J Biol Macromol 2025; 308:142767. [PMID: 40180073 DOI: 10.1016/j.ijbiomac.2025.142767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds, widely distributed across the globe and causing significant economic losses to the cattle industry. The nonstructural protein NS3 is highly conserved across BVDV subtypes. Identifying and screening epitopes on BVDV NS3 is crucial for developing sensitive, specific diagnostic tools. In this study, we obtained three monoclonal antibodies (mAbs) against the NS3 protein: 2F7, 3E8, and 4D6. Three novel linear B-cell epitope 100EYG102, 384FLDIA388, and 100EYGVK104 were identified through reactions of these mAbs with a series of continuous-truncated peptides and one of which a rare three-amino-acid B-cell epitope 100EYG102. Critical amino acid residues were further characterized through alanine (A)-scanning mutagenesis. Sequence alignment revealed that 100EYG102 and 100EYGVK104 were highly conserved allowing mAbs 2F7 and 4D6 to recognize all BVDV subtypes. In contrast, 384FLDIA388 was specifically conserved in BVDV-1 and BVDV-3 enabling 3E8 mAb to differential diagnosis BVDV-2 from other BVDV subtypes. Additionally, preliminary diagnostic assays for BVDV were established by western blotting and peptide-based blocking ELISA. Moreover, we observed that these mAbs could inhibit the replication of BVDV. These findings provide a theoretical foundation for developing of therapeutic strategies for nonstructural protein and accurate diagnostic procedures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Chun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Yangling Carey Biotechnology Co., Ltd., Yangling, China.
| |
Collapse
|
2
|
Silva ÂAO, Vasconcelos LCM, Freitas NEM, Oliva TA, Silva MFCR, Siqueira IC, Silva ED, Santos KGAF, Lima MAV, Zanchin NIT, Santos FLN. Advancing syphilis diagnosis: multi-phase study evaluation of a TpN17-based double-antigen sandwich ELISA for detecting Treponema pallidum specific antibodies. Front Microbiol 2025; 16:1572785. [PMID: 40270825 PMCID: PMC12014689 DOI: 10.3389/fmicb.2025.1572785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Syphilis, a sexually transmitted infection caused by the bacterium Treponema pallidum, has high incidence rates among adults, pregnant women, and newborns. Diagnostic procedures typically involve a treponemal test (such as ELISA, CMIA, and IFI), followed by a non-treponemal test (VDRL and RPR). This study aimed to assess the diagnostic performance of a double antigen sandwich ELISA (DAgS-ELISA) using the recombinant protein TpN17, analyzing serum samples from both infected and not infected with T. pallidum. A total of 712 samples were deemed eligible and recharacterized using VDRL, ELISA, and FTA-ABS, with 613 ultimately included in the evaluation: 180 T. pallidum-positive, 169 T. pallidum-negative, and 264 positive samples for other diseases. The assay was standardized using checkerboard titration and evaluated based on the area under the ROC curve (AUC), sensitivity, specificity, accuracy, likelihood values, diagnostic ratio, and Cohen's Kappa index (κ). In phase I, positive and negative samples showed statistical differences (p < 0.0001) for the TpN17 protein. The ROC curve (AUC) was 98.7% and Cohen's Kappa of 0.91, indicating almost perfect agreement with the reference tests. Phase II results demonstrated an AUC of 97.5%, specificity of 100%, sensitivity of 88.9%, accuracy of 94.3%, a positive likelihood ratio of 1.512, a negative likelihood ratio of 0.11, and a diagnostic odds ratio of 13,600, with a Cohen's Kappa of 0.89. Cross-reactivity was observed in samples positive for Chagas disease (11.5%), HBV (2.6%), HCV (6.4%), and HTLV-1/2 (6.8%). Overall, TpN17 exhibited high diagnostic performance across all clinical stages of syphilis. Future research should expand the sample panel and explore new proteins to enhance DAgS-ELISA's effectiveness and applicability for syphilis diagnosis across diverse clinical settings.
Collapse
Affiliation(s)
- Ângelo Antônio Oliveira Silva
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Medicine Course, Salvador University (UNIFACS), Salvador, Brazil
| | - Larissa Carvalho Medrado Vasconcelos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Natália Erdens Maron Freitas
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Talita Andrade Oliva
- State Center for Diagnosis, Assistance, and Research (CEDAP), Bahia State Health Department (SESAB), Salvador, Brazil
| | | | - Isadora Cristina Siqueira
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Laboratory of Investigation in Global Health and Neglected Diseases, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation (Fiocruz-RJ), Rio de Janeiro, Brazil
| | - Edimilson Domingos Silva
- Diagnostic Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos), Oswaldo Cruz Foundation (Fiocruz-RJ), Rio de Janeiro, Brazil
| | | | - Maria Amélia Virgens Lima
- Diagnostic Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos), Oswaldo Cruz Foundation (Fiocruz-RJ), Rio de Janeiro, Brazil
| | - Nilson Ivo Tonin Zanchin
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation (Fiocruz-RJ), Rio de Janeiro, Brazil
- Structural Biology and Protein Engineering Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz-PR), Curitiba, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation (Fiocruz-RJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zhang L, Yang X, Shi H, Zhang J, Feng T, Liu D, Zhang X, Chen J, Shi D, Feng L. Identification of two novel B-cell epitopes located on the spike protein of swine acute diarrhea syndrome coronavirus. Int J Biol Macromol 2024; 278:135049. [PMID: 39182883 DOI: 10.1016/j.ijbiomac.2024.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging alpha-coronavirus that causes diarrhea in piglets and results in serious economic losses. During SADS-CoV infection, the spike protein (S) serves as a crucial structural component of the virion, interacting with receptors and eliciting the production of neutralizing antibodies. Due to the potential risk of zoonotic transmission of SADS-CoV, the identification and screening of epitopes on the S glycoproteins will be crucial for development of sensitive and specific diagnostic tools. In this study, we immunized BALB/c mice with recombinant SADS-CoV S trimer protein and generated two S1-specific monoclonal antibodies (mAbs): 8D6 and 6E9, which recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 8D6 was mapped to 311NPDQRD316, the minimal fragment recognized by mAb 6E9 was mapped to 492ARFVDRL498. Homology analysis of the regions corresponding to 13 typical strains of different SADS-CoV subtypes showed high conservation of these two epitopes. These findings contribute to a deeper understanding of the structure of the SADS-CoV S protein, which is valuable for vaccine design and holds potential for developing diagnostic methods to detect SADS-CoV.
Collapse
Affiliation(s)
- Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
4
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
5
|
Shi Y, Zhou Q, Dong S, Zhao Q, Wu X, Yang P, Zeng X, Yang X, Tan Y, Luo X, Xiao Z, Chen X. Rapid, visual, label-based biosensor platform for identification of hepatitis C virus in clinical applications. BMC Microbiol 2024; 24:68. [PMID: 38413863 PMCID: PMC10900634 DOI: 10.1186/s12866-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVES In the current study, for the first time, we reported a novel HCV molecular diagnostic approach termed reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticles-based lateral flow biosensor (RT-LAMP-AuNPs-LFB), which we developed for rapid, sensitive, specific, simple, and visual identification of HCV. METHODS A set of LAMP primer was designed according to 5'untranslated region (5'UTR) gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a, which are prevalent in China. The HCV-RT-LAMP-AuNPs-LFB assay conditions, including HCV-RT-LAMP reaction temperature and time were optimized. The sensitivity, specificity, and selectivity of our assay were evaluated in the current study. The feasibility of HCV-RT-LAMP-AuNPs-LFB was confirmed through clinical serum samples from patients with suspected HCV infections. RESULTS An unique set of HCV-RT-LAMP primers were successfully designed targeting on the 5'UTR gene. The optimal detection process, including crude nucleic acid extraction (approximately 5 min), RT-LAMP reaction (67℃, 30 min), and visual interpretation of AuNPs-LFB results (~ 2 min), could be performed within 40 min without specific instruments. The limit of detection was determined to be 20 copies per test. The HCV-RT-LAMP-AuNPs-LFB assay exhibited high specificity and anti-interference. CONCLUSIONS These preliminary results confirmed that the HCV-RT-LAMP-AuNPs-LFB assay is a sensitive, specific, rapid, visual, and cost-saving assay for identification of HCV. This diagnostic approach has great potential value for point-of-care (POC) diagnostic of HCV, especially in resource-challenged regions.
Collapse
Affiliation(s)
- Yuanfang Shi
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, 310008, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Qi Zhao
- Department of gastroenterology, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xue Wu
- Department of Scientific Research, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Peng Yang
- Clinical Laboratory, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xiaoyan Zeng
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xinggui Yang
- Experiment Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, 550004, People's Republic of China
| | - Yan Tan
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, 550002, People's Republic of China
| | - Xinhua Luo
- Department of Infectious Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China
| | - Zhenghua Xiao
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Department of gastroenterology, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
| | - Xu Chen
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
- Department of Scientific Research, the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.
| |
Collapse
|
6
|
Cordero-Ortiz M, Reséndiz-Sandoval M, Dehesa-Canseco F, Solís-Hernández M, Pérez-Sánchez J, Martínez-Borges C, Mata-Haro V, Hernández J. Development of a Multispecies Double-Antigen Sandwich ELISA Using N and RBD Proteins to Detect Antibodies against SARS-CoV-2. Animals (Basel) 2023; 13:3487. [PMID: 38003105 PMCID: PMC10668785 DOI: 10.3390/ani13223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
SARS-CoV-2 infects humans and a broad spectrum of animal species, such as pets, zoo animals, and nondomestic animals. Monitoring infection in animals is important in terms of the risk of interspecies transmission and the emergence of new viral variants. Economical, fast, efficient, and sensitive diagnostic tests are needed to analyze animal infection. Double-antigen sandwich ELISA has the advantage of being multispecies and can be used for detecting infections caused by pathogens that infect several animal hosts. This study aimed to develop a double-antigen sandwich ELISA using two SARS-CoV-2 proteins, N and RBD. We compared its performance, when using these proteins separately, with an indirect ELISA and with a surrogate virus neutralization test. Positive and negative controls from a cat population (n = 31) were evaluated to compare all of the tests. After confirming that double-antigen sandwich ELISA with both RBD and N proteins had the best performance (AUC= 88%), the cutoff was adjusted using positive and negative samples from cats, humans (n = 32) and guinea pigs (n = 3). The use of samples from tigers (n = 2) and rats (n = 51) showed good agreement with the results previously obtained using the microneutralization test. Additionally, a cohort of samples from dogs with unknown infection status was evaluated. These results show that using two SARS-CoV-2 proteins in the double-antigen sandwich ELISA increases its performance and turns it into a valuable assay with which to monitor previous infection caused by SARS-CoV-2 in different animal species.
Collapse
Affiliation(s)
- Maritza Cordero-Ortiz
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Freddy Dehesa-Canseco
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Mario Solís-Hernández
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Jahir Pérez-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd., Reynosa 88710, Tamaulipas, Mexico;
| | | | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico;
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| |
Collapse
|
7
|
Su M, Zheng G, Xu X, Song H. Antigen epitopes of animal coronaviruses: a mini-review. ANIMAL DISEASES 2023; 3:14. [PMID: 37220551 PMCID: PMC10189233 DOI: 10.1186/s44149-023-00080-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Coronaviruses are widespread in nature and can infect mammals and poultry, making them a public health concern. Globally, prevention and control of emerging and re-emerging animal coronaviruses is a great challenge. The mechanisms of virus-mediated immune responses have important implications for research on virus prevention and control. The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lymphocytes, playing an important role in antiviral immune responses. Thus, it can shed light on the development of diagnostic methods and novel vaccines. Here, we have reviewed advances in animal coronavirus antigenic epitope research, aiming to provide a reference for the prevention and control of animal and human coronaviruses. Supplementary Information The online version contains supplementary material available at 10.1186/s44149-023-00080-0.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Guanghui Zheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| |
Collapse
|
8
|
Ward D, Gomes AR, Tetteh KKA, Sepúlveda N, Gomez LF, Campino S, Clark TG. Sero-epidemiological study of arbovirus infection following the 2015-2016 Zika virus outbreak in Cabo Verde. Sci Rep 2022; 12:11719. [PMID: 35810191 PMCID: PMC9271056 DOI: 10.1038/s41598-022-16115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
In November 2015, cases of Zika virus infection were recorded in Cabo Verde (Africa), originating from Brazil. The outbreak subsided after seven months with 7580 suspected cases. We performed a serological survey (n = 431) in Praia, the capital city, 3 months after transmission ceased. Serum samples were screened for arbovirus antibodies using ELISA techniques and revealed seroconverted individuals with Zika (10.9%), dengue (1-4) (12.5%), yellow fever (0.2%) and chikungunya (2.6%) infections. Zika seropositivity was predominantly observed amongst females (70%). Using a logistic model, risk factors for increased odds of Zika seropositivity included age, self-reported Zika infection, and dengue seropositivity. Serological data from Zika and dengue virus assays were strongly correlated (Spearman's rs = 0.80), which reduced when using a double antigen binding ELISA (Spearman's rs = 0.54). Overall, our work improves an understanding of how Zika and other arboviruses have spread throughout the Cabo Verde population. It also demonstrates the utility of serological assay formats for outbreak investigations.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nuno Sepúlveda
- Warsaw University of Technology, Warsaw, Poland
- Universidade de Lisboa, Lisbon, Portugal
| | | | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
9
|
Liu C, Pan Y, Chen J, Liu J, Hou Y, Shan Y. Quantitative detection of Ganodermati lucidum immunomodulatory protein-8 by a peptide-antigen-antibody sandwich ELISA. J Microbiol Methods 2022; 199:106518. [PMID: 35700851 DOI: 10.1016/j.mimet.2022.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
In order to rapidly determine the concentration of recombinant Ganoderma lucidum immunomodulatory protein-8 (rLZ-8) at a lower cost, a peptide-antigen-antibody sandwich ELISA method was developed based on a dodecapeptide LTPHKHHKHLHA with higher affinity for rLZ-8, which was identified from phage display after four rounds of screening. The binding mode between rLZ-8 and the peptide ligand was further simulated and revealed by molecular docking. Standard addition and repetitive testing were carried out to evaluate the accuracy, reproducibility and feasibility of the developed ELISA detection method. The method based on this peptide ligand was then successfully applied in the quantitative determination of rLZ-8 concentrations in fermentation broth. In summary, the peptide-antigen-antibody sandwich ELISA method developed here could be conveniently applied in the detection of rLZ-8 during fermentation and might provide new insights for the detection of other specific proteins.
Collapse
Affiliation(s)
- Chuanzhi Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jia Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Hou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Wei S, Shi D, Wu H, Sun H, Chen J, Feng L, Su M, Sun D. Identification of a novel B cell epitope on the nucleocapsid protein of porcine deltacoronavirus. Virus Res 2021; 302:198497. [PMID: 34217778 PMCID: PMC8481650 DOI: 10.1016/j.virusres.2021.198497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes vomiting, diarrhea, dehydration, and even death of piglets, resulting in significant losses to the pig industry worldwide. However, the epitopes of PDCoV remain largely unknown. In this study, a monoclonal antibody (mAb) against the PDCoV nucleocapsid (N) protein, termed 9G1, was prepared using the lymphocyte hybridoma technique, and was identified as a type IgG1 with a κ light chain and reacted with the native N protein of PDCoV. Furthermore, the epitope recognized by the 9G1 mAb was subjected to western blot and an ELISA using truncated recombinant proteins and synthetic polypeptides of the PDCoV N protein. The results indicate that 9G1 mAb recognized the epitope, G59TPIPPSYAFYY70 (EP-9G1), a novel linear B cell epitope of the PDCoV N protein. A comparison analysis revealed that the EP-9G1 epitope was highly conserved among PDCoV strains, in which four residues (G59-F68YY70) were observed among different coronavirus genera. These data demonstrate that the EP-9G1 epitope identified in this study provides some basic information for further characterization of the antigenic structure of the PDCoV N protein and has potential use for developing diagnostic reagents for PDCoV.
Collapse
Affiliation(s)
- Shan Wei
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haoyang Wu
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haibo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
11
|
Shi F, Tang Y, Xu ZH, Sun YX, Ma MZ, Chen CF. Visual typing detection of brucellosis with a lateral flow immunoassay based on coloured latex microspheres. J Appl Microbiol 2021; 132:199-208. [PMID: 34319629 DOI: 10.1111/jam.15240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
AIMS Treatment and preventive control strategies for Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) infection differ. A lateral flow immunoassay (LFIA) for the rapid typing and detection of brucellosis by using polychromatic dye-doped latex microspheres (LMs) as a labelling material was developed. METHODS AND RESULTS This LFIA utilizes a double-antigen sandwich method in which the BP26 protein is used as the diagnostic antigen to detect brucellosis infection and the OMP31 protein is used as the identified antigen to distinguish between bovine and sheep brucellosis. Thus, people and animals infected with brucellosis can be diagnosed according to the different colours of the signals displayed on the detection lines. The results indicated that the accuracy of this assay was found to reach 98%, and the immunochromatographic test strip is highly accurate, shows good sensitivity and can facilitate typing diagnosis, among other features. CONCLUSIONS The established LFIA can distinguish B. melitensis infection from B. abortus infection and produces results in a short period of time while retaining the advantages of LFIAs. SIGNIFICANCE AND IMPACT OF THE STUDY This technology lays a foundation for the development of multi-disease test strips and the establishment of methods for rapid, multi-specimen quantitative detection and is thus of great importance for the development of medical diagnostic technologies.
Collapse
Affiliation(s)
- Feng Shi
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Yan Tang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Zhi-Hua Xu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Yi-Xiao Sun
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Ming-Ze Ma
- College of Life Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, P. R. China
| |
Collapse
|
12
|
Qin Y, Sha R, Feng Y, Huang Y. Comparison of double antigen sandwich and indirect enzyme-linked immunosorbent assay for the diagnosis of hepatitis C virus antibodies. J Clin Lab Anal 2020; 34:e23481. [PMID: 33245583 PMCID: PMC7676215 DOI: 10.1002/jcla.23481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study is to compare double-antigen sandwich enzyme-linked immunosorbent assay (ELISA) and indirect ELISA in the diagnosis of hepatitis C virus(HCV)infection. METHODS AND MATERIALS A total of 176 samples from the Tumor Hospital Affiliated to Xin Jiang Medical University were utilized to comparison. All serum samples were tested using double-antigen sandwich ELISA and indirect ELISA. Cohen's kappa statistics were used to assess the agreement between the two assays, and multivariate analysis was used to evaluate risk factors for the discordance between the double-antigen ELISA and indirect ELISA. RESULTS The positivities of indirect ELISA (Beijing Wantai), double-antigen sandwich ELISA (Beijing Wantai), and indirect ELISA (Beijing Jinhao) were 74.43%, 68.75%, and 73.30%, respectively. The agreement between the indirect ELISA (Beijing Wantai) and double-antigen sandwich ELISA (Beijing Wantai) was high (κ = 0.829;P < .001), and the agreement between the double-antigen sandwich ELISA (Beijing Wantai) and indirect ELISA (Beijing Jinhao) was high (κ = 0.847;P < .001). Variables associated with discordant results between the double-antigen sandwich and indirect ELISA in multivariate analysis were as follows: female (OR:1.462; P < .05), age (<35 years old; OR:3.667; P < .05), and cancer (suffer from malignant tumor; OR:3.621; P < .05). CONCLUSION In detection of HCV, high agreement was found between the double-antigen sandwich ELISA and indirect ELISA. Female, younger age, and suffer from malignant tumor were significant risk factors for the discordance. Based on double-antigen sandwich ELISA has distinct methodological advantages over indirect ELISA. It is recommended for the diagnosis of HCV infection.
Collapse
Affiliation(s)
- Ya‐Juan Qin
- Clinical Laboratory CenterThe Tumor Hospital Affiliated to Xin Jiang Medical UniversityUrumqiChina
| | - Ruo‐cheng Sha
- Clinical Laboratory CenterThe Tumor Hospital Affiliated to Xin Jiang Medical UniversityUrumqiChina
| | - Yang‐Chun Feng
- Clinical Laboratory CenterThe Tumor Hospital Affiliated to Xin Jiang Medical UniversityUrumqiChina
| | - Yan‐Chun Huang
- Clinical Laboratory CenterThe Tumor Hospital Affiliated to Xin Jiang Medical UniversityUrumqiChina
| |
Collapse
|
13
|
Wang W, Huang X, Fan X, Yan J, Luan J. Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Mol Med Rep 2020; 22:4116-4124. [PMID: 33000255 DOI: 10.3892/mmr.2020.11516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global public health problem. Cirrhosis and hepatocellular carcinoma are the main causes of death in patients with chronic hepatitis C (CHC) infection. Liver fibrosis is an important cause of cirrhosis and end‑stage liver disease after CHC infection. Along with the course of infection, liver fibrosis exhibits a progressive exacerbation. Hepatic stellate cells (HSCs) are involved in both physiological and pathological processes of the liver. During the chronic liver injury process, the activated HSCs transform into myofibroblasts, which are important cells in the development of liver fibrosis. At present, HCV infection still lacks specific markers for the accurate detection of the disease condition and progression. Therefore, the present review focused on HSCs, which are closely related to HCV‑infected liver fibrosis, and analyzed the changes in the HSCs, including their surface‑specific markers, cytokine production, activation, cell function and morphological structure. The present review aimed to propose novel diagnostic markers, at both the cellular and molecular level, which would be of great significance for the timely diagnosis of the disease. According to this aim, the characteristic changes of HSCs during HCV infection were reviewed in the present article.
Collapse
Affiliation(s)
- Wei Wang
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuelian Huang
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xuzhou Fan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jingmei Yan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianfeng Luan
- Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
14
|
Sarli M, Thompson CS, Novoa MB, Valentini BS, Mastropaolo M, Echaide IE, de Echaide ST, Primo ME. Development and evaluation of a double-antigen sandwich ELISA to identify Anaplasma marginale-infected and A. centrale-vaccinated cattle. J Vet Diagn Invest 2019; 32:70-76. [PMID: 31777316 DOI: 10.1177/1040638719892953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine anaplasmosis is a worldwide infectious disease caused by the intraerythrocytic bacterium Anaplasma marginale, which is transmitted by ticks and fomites. A. centrale is a less virulent subspecies used as a live vaccine in cohorts of 8- to 10-mo-old calves that did not naturally reach enzootic stability. We developed 3 variants of a double-antigen sandwich ELISA (dasELISA) using a recombinant major surface protein 5 (MSP5) from A. marginale (dasELISAm) or from A. centrale (dasELISAc) or using MSP5 from both organisms (dasELISAmc). Each dasELISA was tested for the detection of antibodies against A. marginale and A. centrale. The tests were validated using serum samples from cattle not infected with Anaplasma spp. (n = 388), infected with A. marginale (n = 436), and vaccinated with A. centrale (n = 358), confirmed by nested PCR. A total of 462 samples were compared with a commercial competitive ELISA (cELISA). For dasELISAm, dasELISAc, and dasELISAmc, specificities were 98.7%, 98.7%, and 97.4%, and overall sensitivities were 92.6%, 85.7%, and 97.4%, respectively. For A. marginale-infected and A. centrale-vaccinated cattle, sensitivities were 97.7% and 86.3% for dasELISAm, and 77.7% and 95.5% for dasELISAc, respectively. Sensitivity of dasELISAmc was similar for both groups (>96%). The agreement rate between dasELISAmc and cELISA was 96.3% (κ = 0.92); the former test allowed earlier detection of seroconversion of vaccinated cattle than did cELISA. Based on these results, the test could be used to 1) determine the enzootic stability or instability of anaplasmosis in calves, 2) conduct epidemiologic studies, and 3) evaluate the immunogenicity of A. centrale live vaccine.
Collapse
Affiliation(s)
- Macarena Sarli
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - Carolina S Thompson
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - María B Novoa
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - Beatriz S Valentini
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - Mariano Mastropaolo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - Ignacio E Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - Susana T de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| | - María E Primo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela, Santa Fe, Argentina (Sarli, Thompson, Novoa, Valentini, Echaide, T de Echaide, Primo).,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina (Sarli, Novoa, Primo).,Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina (Mastropaolo)
| |
Collapse
|
15
|
Orrego-Marín CM, Bedoya AM, Cardona Arias JA. Metaanálisis de la validez y el desempeño de las pruebas de tamización del virus de la hepatitis C en bancos de sangre, 2000-2018. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Este estudio evaluó la validez y desempeño del inmunodiagnóstico del virus de la hepatitis C (VHC), con base en estudios publicados en la literatura científica mundial. Se diseñó y validó un protocolo de búsqueda y selección de investigaciones en las fases de la guía PRISMA, se analizaron los parámetros de sensibilidad, especificidad, cocientes de probabilidad, razón de odds y curva ROC, en MetaDisc. Se tamizaron 4602 estudios, de los cuales sólo 545 se realizaron en bancos de sangre y 18 evaluaron la validez diagnóstica de las pruebas para el VHC. La mayoría de los estudios fueron de Europa y Asia, con un 78 % basados en determinación de anticuerpos. Los estudios con detección de anticuerpos se realizaron en 21 483 donantes sanos y 3 145 infectados en quienes se halló una sensibilidad de 97,8 % (IC 95 % = 97,3 - 98,2), especificidad 99,0 % (IC 95 % = 98,9 - 99,2), cociente de probabilidad positivo 75,4 (IC 95 % = 27,2 - 209,2) y negativo de 0,02 (IC 95 % = 0,01 - 0,07) y área bajo la curva de 99,8 %. Se concluye que la detección de anticuerpos presenta excelente validez, desempeño y utilidad diagnóstica para la detección del VHC en donantes de sangre y población general.
Collapse
|
16
|
Ge M, Li RC, Qu T, Gong W, Yu XL, Tu C. Construction of an HRP-streptavidin bound antigen and its application in an ELISA for porcine circovirus 2 antibodies. AMB Express 2017; 7:177. [PMID: 28921455 PMCID: PMC5603472 DOI: 10.1186/s13568-017-0473-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
A fusion protein SBP-Cap∆41, consisting of Cap∆41 (without 41 amino acids at the N-terminus) protein of porcine circovirus 2 (PCV2) and a streptavidin binding peptide (SBP), was constructed. This fusion protein binds to HRP-labeled streptavidin (HRP-SA) through high affinity between SBP and SA, forming an HRP-streptavidin bound antigen (Hsb-Ag) with both immunoreactivity and enzymatic activity, which can be used in a double-antigen sandwich ELISA for detection of PCV2 antibodies. Comparison of the characteristics of the HSb-Cap∆41 and chemical conjugates of the recombinant Cap∆41 protein showed that the HSb-Cap∆41 based double-antigen sandwich ELISA (HBDS-ELISA) had higher specificity and sensitivity. Use of the HBDS-ELISA detected PCV2-IgG in 9 injected pigs as early as 10 days p.i., 3 days earlier than both a double-antigen sandwich ELISA (DS-ELISA) based on a chemically conjugated antigen, and a commercial indirect ELISA kit.
Collapse
|
17
|
Yin HQ, Ji CF, Yang XQ, Wang R, Yang S, Zhang HQ, Zhang JG. An improved gold nanoparticle probe-based assay for HCV core antigen ultrasensitive detection. J Virol Methods 2017; 243:142-145. [PMID: 28189584 DOI: 10.1016/j.jviromet.2017.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Abstract
A gold nanoparticle probe-based assay (GNPA) was developed for ultrasensitive detection of Hepatitis C virus (HCV) core antigen. In the GNPA, after anti-HCV core antigen polyclonal antibodies and single-stranded barcode signal DNA were labeled on gold nanoparticle probe (NP), DNA enzyme was used to degrade the unbound barcode DNAs. The anti-HCV core antigen monoclonal antibodies were coated on magnetic microparticles probe (MMP). Then the NP-HCV core antigen-MMP sandwich immuno-complex was formed when the target antigen protein was added and captured. Magnetically separated, the immuno-complex containing the single-stranded barcode signal DNA was characterized by TaqMan probe based real-time fluorescence PCR. A detection limit of 1 fg/ml was determined for the HCV core antigen which is magnitude greater than that of ELISA (2ng/ml). The coefficients of variation (CV) of intra-assay and inter-assay respectively ranged from 0.22-2.62% and 1.92-3.01%. The improved GNPA decreased the interference of unbound barcode DNAs and may be an new way for HCV core antigen detection.
Collapse
Affiliation(s)
- Hui-Qiong Yin
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Chang-Fu Ji
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Xi-Qin Yang
- Beijing Institute of Basic Medical Science, Beijing 100850, China
| | - Rui Wang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Shu Yang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - He-Qiu Zhang
- Beijing Institute of Basic Medical Science, Beijing 100850, China
| | - Jin-Gang Zhang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China.
| |
Collapse
|
18
|
Ding MD, Wang HN, Cao HP, Fan WQ, Ma BC, Xu PW, Zhang AY, Yang X. Development of a multi-epitope antigen of S protein-based ELISA for antibodies detection against infectious bronchitis virus. Biosci Biotechnol Biochem 2015; 79:1287-95. [DOI: 10.1080/09168451.2015.1025692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
An indirect enzyme-linked immunosorbent assay (ELISA) method based on a novel multi-epitope antigen of S protein (SE) was developed for antibodies detection against infectious bronchitis virus (IBV). The multi-epitope antigen SE protein was designed by arranging three S gene fragments (166–247 aa, S1 gene; 501–515 aa, S1 gene; 8–30 aa, S2 gene) in tandem. It was identified to be approximately 32 kDa as a His-tagged fusion protein and can bind IBV positive serum by western blot analysis. The conditions of the SE-ELISA method were optimized. The optimal concentration of the coating antigen SE was 3.689 μg/mL and the dilution of the primary antibodies was identified as 1:1000 using a checkerboard titration. The cut-off OD450 value was established at 0.332. The relative sensitivity and specificity between the SE-ELISA and IDEXX ELISA kit were 92.38 and 89.83%, respectively, with an accuracy of 91.46%. This assay is sensitive and specific for detection of antibodies against IBV.
Collapse
Affiliation(s)
- Meng-die Ding
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Hong-ning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Hai-peng Cao
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Wen-qiao Fan
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Bing-cun Ma
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Peng-wei Xu
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - An-yun Zhang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| |
Collapse
|
19
|
Xiao R, Rong Z, Chen S, Chen W, Wang S. Optic fiber-based immunosensor for the rapid and sensitive detection of hepatitis C virus in serum. RSC Adv 2014. [DOI: 10.1039/c4ra06134a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A portable optic fiber-based immunosensor is developed to achieve rapid and sensitive hepatitis C virus detection in serum.
Collapse
Affiliation(s)
- Rui Xiao
- Beijing Institute of Radiation Medicine
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases
- P. R. China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases
- P. R. China
| | - Suhong Chen
- Beijing Institute of Radiation Medicine
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases
- P. R. China
| | - Wei Chen
- Beijing Institute of Radiation Medicine
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases
- P. R. China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases
- P. R. China
| |
Collapse
|
20
|
Liang M, Wang L, Ma C, Zhang M, Xie G. Sandwich Immunoassay for Hepatitis C Virus Non-Structural 5A Protein Using a Glassy Carbon Electrode Modified with an Au-MoO3/Chitosan Nanocomposite. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.755684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Development and application of a double-antigen sandwich enzyme-linked immunosorbent assay for detection of antibodies to porcine circovirus 2. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1480-6. [PMID: 22815145 DOI: 10.1128/cvi.00234-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A double-antigen sandwich enzyme-linked immunosorbent assay (ELISA) is described for detection of porcine circovirus 2 (PCV2) antibodies using the well-characterized recombinant PCV2 capsid protein. In a comparative test of 394 pig sera against an indirect immunofluorescence (IIF) test and a commercial ELISA kit (also based on the recombinant PCV2 capsid protein), the results showed that the diagnostic sensitivity, specificity, and accuracy of the assay were, respectively, 90.61, 94.02, and 91.62% compared with IIF and 94.38, 95.28, and 94.67% compared with the commercial ELISA kit. Assay of 12 PCV-free pigs over a 5-week period produced only PCV2-negative titers by all 3 methods. These results and the seroprofiles of 4 pig farms obtained by both the commercial ELISA kit and the double-antigen sandwich ELISA indicate that the sandwich ELISA is a reliable method for detection of antibodies to PCV2. Additionally, the method described here permits the use of undiluted test serum samples simultaneously loaded with horseradish peroxidase (HRP)-conjugated antigen into the test well, and the complete test procedure can be performed in less than 90 min. This double-antigen sandwich ELISA should be a useful tool to aid swine industry professionals in deciding the intervention strategies for the control of PCV2-associated diseases.
Collapse
|