1
|
Jian Y, Dong S, Zhang Q, Pan J, Hu R, Ding Z, Wu H, Ke S, Chen Z. In vitro inhibitory activity of indole alkaloid derivatives against porcine epidemic diarrhea virus. Arch Virol 2025; 170:67. [PMID: 40053140 DOI: 10.1007/s00705-025-06251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/08/2024] [Indexed: 03/29/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that can cause acute diarrhea, vomiting, dehydration, and high mortality of newborn piglets, leading to huge economic losses to the world pig industry. Given the limited efficacy of current PEDV vaccines, there is an urgent need for the development of antiviral drugs. In this study, the antiviral effects of 17 synthesized indole alkaloid derivatives against PEDV were investigated. It was observed that indole alkaloid derivative no. 14 exhibited significant inhibition of PEDV replication in a dose-dependent manner. Furthermore, time-of-addition assays and quantitative real-time PCR (QPCR) showed that delayed administration of this compound resulted in a weaker inhibitory effect on PEDV compared to early treatment. Mechanistic analysis revealed that this compound exerts its inhibitory effects during the entry stage of the PEDV life cycle. This study demonstrates the anti-PEDV effects of indole alkaloid derivative no. 14, suggesting its potential as a candidate drug for treating PEDV infections.
Collapse
Affiliation(s)
- Yaoying Jian
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Siqi Dong
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qianyi Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiali Pan
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shaoyong Ke
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
2
|
Abdelfattah MM, El-Hammady MA, Mostafa A, Kutkat O, Abo Shama NM, Nafie MS, El-Ebeedy DA, Abdel Azeiz AZ. Identification of potential antiviral compounds from Egyptian Red Sea soft corals against Middle East respiratory syndrome coronavirus. Nat Prod Res 2024; 38:3353-3359. [PMID: 37589288 DOI: 10.1080/14786419.2023.2247535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The ongoing threat of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the importance of developing effective antiviral treatments. Current research was conducted to identify potential antiviral compounds from soft corals: Sinularia leptoclados, Sarcophyton ehrenbergi, Nephthea sp., Sarcophyton glaucum and Sarcophyton regulare. The antiviral activities of soft corals extracts were evaluated against MERS-CoV. Gas chromatography-mass spectrometry (GC-MS) was used to identify bioactive compounds. The molecular docking was performed to examine the identified compounds for their binding potentials towards three pathogenic factors of MERS-CoV: main protease, spike and non-structural protein 16/10 complex. The methanolic extract of soft coral Sarcophyton regulare exhibited the most promising activity with 50% inhibitory concentration (IC50) of 4.29 µg/ml and selective index (SI) of 112.2. Among the identified compounds in the active fraction, the molecular docking showed that two fatty acid esters: hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester and octadecanoic acid, 2-hydroxy-1 (hydroxymethyl) ethyl ester had promising docking scores.
Collapse
Affiliation(s)
- Mariam M Abdelfattah
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | | | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | | | - Dalia A El-Ebeedy
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Ahmed Z Abdel Azeiz
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| |
Collapse
|
3
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
4
|
Pathak RK, Kim WI, Kim JM. Targeting the PEDV 3CL protease for identification of small molecule inhibitors: an insight from virtual screening, ADMET prediction, molecular dynamics, free energy landscape, and binding energy calculations. J Biol Eng 2023; 17:29. [PMID: 37072787 PMCID: PMC10112315 DOI: 10.1186/s13036-023-00342-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The porcine epidemic diarrhea virus (PEDV) represents a major health issue for piglets worldwide and does significant damage to the pork industry. Thus, new therapeutic approaches are urgently needed to manage PEDV infections. Due to the current lack of a reliable remedy, this present study aims to identify novel compounds that inhibit the 3CL protease of the virus involved in replication and pathogenesis. RESULTS To identify potent antiviral compounds against the 3CL protease, a virtual screening of natural compounds (n = 97,999) was conducted. The top 10 compounds were selected based on the lowest binding energy and the protein-ligand interaction analyzed. Further, the top five compounds that demonstrated a strong binding affinity were subjected to drug-likeness analysis using the ADMET prediction, which was followed by molecular dynamics simulations (500 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. Based on these parameters, four putative lead (ZINC38167083, ZINC09517223, ZINC04339983, and ZINC09517238) compounds were identified that represent potentially effective inhibitors of the 3CL protease. CONCLUSION Therefore, these can be utilized for the development of novel antiviral drugs against PEDV. However, this requires further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
5
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
6
|
Batra B, Srinivasan S, Gopalakrishnan SG, Patel CN, Kumar V, Sourirajan A, Dev K. Molecular insights into the interaction of eighteen different variants of SARS-CoV-2 spike proteins with sixteen therapeutically important phytocompounds: in silico approach. J Biomol Struct Dyn 2023; 41:12880-12907. [PMID: 36690609 DOI: 10.1080/07391102.2023.2169761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 has mutated many times among different populations. We analyzed wild-type spike protein and 18 different variants of SARS-CoV-2 spike protein known until the beginning of 2022 (alpha, beta, B.1.429, B.1.616, B.1.620, B.1.617.3, C.1.2, delta, epsilon, eta, gamma, iota, kappa, lambda, mu, omicron, theta, and zeta) for their interaction with 16 phytocompounds and remdesivir, resulting into 425 combinations. The largest number of mutations has been reported in the omicron followed by delta variant. However, the virulence of the delta variant has been reported higher as compared to omicron. Mutations at a few locations (D215G, K417N, E484K, N501Y, D614G, and P681H) were common in most of the variants. 3 D structures of all the 18 spike proteins were created using SWISS-MODEL to test the binding affinities with caffeine theophylline, emodin, vitexin, berberine, curcumin, piperine, quercetin, artemisinin, carvacrol, capsaicin, tetrahydrocannabinol, cannabidiol, α- pinene, β- pinene and gingerol. Phytocompounds and mutant variants were prepared using AutoDock 4.2.6 software. Binding affinities of the selected phytocompounds with the different mutant spike proteins were achieved using AutoDock Vina. Out of all combinations investigated, the best binding affinities were observed with 3 variants of SAR-CoV-2 with 5 phytocompounds along with remdesivir. The range of best binding energies varied from -9.1 to -8.0 kcal/mol. Further, MD simulation was done for selected 9 phytocompound-spike mutant complexes for analyzing the stability of interactions for 100 ns. ADMET studies via ProTox-II and SwissADME displayed that phytocompounds are safe and less toxic in comparison to remdesivir.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhavika Batra
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Suchetha Srinivasan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Chirag N Patel
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Vikas Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
7
|
Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon 2022; 8:e10702. [PMID: 36157310 PMCID: PMC9484857 DOI: 10.1016/j.heliyon.2022.e10702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 remains an international concern. Although there are drugs to fight it, new natural alternatives such as polyphenols are essential due to their antioxidant activity and high antiviral potential. In this context, this review reports the main findings on the effect of phenolic compounds (PCs) against SARS-CoV-2 virus. First, the proven activity of PCs against different human viruses is briefly detailed, which serves as a starting point to study their anti-COVID-19 potential. SARS-CoV-2 targets (its proteins) are defined. Findings from in silico, in vitro and in vivo studies of a wide variety of phenolic compounds are shown, emphasizing their mechanism of action, which is fundamental for drug design. Furthermore, clinical trials have demonstrated the effectiveness of PCs in the prevention and as a possible therapeutic management against COVID-19. The results were complemented with information on the influence of polyphenols in strengthening/modulating the immune system. It is recommended to investigate compounds such as vitamins, minerals, alkaloids, triterpenes and fatty acids, and their synergistic use with PCs, many of which have been successful against SARS-CoV-2. Based on findings on other viruses, synergistic evaluation of PCs with accepted drugs against COVID-19 is also suggested. Other recommendations and limitations are also shown, which is useful for professionals involved in the development of efficient, safe and low-cost therapeutic strategies based on plant matrices rich in PCs. To the authors' knowledge, this manuscript is the first to evaluate the relationship between the antiviral and immunomodulatory (including anti-inflammatory and antioxidant effects) activity of PCs and their underlying mechanisms in relation to the fight against COVID-19. It is also of interest for the general population to be informed about the importance of consuming foods rich in bioactive compounds for their health benefits.
Collapse
|
8
|
Dawadi P, Syangtan G, Lama B, Kanel SR, Raj Joshi D, Pokhrel LR, Adhikari R, Joshi HR, Pavel I. Understanding COVID-19 Situation in Nepal and Implications for SARS-CoV-2 Transmission and Management. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221104348. [PMID: 35694428 PMCID: PMC9178984 DOI: 10.1177/11786302221104348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Background The pandemic of Coronavirus Disease 2019 (COVID-19), one of the most infectious diseases in the modern history, is caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and has had a profound health and economic toll, globally. This paper identifies the overall health status associated with COVID-19 pandemic in all 7 provinces of Nepal, a developing country in South Asia, analyzing data from January 2020 to February 2022. It focuses on the SARS-CoV-2 prevalence, transmission through wastewater and other routes, diagnostics, treatment options, and alternative medicines, thereby offering key perspectives for its management. Materials and Methods Studies regarding coronavirus spanning the 2017 to 2022 period were searched on the web, Nepalese database, and Web of Science. Refined criteria included SARS-CoV-2 in wastewater of Nepal or worldwide. Demographic data (sex, age-group, and geographic location) were also obtained from websites and relevant reports of the Ministry of Health and Population (MOHP) of Nepal, ranging from January 2020 to February 2022. Moreover, trends concerning lockdown, business, and border activities in Nepal between February 2020 and October 2020 were evaluated. The viral dissemination pathways, diagnosis, and available treatment options, including the Ayurvedic medicine, were also examined. Results Aerosols generated during the hospital, industrial, recreational, and household activities were found to contribute to the propagation of SARS-CoV-2 into environmental wastewater, thereby putting the surrounding communities at risk of infection. When lockdown ended and businesses opened in October 2020, the number of active cases of COVID-19 increased exponentially. Bagmati Province had the highest number of cases (53.84%), while the remaining 6 provinces tallied 46.16%. Kathmandu district had the highest number of COVID-19 cases (138, 319 cases), while Manang district had the smallest number of infections (81 cases). The male population was found to be predominantly infected (58.7%). The most affected age groups were the 31 to 40 years old males (25.92%) and the 21 to 30 years old females (26.85%). Conclusion The pandemic impacted the public health and economic growth in our study duration. SARS-CoV-2 was prevalent in the wastewater of Nepal. The Terai districts and the megacities were mostly affected by SARS-CoV-2 infections. Working-age groups and males were identified as the highest risk groups. More investigations on the therapeutic and alternative cures are recommended. These findings may guide the researchers and professionals with handling the COVID-19 challenges in developing countries such as Nepal and better prepare for future pandemics.
Collapse
Affiliation(s)
- Prabin Dawadi
- Biological Resources Unit, Nepal Academy of Science and Technology, Lalitpur, Bagmati, Nepal
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Gopiram Syangtan
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Bhupendra Lama
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Sushil R. Kanel
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Bagmati, Nepal
| | - Lok R. Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rameshwar Adhikari
- Research Center for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Hem R. Joshi
- Department of Mathematics, Xavier University, Cincinnati, OH, USA
| | - Ioana Pavel
- Department of Physical and Environmental Sciences, Texas A&M University at Corpus Christi, Corpus Christi, TX, USA
| |
Collapse
|
9
|
Pathak RK, Seo YJ, Kim JM. Structural insights into inhibition of PRRSV Nsp4 revealed by structure-based virtual screening, molecular dynamics, and MM-PBSA studies. J Biol Eng 2022; 16:4. [PMID: 35193698 PMCID: PMC8864930 DOI: 10.1186/s13036-022-00284-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome respiratory sickness in weaned and growing pigs, as well as sow reproductive failure, and its infection is regarded as one of the most serious swine illnesses worldwide. Given the current lack of an effective treatment, in this study, we identified natural compounds capable of inhibiting non-structural protein 4 (Nsp4) of the virus, which is involved in their replication and pathogenesis. RESULTS We screened natural compounds (n = 97,999) obtained from the ZINC database against Nsp4 and selected the top 10 compounds for analysing protein-ligand interactions and physicochemical properties. The five compounds demonstrating strong binding affinity were then subjected to molecular dynamics simulations (100 ns) and binding free energy calculations. Based on analysis, we identified four possible lead compounds that represent potentially effective drug-like inhibitors. CONCLUSIONS These methods identified that these natural compounds are capable of inhibiting Nsp4 and possibly effective as antiviral therapeutics against PRRSV.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Young-Jun Seo
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
10
|
Chawla U, Kashyap MK, Husain A. Aging and diabetes drive the COVID-19 forwards; unveiling nature and existing therapies for the treatment. Mol Cell Biochem 2021; 476:3911-3922. [PMID: 34169437 PMCID: PMC8224992 DOI: 10.1007/s11010-021-04200-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide and resulted in more than 3.5 million deaths so far. The infection causes Coronavirus disease (COVID-19) in people of all age groups, notably diabetic and old age people, at a higher risk of infectivity and fatality. Around 35% of the patients who have died of the disease were diabetic. The infection is associated with weakening immune response, chronic inflammation, and potential direct pancreatic impairment. There seems to be a three-way association of the SARS-CoV-2 infection with diabetes and aging. The COVID-19 infection causes metabolism complications, which may induce diabetes and accelerate aging in healthy individuals. How does diabetes elevate the likelihood of the infection is not clearly understood. we summarize mechanisms of accelerated aging in COVID-19 and diabetes, and the possible correlation of these three diseases. Various drug candidates under different stages of pre-clinical or clinical developments give us hope for the development of COVID-19 therapeutics, but there is no approved drug so far to treat this disease. Here, we explored the potential of anti-diabetic and anti-aging natural compounds for the COVID-19 treatment. We have also reviewed different therapeutic strategies with plant-based natural products that may be used to cure patients infected with SARS-CoV-2 and post-infection syndrome.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, The University of Arizona, Old Chemistry 226, Tucson, AZ, 85721, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley Panchgaon, Manesar (Gurugram), Haryana, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
- Innovation and Incubation Centre for Entrepreneurship, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
| |
Collapse
|
11
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
12
|
Phumthum M, Nguanchoo V, Balslev H. Medicinal Plants Used for Treating Mild Covid-19 Symptoms Among Thai Karen and Hmong. Front Pharmacol 2021; 12:699897. [PMID: 34354592 PMCID: PMC8329454 DOI: 10.3389/fphar.2021.699897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The COVID-19 pandemic is causing many severe problems globally, and it is not known for how long it will last. The only hope we have for dealing with the problem is to produce sufficient vaccines and administer them efficiently. However, the current demand for vaccines greatly exceeds the supply, and many people will suffer from the disease for still some time. Moreover, the period for immunity obtained by the vaccines remains unknown, and we cannot predict how long the world will suffer the COVID-19 infections. Therefore, there will be a continued demand for treatments of its symptoms. An alternative solution for providing such treatment is the use of traditional medicinal plants. Aims: To document medicinal plants used by Hmong and Karen in Thailand to treat mild symptoms of COVID-19. Methods: Traditional knowledge about ethnomedicinal plants used by Hmong and Karen in Thailand for treating mild symptoms listed by WHO as associated with COVID 19, was collected in field interviews and extracted from the literature. Results: We identified 491 plant species used medicinally by both ethnic groups to treat fever, cough, diarrhea, muscle pain and ache, rash, headache, sore throat, and conjunctivitis. Of the 491 species 60 were mentioned at least five times in the literature or in our field data. Of these 60 species, we propose the most commonly used ones for treatments of mild COVID-19 symptoms. Ten of these most commonly mentioned species were used for treatments of fever, nine for treatment of cough, four for treatment of diarrhea, two for treatment of rash, and a single species was used to treat muscle pain and headache. Conclusion: This study suggests alternative treatments for mild symptoms of COVID-19 with medicinal plants that are traditionally used by the ethnic minority groups of the Hmong and Karen in Thailand. Although COVID-19 is a new disease, its mild symptoms are shared with many other diseases. Traditional knowledge on medicinal plants used by the Thai Karen and Hmong could help in the treatments of these symptoms associated with COVID-19. Many of the proposed plants were used abundantly by both ethnic groups, and other studies on biological activities support their efficacy in such treatments.
Collapse
Affiliation(s)
- Methee Phumthum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Sireeruckhachati Nature Learning Park, Mahidol University, Nakhon Pathom, Thailand
| | - Varangrat Nguanchoo
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Henrik Balslev
- Department of Biology, Faculty of Natural Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Chawla U, Kashyap MK, Husain A. Aging and diabetes drive the COVID-19 forwards; unveiling nature and existing therapies for the treatment. Mol Cell Biochem 2021. [PMID: 34169437 DOI: 10.1007/s11010-021-04200-7,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide and resulted in more than 3.5 million deaths so far. The infection causes Coronavirus disease (COVID-19) in people of all age groups, notably diabetic and old age people, at a higher risk of infectivity and fatality. Around 35% of the patients who have died of the disease were diabetic. The infection is associated with weakening immune response, chronic inflammation, and potential direct pancreatic impairment. There seems to be a three-way association of the SARS-CoV-2 infection with diabetes and aging. The COVID-19 infection causes metabolism complications, which may induce diabetes and accelerate aging in healthy individuals. How does diabetes elevate the likelihood of the infection is not clearly understood. we summarize mechanisms of accelerated aging in COVID-19 and diabetes, and the possible correlation of these three diseases. Various drug candidates under different stages of pre-clinical or clinical developments give us hope for the development of COVID-19 therapeutics, but there is no approved drug so far to treat this disease. Here, we explored the potential of anti-diabetic and anti-aging natural compounds for the COVID-19 treatment. We have also reviewed different therapeutic strategies with plant-based natural products that may be used to cure patients infected with SARS-CoV-2 and post-infection syndrome.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, The University of Arizona, Old Chemistry 226, Tucson, AZ, 85721, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley Panchgaon, Manesar (Gurugram), Haryana, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India. .,Innovation and Incubation Centre for Entrepreneurship, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
| |
Collapse
|
14
|
Rizzuti B, Grande F, Conforti F, Jimenez-Alesanco A, Ceballos-Laita L, Ortega-Alarcon D, Vega S, Reyburn HT, Abian O, Velazquez-Campoy A. Rutin Is a Low Micromolar Inhibitor of SARS-CoV-2 Main Protease 3CLpro: Implications for Drug Design of Quercetin Analogs. Biomedicines 2021; 9:biomedicines9040375. [PMID: 33918402 PMCID: PMC8066963 DOI: 10.3390/biomedicines9040375] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has stimulated the search for antivirals to tackle COVID-19 infection. Molecules with known pharmacokinetics and already approved for human use have been demonstrated or predicted to be suitable to be used either directly or as a base for a scaffold-based drug design. Among these substances, quercetin is known to be a potent in vitro inhibitor of 3CLpro, the SARS-CoV-2 main protease. However, its low in vivo bioavailability calls for modifications to its molecular structure. In this work, this issue is addressed by using rutin, a natural flavonoid that is the most common glycosylated conjugate of quercetin, as a model. Combining experimental (spectroscopy and calorimetry) and simulation techniques (docking and molecular dynamics simulations), we demonstrate that the sugar adduct does not hamper rutin binding to 3CLpro, and the conjugated compound preserves a high potency (inhibition constant in the low micromolar range, Ki = 11 μM). Although showing a disruption of the pseudo-symmetry in the chemical structure, a larger steric volume and molecular weight, and a higher solubility compared to quercetin, rutin is able to associate in the active site of 3CLpro, interacting with the catalytic dyad (His41/Cys145). The overall results have implications in the drug-design of quercetin analogs, and possibly other antivirals, to target the catalytic site of the SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.G.); (F.C.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.G.); (F.C.)
| | - Ana Jimenez-Alesanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
| | - David Ortega-Alarcon
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain;
| | - Olga Abian
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Aragon Health Sciences Institute (IACS), 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain; (A.J.-A.); (L.C.-L.); (D.O.-A.); (S.V.)
- Departament of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (O.A.); (A.V.-C.)
| |
Collapse
|