1
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
2
|
Roodbari AS, Solhjoo S, Palmerini MG, Mansouri M, Ezzatabadipour M. The effect of human menstrual blood-derived stem cells on ovarian folliculogenesis, angiogenesis and collagen volume in female rats affected by the polycystic ovary syndrome. J Ovarian Res 2023; 16:170. [PMID: 37608312 PMCID: PMC10463952 DOI: 10.1186/s13048-023-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Infertility is one of the common problems among couples, affecting millions of people worldwide. Polycystic ovary syndrome (PCOS) is one of the main causes of infertility in women and is associated with abnormal folliculogenesis, angiogenesis and fibrosis. Common treatments may lead to numerous adverse effects on the patient's quality of life. The present study aimed to investigate the effects of human menstrual blood-derived stem cells on the ovarian histology of a PCOS model of Wistar rats. RESULTS Based on the Papanicolaou test and H&E staining results, the number of primary, secondary and antral follicles in the PCOS and PCOS-Sham groups significantly increased compared to the control group, while they significantly decreased in the PCOS + Stem cells group compared to the PCOS and PCOS-Sham groups. Further, the number of atretic follicles in both PCOS and PCOS-Sham groups significantly increased in comparison with the control group and decreased in the PCOS + Stem cells group, compared to the two mentioned groups. Moreover, the Graafian follicles number was decreased in the PCOS and PCOS-Sham groups to significantly increase in the PCOS + Stem cells group. Based on Masson's trichrome staining, the number of blood vessels in PCOS and PCOS-Sham groups significantly increased compared to the control group, while a decrease was observed in the PCOS + Stem cells group, compared to PCOS and PCOS-Sham groups. CONCLUSION The administration of MenSCs improved folliculogenesis in rats with polycystic ovaries. Also, MenSCs could ameliorate PCOS symptoms by improving fibrosis as well as angiogenesis and weight gain.
Collapse
Affiliation(s)
- Ali Sarhadi Roodbari
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mahna Mansouri
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Ladak SS, McQueen LW, Layton GR, Aujla H, Adebayo A, Zakkar M. The Role of Endothelial Cells in the Onset, Development and Modulation of Vein Graft Disease. Cells 2022; 11:3066. [PMID: 36231026 PMCID: PMC9561968 DOI: 10.3390/cells11193066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells comprise the intimal layer of the vasculature, playing a crucial role in facilitating and regulating aspects such nutrient transport, vascular homeostasis, and inflammatory response. Given the importance of these cells in maintaining a healthy haemodynamic environment, dysfunction of the endothelium is central to a host of vascular diseases and is a key predictor of cardiovascular risk. Of note, endothelial dysfunction is believed to be a key driver for vein graft disease-a pathology in which vein grafts utilised in coronary artery bypass graft surgery develop intimal hyperplasia and accelerated atherosclerosis, resulting in poor long-term patency rates. Activation and denudation of the endothelium following surgical trauma and implantation of the graft encourage a host of immune, inflammatory, and cellular differentiation responses that risk driving the graft to failure. This review aims to provide an overview of the current working knowledge regarding the role of endothelial cells in the onset, development, and modulation of vein graft disease, as well as addressing current surgical and medical management approaches which aim to beneficially modulate endothelial function and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
4
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease. Int J Biochem Cell Biol 2022; 144:106173. [PMID: 35151879 DOI: 10.1016/j.biocel.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The long saphenous vein is commonly used in cardiac surgery to bypass occluded coronary arteries. Its use is complicated by late stenosis and occlusion due to the development of intimal hyperplasia. It is accepted that intimal hyperplasia is a multifactorial inflammatory process that starts immediately after surgery. The role of acute changes in haemodynamic conditions when the vein is implanted into arterial circulation, especially shear stress, is not fully appreciated. This review provides an overview of intimal hyperplasia and the effect of acute shear stress changes on the activation of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Liam W McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem S Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
6
|
Abstract
Revascularization surgeries such as coronary artery bypass grafting (CABG) are sometimes necessary to manage coronary heart disease (CHD). However, more than half of these surgeries fail within 10 years due to the development of intimal hyperplasia (IH) among others. The cytokine transforming growth factor-beta (TGFß) and its signaling components have been found to be upregulated in diseased or injured vessels, and to promote IH after grafting. Interventions that globally inhibit TGFß in CABG have yielded contrasting outcomes in in vitro and in vivo studies including clinical trials. With advances in molecular biology, it becomes clear that TGFß exhibits both protective and damaging roles, and only specific components such as some Smad-dependent TGFß signaling mediate vascular IH. The activin receptor-like kinase (ALK)-mediated Smad-dependent TGFß signaling pathways have been found to be activated in human vascular smooth muscle cells (VSMCs) following injury and in hyperplastic preimplantation vein grafts. It appears that focused targeting of TGFß pathway constitutes a promising therapeutic target to improve the outcome of CABG. This study dissects the role of TGFß pathway in CABG failure, with particular emphasis on the therapeutic potentials of specific targeting of Smad-dependent and ALK-mediated signaling.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- Department of Veterinary Pharmacology and Toxicology, 58989Ahmadu Bello University, Zaria, Nigeria.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Steger CM, Hartmann A, Rieker RJ. Molecular differences between arterial and venous grafts in the first year after coronary artery bypass grafting. Histochem Cell Biol 2020; 154:405-419. [PMID: 32705339 DOI: 10.1007/s00418-020-01896-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Despite commonly used for coronary artery bypass surgery, saphenous vein (SV) grafts have significantly lower patency rates in comparison to internal thoracic artery (ITA) grafts, which might be due to the structural characteristics of the vessel wall but also due to differences in oxidative stress adaptation and molecular signaling and regulation. This human post mortem study included a total of 150 human bypass grafts (75 SV grafts and 75 ITA grafts) obtained from 60 patients divided into five groups due to the time period of implantation: group 1: baseline group without grafting; group 2: 1 day; group 3: > 1 day-1 week; group 4: > 1 week-1 month; group 5: > 1 month-1 year. Pieces of 3 mm length were fixed with formaldehyde, dehydrated, wax embedded, cut into sections of 3 µm thickness, and histologically and immunohistochemically examined. Over the whole time period, we observed a lower neointima formation and a better preserved media in ITA grafts with a higher percentage of TNF-α, PDGFR-α, and VEGF-A in nearly all vessel wall layers, a higher amount of MMP-7, MMP-9, EGFR, and bFGF positive cells in SV grafts and a timely different peak not only between ITA and SV grafts but also within the various vessel wall layers of both graft types. Since most of the examined growth factors, growth factor receptors and cytokines are regulated by MAPKs, our results suggest an activation of different pathways in both vessel graft types immediately after bypass grafting.
Collapse
Affiliation(s)
- Christina Maria Steger
- Department of Pathology, Academic Teaching Hospital Feldkirch, Affiliation of the Innsbruck Medical University, Carinagasse 47, 6800, Feldkirch, Austria.
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Ralf Joachim Rieker
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| |
Collapse
|
8
|
Uchida D, Saito Y, Kikuchi S, Yoshida Y, Hirata S, Sasajima T, Azuma N. Development of gene therapy with a cyclic adenosine monophosphate response element decoy oligodeoxynucleotide to prevent vascular intimal hyperplasia. J Vasc Surg 2019; 71:229-241. [PMID: 31204215 DOI: 10.1016/j.jvs.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/17/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Intimal hyperplasia (IH) is the main cause of therapeutic failure after vascular and endovascular surgery. However, there is currently no targeted therapy for the treatment of IH. We recently reported that the inhibition of cyclic adenosine monophosphate response element (CRE) binding protein (CREB) activation is important in vein graft IH. We focused on a decoy oligodeoxynucleotide (ODN) therapeutic strategy for suppressing IH as a clinical application. The objective of this study was to confirm the therapeutic effect of a CRE decoy ODN in an animal model as a novel therapy for preventing intimal hyperplasia as the first step of the preclinical study of our strategy. METHODS We designed two phosphorothioate CREs and two scramble decoy ODNs and screened them using a CREB transcription assay to check their ability to bind to a CRE sequence. We chose a CRE decoy ODN with high first-binding ability and transfected it into vascular smooth muscle cells (VSMCs) in vitro. Proliferation and migration were assessed using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays and modified Boyden chamber assays. We examined CRE activity using a luciferase reporter gene assay. We assessed the expression of messenger RNAs by quantitative real-time polymerase chain reaction. In a wire-injury mouse model (C57BL6, n = 6), CRE decoy ODN was transfected into the injured vessel wall using an ultrasound-sonoporation method in vivo. Mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) and four and a half LIM domains 5 (FHL5) expression of pregrafting vein remnants were assessed by immunohistologic analyses. RESULTS Compared with scramble decoy ODN, the selected CRE decoy ODN could significantly decrease CRE activity (mean ± standard error of the mean: 0.20 ± 0.03 vs 1.00 ± 0.16, n = 6; P < .05) as shown by a luciferase reporter gene assay, VSMC proliferation (0.73 ± 0.04 vs 0.89 ± 0.02, n = 6; P < .05) and migration (96.4 ± 6.1 vs 311.4 ± 19.1 migrated VSMCs/well, n = 6; P < .05) after 24-hour transfection. The CRE decoy ODN significantly suppressed the formation of IH at injured vessel walls in an animal model, as analyzed by pathologic staining (0.20 ± 0.02 vs 0.56 ± 0.08, area of the intima/area of the artery vs the control after 21 days' transfection, n = 6; P < .05). Furthermore, MAPKAPK3 and FHL5, which are CREB activators, were significantly expressed in pregrafting vein remnants in diabetes mellitus patients. CONCLUSIONS CREB-CRE signaling is an important mechanism of IH formation, and CRE decoy therapy can help preventing IH. This study is the first part of the preclinical study of our strategy.
Collapse
MESH Headings
- Animals
- CREB-Binding Protein/genetics
- CREB-Binding Protein/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/metabolism
- Disease Models, Animal
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- LIM Domain Proteins/genetics
- LIM Domain Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Oligodeoxyribonucleotides/genetics
- Oligodeoxyribonucleotides/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Response Elements/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Vascular System Injuries/prevention & control
Collapse
Affiliation(s)
- Daiki Uchida
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yukihiro Saito
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Shinsuke Kikuchi
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuri Yoshida
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Hirata
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tadahiro Sasajima
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Nobuyoshi Azuma
- Division of Vascular Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
9
|
Temporal Change of Extracellular Matrix during Vein Arterialization Remodeling in Rats. J Cardiovasc Dev Dis 2019; 6:jcdd6010007. [PMID: 30717394 PMCID: PMC6463024 DOI: 10.3390/jcdd6010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
The global expression profile of the arterialized rat jugular vein was established to identify candidate genes and cellular pathways underlying the remodeling process. The arterialized jugular vein was analyzed on days 3 and 28 post-surgery and compared with the normal jugular vein and carotid artery. A gene array platform detected 9846 genes in all samples. A heatmap analysis uncovered patterns of gene expression showing that the arterialized vein underwent a partial transition from vein to artery from day 3 to 28 post-surgery. The same pattern was verified for 1845 key differentially expressed genes by performing a pairwise comparison of the jugular vein with the other groups. Interestingly, hierarchical clustering of 60 genes with altered expression on day 3 and day 28 displayed an expression pattern similar to that of the carotid artery. Enrichment analysis results and the network relationship among genes modulated during vein arterialization showed that collagen might play a role in the early remodeling process. Indeed, the total collagen content was increased, with the augmented expression of collagen I, collagen IV, and collagen V in arterialized veins. Additionally, there was an increase in the expression of versican and Thy-1 and a decrease in the expression of biglycan and β1-integrin. Overall, we provide evidence that vein arterialization remodeling is accompanied by consistent patterns of gene expression and that collagen may be an essential element underlying extracellular matrix changes that support the increased vascular wall stress of the new hemodynamic environment.
Collapse
|
10
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
11
|
Zhu Z, Zheng X, Li D, Wang T, Xu R, Piao H, Liu K. Prx1 promotes the proliferation and migration of vascular smooth muscle cells in a TLR4-dependent manner. Mol Med Rep 2016; 15:345-351. [DOI: 10.3892/mmr.2016.5987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/02/2016] [Indexed: 11/06/2022] Open
|
12
|
Garcia RA, deRoux SJ, Axiotis CA. Isolated fibromuscular dysplasia of the coronary ostium: a rare cause of sudden death. Case report and review of the literature. Cardiovasc Pathol 2015; 24:327-31. [DOI: 10.1016/j.carpath.2015.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/26/2022] Open
|
13
|
Wu Y, Huang A, Li T, Su X, Ding H, Li H, Qin X, Hou L, Zhao Q, Ge X, Fang T, Wang R, Gao C, Li J, Shao N. MiR-152 reduces human umbilical vein endothelial cell proliferation and migration by targeting ADAM17. FEBS Lett 2014; 588:2063-9. [DOI: 10.1016/j.febslet.2014.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
14
|
Stack A, Derksen FJ, Sordillo LM, Williams KJ, Stick JA, Brandenberger C, Steibel JP, Robinson NE. Effects of exercise on markers of venous remodeling in lungs of horses. Am J Vet Res 2013; 74:1231-8. [DOI: 10.2460/ajvr.74.9.1231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Guo T, Fang M, Zhang D, Li X. Combination treatment with asiaticoside and rapamycin: A new hope for in-stent restenosis. Exp Ther Med 2013; 6:557-561. [PMID: 24137226 PMCID: PMC3786836 DOI: 10.3892/etm.2013.1155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate and characterize the efficacy and mechanism of action of asiaticoside in combination with rapamycin in the inhibition of in-stent restenosis (ISR). The effects of asiaticoside combined with rapamycin on cell proliferation in vitro were evaluated by MTT assay. The mRNA expression was analyzed by quantitative polymerase chain reaction (qPCR). Enzyme-linked immunosorbent assay (ELISA) was used to confirm protein synthesis. The cell growth inhibition rate in the combination group was significantly higher compared with those in the asiaticoside and rapamycin groups for human aortic fibroblasts (HAFs; 63.50±3.83, 53.06±8.10 and 60.34±4.9%, respectively) and human aortic smooth muscle cells (HASMCs; 33.12±1.35, 26.21±7.59 and 28.27±4.92, respectively; P<0.05). However, for human coronary artery endothelial cells (HCAECs), the cell growth inhibition rates in the combination, asiaticoside and rapamycin groups were 11.09±1.17, 26.22±4.24 and 34.80±2.80%, respectively (P<0.05), as detected by MTT assay. The qPCR assay showed that in the combination group the level of von Willebrand factor (vWF) mRNA was downregulated, while platelet endothelial cell adhesion molecule (PECAM-1) and endothelial nitric oxide synthase (eNOS) mRNAs were upregulated in HCAECs compared with the rapamycin group (P<0.05). Transforming growth factor (TGF)-β1 and TIMP1 mRNAs were downregulated while Smad7 and matrix metalloproteinase 1 (MMP1) mRNAs were upregulated in HAFs compared with the rapamycin and AT groups (P<0.05). The ELISA showed that the type I collagen level was significantly reduced in HASMCs and HAFs (P<0.05). The data suggest that asiaticoside combined with rapamycin may be effective in the reduction of ISR.
Collapse
Affiliation(s)
- Tian Guo
- Medical School, Tongji University, Shanghai 200092
| | | | | | | |
Collapse
|
16
|
Gene therapy for cardiovascular disease: perspectives and potential. Vascul Pharmacol 2012; 58:174-81. [PMID: 23142171 DOI: 10.1016/j.vph.2012.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the most frequent cause of mortality in the western world, accounting for over 800,000 premature deaths per year in the EU alone. Cardiovascular disease is the second most common application for gene therapy clinical trials, which most frequently employ adenovirus serotype 5 (Ad5)-based vectors as delivery vehicles. Although interactions of Ad5 vectors with circulating proteins and cells can limit their efficacy after systemic administration, local gene delivery strategies show great potential in the cardiovascular setting, notably in the context of vascular delivery. Here we review the pathogenesis of bypass graft failure and in-stent restenosis, identifying potential therapeutic targets and discussing recent advances in the field of adenovirus biology and retargeting that, in concert, will potentially translate in coming years to more effective gene therapies for cardiovascular applications.
Collapse
|
17
|
Bhasin M, Huang Z, Pradhan-Nabzdyk L, Malek JY, LoGerfo PJ, Contreras M, Guthrie P, Csizmadia E, Andersen N, Kocher O, Ferran C, LoGerfo FW. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury. PLoS One 2012; 7:e39123. [PMID: 22720046 PMCID: PMC3376111 DOI: 10.1371/journal.pone.0039123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC) and medial smooth muscle cells (SMC) from canine vein grafts, 2 hours (H) to 30 days (D) following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1) signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR) as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1), a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.
Collapse
Affiliation(s)
- Manoj Bhasin
- Genomics and Proteomics Center, Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Huang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Junaid Y. Malek
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philip J. LoGerfo
- Genomics and Proteomics Center, Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patrick Guthrie
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eva Csizmadia
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas Andersen
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivier Kocher
- Deptartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Vascular Biology Research and Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank W. LoGerfo
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cell Signal 2011; 23:951-62. [PMID: 20940046 PMCID: PMC3076078 DOI: 10.1016/j.cellsig.2010.10.015] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.
Collapse
Affiliation(s)
- Maozhen Tian
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Jason R. Neil
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - William P. Schiemann
- Division of General Medical Sciences–Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
19
|
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. J Surg Res 2011; 167:287-97. [PMID: 21324395 PMCID: PMC3077463 DOI: 10.1016/j.jss.2010.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/17/2023]
Abstract
Despite novel surgical therapies for the treatment of atherosclerosis, restenosis continues to be a significant impediment to the long-term success of vascular interventions. Transforming growth factor-beta (TGF-β), a family of cytokines found to be up-regulated at sites of arterial injury, has long been implicated in restenosis; a role that has largely been attributed to TGF-β-mediated vascular fibrosis. However, emerging data indicate that the role of TGF-β in intimal thickening and arterial remodeling, the critical components of restenosis, is complex and multidirectional. Recent advancements have clarified the basic signaling pathway of TGF-β, making evident the need to redefine the precise role of this family of cytokines and its primary signaling pathway, Smad, in restenosis. Unraveling TGF-β signaling in intimal thickening and arterial remodeling will pave the way for a clearer understanding of restenosis and the development of innovative pharmacological therapies.
Collapse
Affiliation(s)
- Pasithorn A. Suwanabol
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
20
|
Muto A, Model L, Ziegler K, Eghbalieh SD, Dardik A. Mechanisms of vein graft adaptation to the arterial circulation: insights into the neointimal algorithm and management strategies. Circ J 2010; 74:1501-12. [PMID: 20606326 PMCID: PMC3662001 DOI: 10.1253/circj.cj-10-0495] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
For patients with coronary artery disease or limb ischemia, placement of a vein graft as a conduit for a bypass is an important and generally durable strategy among the options for arterial reconstructive surgery. Vein grafts adapt to the arterial environment, and the limited formation of intimal hyperplasia in the vein graft wall is thought to be an important component of successful vein graft adaptation. However, it is also known that abnormal, or uncontrolled, adaptation may lead to abnormal vessel wall remodeling with excessive neointimal hyperplasia, and ultimately vein graft failure and clinical complications. Therefore, understanding the venous-specific pathophysiological and molecular mechanisms of vein graft adaptation are important for clinical vein graft management. Of particular importance, it is currently unknown whether there exist several specific distinct molecular differences in the venous mechanisms of adaptation that are distinct from arterial post-injury responses; in particular, the participation of the venous determinant Eph-B4 and the vascular protective molecule Nogo-B may be involved in mechanisms of vessel remodeling specific to the vein. This review describes (1) venous biology from embryonic development to the mature quiescent state, (2) sequential pathologies of vein graft neointima formation, and (3) novel candidates for strategies of vein graft management. Scientific inquiry into venous-specific adaptation mechanisms will ultimately provide improvements in vein graft clinical outcomes.
Collapse
Affiliation(s)
- Akihito Muto
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Lynn Model
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Kenneth Ziegler
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
| | - Sammy D.D. Eghbalieh
- Interdepartmental Program in Vascular Biology and Therapeutics
- St. Mary's Hospital, Waterbury, CT
| | - Alan Dardik
- Interdepartmental Program in Vascular Biology and Therapeutics
- the Section of Vascular Surgery, Yale University School of Medicine, New Haven, CT
- the VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
21
|
Wu J, Zhang C. Neointimal hyperplasia, vein graft remodeling, and long-term patency. Am J Physiol Heart Circ Physiol 2009; 297:H1194-5. [PMID: 19666837 DOI: 10.1152/ajpheart.00703.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
MIAO ZL, WANG ZN, YANG YD, CHEN LQ, CUI R, WANG XL, OU RQ. Role of TGF-β1 in the Formation of Ovarian Interstitial Fibrosis in PCOS Rat. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1001-7844(08)60010-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Abstract
Reticulohistiocytoses consist of a rare group of diseases caused by CD68+ macrophage proliferation. Several advances have been achieved in relation to the receptors involved in these diseases. This knowledge will clarify the physiopathologic mechanisms of the reticulohistiocytoses and direct better therapeutic approaches for patients.
Collapse
Affiliation(s)
- Flávio Barbosa Luz
- General Policlinics of Rio de Janeiro/Carlos Chagas Medical Post-Graduation Institute, Rua Desembargador Izidro 28/1001, 20521-160 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
24
|
Thomas KR, Thomas SP, Hewan-Lowe KO, Pestaner JP. Fibromuscular dysplasia in association with intrauterine cocaine exposure. Cardiovasc Pathol 2007; 16:313-6. [PMID: 17868884 DOI: 10.1016/j.carpath.2006.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/14/2006] [Accepted: 12/29/2006] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fibromuscular dysplasia (FMD) is an idiopathic disease of small- and medium-sized arteries, involving one or more vascular beds. Patients may present with a range of symptoms, which may not readily lead to a diagnosis of FMD. While maternal cocaine abuse during pregnancy has previously been associated with vascular alterations in the fetus, an association specifically with FMD has not previously been described. METHODS/RESULTS In this case report, a 21-month-old male presented with a 3-week history of daily vomiting, with temporary improvement of symptoms, then relapse followed by loss of consciousness. His medical history was significant only for maternal cocaine use. Clinical evaluation revealed dilated cardiomyopathy, and a presumptive diagnosis of myocarditis was rendered. Respiratory arrest and death occurred 2 days after admission. Postmortem examination demonstrated intimal-type multivessel FMD, which was determined to be the cause of the clinical presentation. CONCLUSION Without a postmortem examination, it is unlikely that a diagnosis of intimal fibroplasia, a rare variant of FMD (5% of cases), would have been made. This case thus illustrates the continuing utility of the classic postmortem examination. More intriguingly, the case suggests a possible relationship between in utero cocaine exposure and the development of fibromuscular dysplasia in the child.
Collapse
Affiliation(s)
- Kevin R Thomas
- Department of Pathology, Brody School of Medicine at East Carolina University and Pitt County Memorial Hospital, Greenville, NC 27858, USA.
| | | | | | | |
Collapse
|
25
|
Cheng J, Du J. Mechanical Stretch Simulates Proliferation of Venous Smooth Muscle Cells Through Activation of the Insulin-Like Growth Factor-1 Receptor. Arterioscler Thromb Vasc Biol 2007; 27:1744-51. [PMID: 17541019 DOI: 10.1161/atvbaha.107.147371] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Activation and proliferation of vascular smooth muscle cells (VSMCs) occur in the venous neointima of vein grafts. VSMCs in a grafted vein are subjected to mechanical stretch; our goal is to understand the essential mechanical stretch-regulated signals that influence VSMCs during neointimal formation in vein grafts. METHODS AND RESULTS In cultured vein VSMCs, mechanical stretch induces proliferation and upregulation of both IGF-1 and IGF-1R. Stretch of VSMCs sustained tyrosine phosphorylation of both IGF-1R and its substrate, IRS-1; these responses were related to mechanical stretch-induced activation of Src and autocrine IGF-1 production. Mechanical stretch-activated IGF-1R is functional because there is a prolonged activation of IRS-1-associated phosphatidylinositol-3 kinase (PI3K). When we knocked out IGF-1R, the mechanical stretch-induced increase in VSMC proliferation was blocked. To link mechanical stretch-activated IGF-1R cell signaling to venous VSMC proliferation in vivo, we also studied a vein graft model. Tamoxifen-inducible null deletion of IGF-1R in mice reduced the formation of neointima in the vein graft. CONCLUSIONS Our results demonstrate for the first time that mechanical stretch activates IGF-1/IGF-1R signals in venous VSMCs, and we have uncovered a signaling pathway that leads to neointima formation in vivo.
Collapse
Affiliation(s)
- Jizhong Cheng
- Baylor College of Medicine, Division of Nephrology, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Galliher AJ, Neil JR, Schiemann WP. Role of transforming growth factor-beta in cancer progression. Future Oncol 2007; 2:743-63. [PMID: 17155901 DOI: 10.2217/14796694.2.6.743] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Invasion and metastasis are the most lethal characteristics of cancer and the leading causes of cancer-related death. Transforming growth factor (TGF)-beta is a multifunctional cytokine that normally functions to prevent the uncontrolled proliferation of epithelial, endothelial and hematopoietic cells. Quite dichotomously, however, aberrant genetic or epigenetic events often negate the cytostatic function of TGF-beta in these cells, leading to tumor formation. Once freed from the growth-inhibitory effects of TGF-beta, cancer cells acquire the ability to proliferate, invade and metastasize when stimulated by TGF-beta. A thorough understanding of the molecular mechanisms underlying these paradoxical functions of TGF-beta remains elusive. Here, the authors review the tumor-suppressing and -promoting activities of TGF-beta and discuss the potential use and targeting of the TGF-beta-signaling system to prevent the progression and acquisition of metastatic phenotypes by human malignancies.
Collapse
Affiliation(s)
- Amy J Galliher
- University of Colorado Health Sciences Center, Department of Pharmacology, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|