1
|
Tang Y, Jia Y, Fan L, Liu H, Zhou Y, Wang M, Liu Y, Zhu J, Pang W, Zhou J. MFN2 Prevents Neointimal Hyperplasia in Vein Grafts via Destabilizing PFK1. Circ Res 2022; 130:e26-e43. [PMID: 35450439 DOI: 10.1161/circresaha.122.320846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mechanical forces play crucial roles in neointimal hyperplasia after vein grafting; yet, our understanding of their influences on vascular smooth muscle cell (VSMC) activation remains rudimentary. METHODS A cuff mouse model was used to study vein graft hyperplasia. Fifteen percent to 1 Hz uniaxial cyclic stretch (arterial strain), 5% to 1 Hz uniaxial cyclic stretch or a static condition (venous strain) were applied to the cultured VSMCs. Metabolomics analysis, cell proliferation and migration assays, immunoblotting, co-immunoprecipitation, mutagenesis, pull-down and surface plasmon resonance assays were employed to elucidate the potential molecular mechanisms. RESULTS RNA-sequencing in vein grafts and the controls identified changes in metabolic pathways and downregulation of mitochondrial protein MFN2 (mitofusin 2) in the vein grafts. Exposure of VSMCs to 15% stretch resulted in MFN2 downregulation, mitochondrial fragmentation, metabolic shift from mitochondrial oxidative phosphorylation to glycolysis, and cell proliferation and migration, as compared with that to a static condition or 5% stretch. Metabolomics analysis indicated an increased generation of fructose 1,6-bisphosphate, an intermediate in the glycolytic pathway converted by PFK1 (phosphofructokinase 1) from fructose-6-phosphate, in cells exposed to 15% stretch. Mechanistic study revealed that MFN2 physically interacts through its C-terminus with PFK1. MFN2 knockdown or exposure of cells to 15% stretch promoted stabilization of PFK1, likely through interfering the association between PFK1 and the E3 ubiquitin ligase TRIM21 (E3 ubiquitin ligase tripartite motif [TRIM]-containing protein 21), thus, decreasing the ubiquitin-protease-dependent PFK1 degradation. In addition, study of mechanotransduction utilizing pharmaceutical inhibition indicated that the MFN2 downregulation by 15% stretch was dependent on inactivation of the SP1 (specificity protein 1) and activation of the JNK (c-Jun N-terminal kinase) and ROCK (Rho-associated protein kinase). Adenovirus-mediated MFN2 overexpression or pharmaceutical inhibition of PFK1 suppressed the 15% stretch-induced VSMC proliferation and migration and alleviated neointimal hyperplasia in vein grafts. CONCLUSIONS MFN2 is a mechanoresponsive protein that interacts with PFK1 to mediate PFK1 degradation and therefore suppresses glycolysis in VSMCs.
Collapse
Affiliation(s)
- Yuanjun Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou)
| | - Linwei Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Han Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China (Y.Z.)
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. (M.W.).,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. (M.W.)
| | - Yuefeng Liu
- (Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Juanjuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| |
Collapse
|