1
|
Winski G, Chernogubova E, Busch A, Eken SM, Jin H, Lindquist Liljeqvist M, Khan T, Bäcklund A, Paloschi V, Roy J, Hultgren R, Brostjan C, de Borst GJ, Sluijter JPG, Sachs N, Eckstein HH, Boon RA, Spin JM, Tsao PS, Asselbergs FW, Maegdefessel L. MicroRNA-15a-5p mediates abdominal aortic aneurysm progression and serves as a potential diagnostic and prognostic circulating biomarker. COMMUNICATIONS MEDICINE 2025; 5:218. [PMID: 40481348 PMCID: PMC12144292 DOI: 10.1038/s43856-025-00892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/02/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND MicroRNAs are post transcriptional modulators of gene expression. We explored the diagnostic and prognostic value of circulating microRNAs in abdominal aortic aneurysm (AAA) disease, for which currently no established circulating biomarker is available. METHODS We profiled the expression of 754 human microRNAs in plasma from 187 patients with AAA and 190 matched non-diseased controls. To validate, we used two additional AAA patient cohorts, looking at circulating and aortic tissue-derived microRNA expression, and their correlation to AAA disease phenotype, as well as two murine AAA models. RESULTS We show that among 12 differentially expressed microRNAs, miR-15a and -659 are the most significantly up-regulated in AAA, whereas miR-1183 and -192 are the most significantly down-regulated. miR-15a is upregulated AAA patient tissues, and in plasma from two murine AAA models. In patients from three different cohorts, miR-15a expression levels in plasma, serum and aortic tunica media are significantly correlated with AAA diameter. Through modulation of miR-15a in human aortic smooth muscle cells, we identify several potential target genes of miR-15a known to be down-regulated in human AAA, suggesting its potential involvement in AAA pathology. Inhibition of miR-15a in vivo demonstrates a significant inhibition of murine aortic diameter growth at day 7. CONCLUSIONS Our findings suggest that miR-15a is a potential biomarker of AAA. Through in vivo studies and based on its target profile, we show that miR-15a is involved in AAA pathogenesis and could help treatment, but also assist in risk-stratification of AAA patients and identify candidates for early AAA repair.
Collapse
Affiliation(s)
- Greg Winski
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | | | - Albert Busch
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Suzanne M Eken
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jin
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Tooba Khan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Reinier A Boon
- Department of Physiology, VU University Medical Center in Amsterdam, Amsterdam, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Joshua M Spin
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Philip S Tsao
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Lars Maegdefessel
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
- Department for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Berlin, Germany.
| |
Collapse
|
2
|
Heller K, Doukas P, Uhl C, Gombert A. Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms. J Clin Med 2025; 14:3071. [PMID: 40364103 PMCID: PMC12072766 DOI: 10.3390/jcm14093071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Aortic aneurysms (AAs), the dilation or widening of the aorta, lead to dissection or rupture with high morbidity and mortality if untreated. AA displays gender disparities in its prevalence, progression and outcomes, with women having worse outcomes and faster aneurysm growth. However, current guidelines do not address gender dimorphism, emphasizing the urgent need for personalized treatment strategies and further research. Perivascular adipose tissue (PVAT), a unique type of fat surrounding blood vessels, plays a critical role in maintaining vasomotor tone and vascular homeostasis, with dysfunction associated with chronic inflammation and vessel-wall remodeling. Indeed, PVAT dysfunction promotes the development of aortic aneurysms, with hormonal and biomechanical factors exacerbating the pathological vascular microenvironment. The sexually dimorphic characteristics of PVAT include morphological, immunological, and hormonally mediated differences. Thus, targeting PVAT-mediated mechanisms may be a promising option for the (gender-specific) therapeutic management of cardiovascular pathologies. This review examines the emerging importance of PVAT in vascular health, its potential therapeutic implications for AA, and identifies gaps in the current state of research.
Collapse
Affiliation(s)
- Katja Heller
- Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (P.D.); (C.U.); (A.G.)
| | | | | | | |
Collapse
|
3
|
Chen HN, Hu YN, Ran LL, Wang M, Zhang Z. Sexual dimorphism in aortic aneurysm: A review of the contributions of sex hormones and sex chromosomes. Vascul Pharmacol 2025; 158:107460. [PMID: 39716526 DOI: 10.1016/j.vph.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Aortic aneurysm is a common cardiovascular disease. Over time, the disease damages the structural and functional integrity of the aorta, causing it to abnormally expand and potentially rupture, which can be fatal. Sex differences are evident in the disease, with men experiencing an earlier onset and higher incidence. However, women may face a worse prognosis and a higher risk of rupture. While there are some studies on the cellular and molecular mechanisms of aneurysm formation, it remains unclear how sex factors contribute to sexual dimorphism. Therefore, this review aims to summarize the role of sex in the occurrence of aortic aneurysms, offering valuable insights for disease prevention and the development of appropriate treatment options.
Collapse
Affiliation(s)
- Hao-Nan Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yan-Ni Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Li-Ling Ran
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
4
|
Feng Z, Chen N, Li H, Zhang Y, Zhang B. Serum metabolites and risk of aortic dissection: a two-sample Mendelian randomization study. Indian J Thorac Cardiovasc Surg 2025; 41:139-147. [PMID: 39822856 PMCID: PMC11732802 DOI: 10.1007/s12055-024-01807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 01/19/2025] Open
Abstract
Purpose Acute aortic dissection is a serious cardiovascular emergency with a high mortality rate. Its pathogenesis is complex and remains unclear. This study aimed to assess the connection between the levels of genetically predicted circulating metabolites and the risk of aortic dissection. Methods A two-sample Mendelian randomization (MR) approach was employed to determine the causal relationship between genetically determined metabolites and the incidence of aortic dissection. In total, 1091 specific metabolites were identified from genome-wide association study (GWAS) data and aortic dissection involving 207,011 participants. Causal inference was performed using the inverse-variance weighted (IVW) method, supplemented by extensive sensitivity analyses to ensure the validity of the results. In addition, pathway analysis was performed using the Metaconflict 5.0 platform. Results We found that six serum metabolites were genetically associated with an increased risk of aortic dissection, whereas eleven metabolites were associated with a decreased risk, and these associations were confirmed by rigorous sensitivity analyses. Reverse MR analysis indicated that aortic dissection could decrease the serum level of kynurenine (odds ratio (OR) = 0.9675, 95% confidence interval (CI) 0.9383-0.9976, P IVW = 0.0344). The metabolic pathways suggested that steroid hormone biosynthesis, steroidogenesis, and bile acid biosynthesis are involved in the pathogenesis of aortic dissection. Conclusion This MR analysis revealed a significant association between seventeen serum metabolites and the risk of aortic dissection. Further research is needed to fully elucidate the complex mechanisms underlying these associations. Graphical Abstract Supplementary information The online version contains supplementary material available at 10.1007/s12055-024-01807-5.
Collapse
Affiliation(s)
- ZiAn Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Nan Chen
- Graduate School, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Hui Li
- Graduate School, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Yi Zhang
- Graduate School, Wannan Medical College, Wuhu, 241002 Anhui China
| | - BuChun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| |
Collapse
|
5
|
Huo G, Shen H, Zheng J, Zeng Y, Yao Z, Cao J, Tang Y, Huang J, Liu Z, Zhou D. The potential of a nomogram risk assessment model for the diagnosis of abdominal aortic aneurysm: a multicenter retrospective study. Sci Rep 2024; 14:21536. [PMID: 39278952 PMCID: PMC11402964 DOI: 10.1038/s41598-024-72544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024] Open
Abstract
The incidence of abdominal aortic aneurysm (AAA) is very high, but there is no risk assessment model for early identification of AAA in clinic. The aim of this study was to develop a nomogram risk assessment model for predicting AAA. The data of 280 patients diagnosed as AAA and 385 controls in The Affiliated Suzhou Hospital of Nanjing Medical University were retrospectively reviewed. The LASSO regression method was applied to filter variables, and multivariate logistic regression was used to construct a nomogram. The discriminatory ability of the model was determined by calculating the area under the curve (AUC). The calibration capability of the model is evaluated by using bootstrap (resampling = 1000) internal validation and Hosmer-Lemeshow test. The clinical utility and clinical application value were evaluated by decision curve analysis (DCA) and clinical impact curve (CIC). In addition, a retrospective review of 133 AAA patients and 262 controls from The First Affiliated Hospital of Soochow University was performed as an external validation cohort. Eight variables are selected to construct the nomogram of AAA risk assessment model. The nomogram predicted AAA with AUC values of 0.928 (95%CI, 0.907-0.950) in the training cohort, and 0.902 (95%CI, 0.865-0.940) in the external validation cohort, the risk prediction model has excellent discriminative ability. The calibration curve and Hosmer-Lemeshow test proved that the nomogram predicted outcomes were close to the ideal curve, the predicted outcomes were consistent with the real outcomes, the DCA curve and CIC curve showed that patients could benefit. This finding was also confirmed in the external validation cohort. In this study, a nomogram was constructed that incorporated eight demographic and clinical characteristics of AAA patients, which can be used as a practical approach for the personalized early screening and auxiliary diagnosis of the potential risk factors.
Collapse
Affiliation(s)
- Guijun Huo
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Han Shen
- Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Zheng
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | | | - Zhichao Yao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Junjie Cao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Yao Tang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Jian Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Zhanao Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Dayong Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
7
|
Wang Z, Chen YE, Chang L. Unleashing PD-1: a duel of immunity in aortic aneurysm formation. J Clin Invest 2024; 134:e182554. [PMID: 39087474 PMCID: PMC11290959 DOI: 10.1172/jci182554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Aortic aneurysms, particularly abdominal aortic aneurysms (AAAs), exhibit sex differences, with higher prevalence and severity in males than females, both in humans and experimental mouse models. In fact, male sex has been considered as the most potent nonmodifiable risk factor for AAA. Currently, there are no medications approved for the treatment of aortic aneurysms, despite the high lethality of ruptured aneurysms, which account for nearly 2% of all deaths. Moreover, the underlying molecular mechanisms mediating the sexual dimorphism of aortic aneurysms remain largely unknown. In this issue of the JCI, Mu et al. revealed a mechanism by which androgens, male sex hormones, exacerbate aortic aneurysms by suppressing programmed cell death protein 1 (PD-1) expression in T cells in an aldosterone and high salt-induced aortic aneurysm mouse model.
Collapse
|
8
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|
9
|
Li T, Yang C, Yang J, Jing J, Ma C. Elevated triglyceride-glucose index predicts mortality following endovascular abdominal aortic aneurysm repair. Front Nutr 2023; 10:1116425. [PMID: 36860689 PMCID: PMC9968955 DOI: 10.3389/fnut.2023.1116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Background Triglyceride-glucose (TyG) index has been increasingly studied as a simple and reliable predictor of adverse events of some cardiovascular disorders. However, its prognostic effect on postoperative outcomes in patients with abdominal aortic aneurysm (AAA) is still unknown. The current study aimed to explore the potential role of TyG index in predicting mortality of AAA patients following endovascular aneurysm repair (EVAR). Materials and methods This retrospective cohort study analyzed the preoperative TyG index in a total of 188 AAA patients who underwent EVAR with the follow-up of 5 years. Data were analyzed with SPSS software Version 23.0. Association between the TyG index and all-cause mortality was evaluated using Cox regression models and Kaplan-Meier method. Results Cox regression analyses showed that per 1-unit increment of TyG index was significantly associated with an increased risk of postoperative 30-day, 1-year, 3-year, and 5-year mortality, even after adjustment for potential confounders (all P<0.05). Kaplan-Meier analysis suggested that patients with high TyG index (≥8.68) had a worse overall survival (P = 0.007). Conclusion The elevated TyG index could be a promising predictive factor of postoperative mortality in AAA patients after EVAR.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China,Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chao Yang
- Department of Burns, Trauma Center, The First Hospital of China Medical University, Shenyang, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China,Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China,*Correspondence: Jingjing Jing ✉
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China,Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, Shenyang, China,Chunyan Ma ✉
| |
Collapse
|
10
|
Zhao C, Huang Y, Chen L, Ye S, Liu XQ. The Association Between Circulating Sex Hormones and Central Serous Chorioretinopathy: A Case-Control Study. Ther Clin Risk Manag 2022; 18:855-865. [PMID: 36046103 PMCID: PMC9423108 DOI: 10.2147/tcrm.s370133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Central serous chorioretinopathy (CSC) is preferential cocurated in males, however the associations between sex hormones and CSC incidence or progression remains unclear. The sex hormone concentration assessments in CSC cases and healthy controls will update the knowledge in CSC management. Methods This case-control study included 59 CSC cases and 30 healthy controls, from January 2019 to December 2020. The CSC cases would be defined as spontaneous resolved if the subretinal fluid were absorbed within three months. The concentrations of total testosterone (TT), free testosterone (FT), estradiol (E2), sex hormone-binding globulin (SHBG), progesterone, leuteinizing hormone (LH) and dehydroepiandrosterone sulfate (DHEA-S) were detected in all the participants. The relationships between sex hormone concentrations and CSC-related characteristics were analyzed with Pearson correlation analyses. Results Significantly increased TT, FT, FT/E2 ratio, SHBG concentrations as well as decreased DHEA-S level were detected in non-resolved CSC group compared with the control group. Comparing with the resolved ones, it was found that TT, FT and SHBG concentrations were increased in the non-resolved CSC. A significant positive correlation between TT concentrations and CMT (R2=0.168, P=0.031) as well as SRF height (R2=0.146, P=0.045) were detected in the non-solved CSC group. Conclusion Different concentrations of TT, FT, FT/E2 ratio, DHEA-S and SHBG were detected in resolved and non-resolved CSC cases. Sex hormones were related to CSC symptom durations and related parameters.
Collapse
Affiliation(s)
- Chun Zhao
- Department of Ophthalmology, Tenth People's Hospital Affiliated to Shanghai Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Yan Huang
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People's Republic of China
| | - Lei Chen
- Department of Ophthalmology, Tenth People's Hospital Affiliated to Shanghai Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Sheng Ye
- Department of Ophthalmology, Tenth People's Hospital Affiliated to Shanghai Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Xiao-Qiang Liu
- Department of Ophthalmology, Tenth People's Hospital Affiliated to Shanghai Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
11
|
Hu J, Jiang Y, Wu X, Wu Z, Qin J, Zhao Z, Li B, Xu Z, Lu X, Wang X, Liu X. Exosomal miR-17-5p from adipose-derived mesenchymal stem cells inhibits abdominal aortic aneurysm by suppressing TXNIP-NLRP3 inflammasome. Stem Cell Res Ther 2022; 13:349. [PMID: 35883151 PMCID: PMC9327292 DOI: 10.1186/s13287-022-03037-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Preclinical studies have suggested that adipose-derived mesenchymal stem cells (ADSCs) transplantation can suppress abdominal aortic inflammation and aneurysm expansion through paracrine factors. Yet, the mechanism of action is not fully understood. In the present study, we further examined the function and mechanism of ADSC-derived exosomes (ADSC-exos) and their microRNA-17-5p (miR-17-5p) on the abdominal aortic aneurysm (AAA) progression. Methods ADSC-exos were isolated and identified. DiR and PKH67 staining were used to trace ADSC-exo in vivo and in vitro. Raw264.7 cells were applied to perform in vitro experiments, while a murine AAA model induced using angiotensin II (Ang II) was used for in vivo testing. The expression level of miR-17-5p in macrophages and Ang II-treated macrophages after ADSC-exos treatment was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The target relation between miR-17-5p and thioredoxin-interacting protein (TXNIP) was identified by a dual-luciferase reporter gene assay. Artificial activation and block of experiments of miR-17-5p and TXNIP were conducted to clarify their functions in inflammation during AAA progression. The severity of AAA between groups was assessed by maximal aorta diameter, AAA incidence, survival rate, and histological stainings. Besides, inflammasome-related proteins and macrophage pyroptosis were further evaluated using western blot, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA). Results The ADSC-exos were isolated and identified. In vivo testing showed that ADSC-exos were mainly distributed in the liver. Meanwhile, in vitro experiments suggested that ADSC-derived exosomes were taken up by macrophages, while inside, ADSC-exos miR-17-5p decreased a TXNIP induced by Ang II by directly binding to its 3′-untranslated region (3’UTR). Furthermore, overexpression of miR-17-5p enhanced the therapeutic function of ADSC-exos on inflammation during AAA expansion in vivo, while its inhibition reversed this process. Finally, overexpressed TXNIP triggered macrophage pyroptosis and was alleviated by ADSC-derived exosomes in vitro. Conclusion ADSC-exos miR-17-5p regulated AAA progression and inflammation via the TXNIP-NLRP3 signaling pathway, thus providing a novel insight in AAA treatment.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Becker von Rose A, Kobus K, Bohmann B, Lindquist-Lilljequist M, Eilenberg W, Bassermann F, Reeps C, Eckstein HH, Trenner M, Maegdefessel L, Neumayer C, Brostjan C, Roy J, Hultgren R, Schwaiger BJ, Busch A. Radiation and chemotherapeutics are associated with altered aortic aneurysm growth in cancer patients. Eur J Vasc Endovasc Surg 2022; 64:255-264. [PMID: 35853577 DOI: 10.1016/j.ejvs.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Co-prevalence of aorto-iliac aneurysm (i.e. AAA) and cancer confronts patients and physicians with two life-threatening diseases. Modern chemotherapeutics and target therapies might impact the aneurysm wall integrity and subsequently affect growth. The purpose of this study was to assess associations between malignancy, therapeutic regimens and the growth rates of aorto-iliac aneurysms. PATIENTS AND METHODS A retrospective single-center analysis identified patients with aneurysm + cancer. Patients with ≥2 CT angiograms over ≥6 months and additional malignancy were included. Clinical data and aneurysm diameters were analyzed. AAA growth under cancer therapy (chemotherapy/radiation) was compared to a non-cancer AAA control cohort and to meta-analysis data. Statistics included t-tests and a linear regression model with correction for initial aortic diameter and type of treatment. RESULTS From 2003 - 2020, 217 patients (median age 70 years; 92% male) with 246 aneurysms (58.8% AAA) and 238 malignancies were identified. Prostate (27%) and lung (16%) cancer were most frequently seen, 157 patients (72%) received chemotherapy and 105 patients (48%) radiation, thereof 79 (36.4%) both. Annual AAA growth was not significantly different for cancer and non-cancer patients (2.0±2.3 vs. 2.8±2.1mm/y, p=0.20). However, subgroup analyses revealed that radiation was associated with a significantly reduced aneurysm growth rate compared to cancer patients without radiation (1.1±1.3 vs. 1.6±2.1 mm/y, p=0.046) and to the non-cancer control cohort (1.7±1.9 vs. 2.8±2.1 mm/y, p=0.007). Administration of antimetabolites showed significantly increased AAA growth (+0.9mm/year, p=0.011), while e.g. topoisomerase inhibitors (-0.8mm/year, p=0.17) and anti-androgens (-0.5mm/year, p=0.27) showed a possible trend for reduced growth. Similar was observed for iliac aneurysms (n=85). Additionally, effects were persistent in combinations of chemotherapies (2.6±1.4 substances/patient). CONCLUSION Cancer patients with concomitant aortic aneurysms may require intensified monitoring when undergoing specific therapies, such as antimetabolites, since they may experience an increased aneurysm growth rate. Radiation may be associated with reduced aneurysm growth.
Collapse
Affiliation(s)
- Aaron Becker von Rose
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar Technical University Munich, Munich, Germany
| | - Kathrin Kobus
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Bianca Bohmann
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Moritz Lindquist-Lilljequist
- Stockholm Aneurysm Research Group (STAR), Department of Vascular Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna
| | - Florian Bassermann
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar Technical University Munich, Munich, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Matthias Trenner
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Division of Vascular Medicine, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna
| | - Joy Roy
- Stockholm Aneurysm Research Group (STAR), Department of Vascular Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Hultgren
- Stockholm Aneurysm Research Group (STAR), Department of Vascular Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt J Schwaiger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Gene Expression Profiling in Abdominal Aortic Aneurysms. J Clin Med 2022; 11:jcm11123260. [PMID: 35743331 PMCID: PMC9225238 DOI: 10.3390/jcm11123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gene expression profiling of abdominal aortic aneurysms (AAA) indicates that chronic inflammatory responses, active matrix metalloproteinases, and degradation of the extracellular matrix components are involved in disease development and progression. This study investigates intra- and interpersonal RNA genome-wide expression profiling differences (Illumina HumanHT-12, BeadCHIP expression) of 24 AAA biopsies from 12 patients using a single gene and pathway (GeneOntology, GO enrichment) analysis. Biopsies were collected during open surgical AAA repair and according to prior finite element analysis (FEA) from regions with the highest and lowest wall stress. Single gene analysis revealed a strong heterogeneity of RNA expression parameters within the same and different AAA biopsies. The pathway analysis of all samples showed significant enrichment of genes from three different signaling pathways (integrin signaling pathway: fold change FC 1.63, p = 0.001; cholecystokinin receptor pathway: FC 1.60, p = 0.011; inflammation mediated by chemokine signaling pathway: FC 1.45, p = 0.028). These results indicate heterogeneous gene expression patterns within the AAA vascular wall. Single biopsy investigations do not permit a comprehensive characterization of activated molecular processes in AAA disease.
Collapse
|
14
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
15
|
Villard C, Hultgren R. Reply. J Vasc Surg 2021; 74:2121. [PMID: 34809822 DOI: 10.1016/j.jvs.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Christina Villard
- STAR-Stockholm Aneurysm Research Group, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Hultgren
- STAR-Stockholm Aneurysm Research Group, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Tedjawirja VN, Nieuwdorp M, Yeung KK, Balm R, de Waard V. A Novel Hypothesis: A Role for Follicle Stimulating Hormone in Abdominal Aortic Aneurysm Development in Postmenopausal Women. Front Endocrinol (Lausanne) 2021; 12:726107. [PMID: 34721292 PMCID: PMC8548664 DOI: 10.3389/fendo.2021.726107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta, which can potentially be fatal due to exsanguination following rupture. Although AAA is less prevalent in women, women with AAA have a more severe AAA progression compared to men as reflected by enhanced aneurysm growth rates and a higher rupture risk. Women are diagnosed with AAA at an older age than men, and in line with increased osteoporosis and cardiovascular events, the delayed AAA onset has been attributed to the reduction of the protective effect of oestrogens during the menopausal transition. However, new insights have shown that a high follicle stimulating hormone (FSH) level during menopause may also play a key role in those diseases. In this report we hypothesize that FSH may aggravate AAA development and progression in postmenopausal women via a direct and/or indirect role, promoting aorta pathology. Since FSH receptors (FSHR) are reported on many other cell types than granulosa cells in the ovaries, it is feasible that FSH stimulation of FSHR-bearing cells such as aortic endothelial cells or inflammatory cells, could promote AAA formation directly. Indirectly, AAA progression may be influenced by an FSH-mediated increase in osteoporosis, which is associated with aortic calcification. Also, an FSH-mediated decrease in cholesterol uptake by the liver and an increase in cholesterol biosynthesis will increase the cholesterol level in the circulation, and subsequently promote aortic atherosclerosis and inflammation. Lastly, FSH-induced adipogenesis may lead to obesity-mediated dysfunction of the microvasculature of the aorta and/or modulation of the periaortic adipose tissue. Thus the long term increased plasma FSH levels during the menopausal transition may contribute to enhanced AAA disease in menopausal women and could be a potential novel target for treatment to lower AAA-related events in women.
Collapse
Affiliation(s)
- Victoria N. Tedjawirja
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
- *Correspondence: Victoria N. Tedjawirja,
| | - Max Nieuwdorp
- Departments of Internal and Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Ron Balm
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|