1
|
Kesarwani V, Bukhari MH, Kahlenberg JM, Wang S. Urinary complement biomarkers in immune-mediated kidney diseases. Front Immunol 2024; 15:1357869. [PMID: 38895123 PMCID: PMC11184941 DOI: 10.3389/fimmu.2024.1357869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The complement system, an important part of the innate system, is known to play a central role in many immune mediated kidney diseases. All parts of the complement system including the classical, alternative, and mannose-binding lectin pathways have been implicated in complement-mediated kidney injury. Although complement components are thought to be mainly synthesized in the liver and activated in the circulation, emerging data suggest that complement is synthesized and activated inside the kidney leading to direct injury. Urinary complement biomarkers are likely a better reflection of inflammation within the kidneys as compared to traditional serum complement biomarkers which may be influenced by systemic inflammation. In addition, urinary complement biomarkers have the advantage of being non-invasive and easily accessible. With the rise of therapies targeting the complement pathways, there is a critical need to better understand the role of complement in kidney diseases and to develop reliable and non-invasive biomarkers to assess disease activity, predict treatment response and guide therapeutic interventions. In this review, we summarized the current knowledge on urinary complement biomarkers of kidney diseases due to immune complex deposition (lupus nephritis, primary membranous nephropathy, IgA nephropathy) and due to activation of the alternative pathway (C3 glomerulopathy, thrombotic microangiography, ANCA-associated vasculitis). We also address the limitations of current research and propose future directions for the discovery of urinary complement biomarkers.
Collapse
Affiliation(s)
- Vartika Kesarwani
- Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Muhammad Hamza Bukhari
- Department of Medicine, Johns Hopkins Howard County Medical Center, Columbia, MD, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Medicine, University of Michigan, Columbia, MI, United States
| | - Shudan Wang
- Division of Rheumatology, Department of Medicine, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
3
|
Mizuno T. [The Functional Roles and the Potential as Drug Targets of Glycoproteins Regulating Complement and Coagulation Pathways]. YAKUGAKU ZASSHI 2023; 143:707-712. [PMID: 37661436 DOI: 10.1248/yakushi.23-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Complement (C) activation occurs via three pathways, namely the classical, lectin, and alternative pathways. Intercommunication occurs between the complement and coagulation systems, which can trigger tissue injury and inflammation. Disseminated intravascular coagulation (DIC) is a life-threatening disease characterized by disordered coagulation and systemic inflammation; here, the intercommunication between the complement and coagulation systems contributes to the development of DIC. Extracellular histones, which are contributors to the damage-associated molecular pattern, induce severe thrombosis. C5 is a key molecule in the intercommunication between the complement and coagulation systems and is associated with the development of lethal histone-induced thrombosis. Heparin and chondroitin sulfate (CS) are negatively charged, allowing them to bind to extracellular histones. As the coagulation system is less affected by CS than heparin, CS shows potential as an effective drug for the treatment of patients with DIC who have a high risk of bleeding. Complement receptor type-1-related gene Y (Crry) inhibits the complement pathway via binding to C3b and C4b. Hence, Crry is a potent inhibitor of the classical and alternative C pathways. The expression of Crry is decreased by the endothelial damage induced by extracellular histones. Crry dysfunction promotes the activation of C on the surface of endothelial cells. The prevention of C3 cleavage on endothelial cells might be a useful therapy targeting acute lung injury.
Collapse
Affiliation(s)
- Tomohiro Mizuno
- Department of Clinical Pharmacy, School of Medicine, Fujita Health University
| |
Collapse
|
4
|
Yang H, Che D, Gu Y, Cao D. Prognostic and immune-related value of complement C1Q (C1QA, C1QB, and C1QC) in skin cutaneous melanoma. Front Genet 2022; 13:940306. [PMID: 36110204 PMCID: PMC9468976 DOI: 10.3389/fgene.2022.940306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Skin cutaneous melanoma (SKCM) is a common malignancy that is associated with increased morbidity and mortality. Complement C1Q is composed of C1QA, C1QB, and C1QC and is involved in the occurrence and development of many malignant tumours. However, the effect of C1QA, C1QB, and C1QC expression on tumour immunity and prognosis of cutaneous melanoma remains unclear.Methods: First, we analysed C1QA, C1QB, and C1QC expression levels and prognostic values using Gene Expression Profiling Interactive Analysis (GEPIA) and Tumour Immune Estimation Resource (TIMER) analysis, and further validation was performed using RT-qPCR, The Human Protein Atlas, The Cancer Genome Atlas (TCGA) dataset, and Gene Expression Omnibus dataset. We then performed univariate/multivariate Cox proportional hazard model, clinicopathological correlation, and receiver operating characteristic curve analysis using TCGA dataset and established a nomogram model. Differentially expressed genes associated with C1QA, C1QB, and C1QC in SKCM were identified and analysed using LinkedOmics, TIMER, the Search Tool for the Retrieval of Interacting Genes database, and Metascape and Cytoscape software platforms. We used TIMER, GEPIA, and single-sample gene set enrichment analysis (ssGSEA) to analyse the relationship between the three genes and the level of immune cell infiltration, biomarkers, and checkpoint expression in SKCM. Finally, GSEA was utilized to study the functional pathways of C1QA, C1QB, and C1QC enrichment in SKCM.Results: The overexpression of C1QA, C1QB, and C1QC provided significant value in the diagnosis of SKCM and has been associated with better overall survival (OS). Multivariate Cox regression analysis indicated that C1QA, C1QB, and C1QC are independent prognostic biomarkers for patients with SKCM. Immune cell infiltration, biomarkers, and checkpoints were positively correlated with the expression of C1QA, C1QB, and C1QC. Furthermore, the results of functional and pathway enrichment analysis showed that immune-related and apoptotic pathways were significantly enriched in the high-expression group of C1QA, C1QB, and C1QC.Conclusion: We found that C1QA, C1QB, and C1QC can be used as biomarkers for the diagnosis and prognosis of SKCM patients. The upregulated expression levels of these three complement components benefit patients from OS and may increase the effect of immunotherapy. This result may be due to the dual effects of anti-tumour immunity and apoptosis.
Collapse
|
5
|
Portilla D, Xavier S. Role of intracellular complement activation in kidney fibrosis. Br J Pharmacol 2021; 178:2880-2891. [PMID: 33555070 DOI: 10.1111/bph.15408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of complement C1r, C1s and C3 in kidney cells plays an important role in the pathogenesis of kidney fibrosis. Our studies suggest that activation of complement in kidney cells with increased generation of C3 and its fragments occurs by activation of classical and alternative pathways. Single nuclei RNA sequencing studies in kidney tissue from unilateral ureteral obstruction mice show that increased synthesis of complement C3 and C5 occurs primarily in renal tubular epithelial cells (proximal and distal), while increased expression of complement receptors C3ar1 and C5ar1 occurs in interstitial cells including immune cells like monocytes/macrophages suggesting compartmentalization of complement components during kidney injury. Although global deletion of C3 and macrophage ablation prevent inflammation and reduced kidney tissue scarring, the development of mice with cell-specific deletion of complement components and their regulators could bring further insights into the mechanisms by which intracellular complement activation leads to fibrosis and progressive kidney disease. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Didier Portilla
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sandhya Xavier
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Kerr H, Herbert AP, Makou E, Abramczyk D, Malik TH, Lomax-Browne H, Yang Y, Pappworth IY, Denton H, Richards A, Marchbank KJ, Pickering MC, Barlow PN. Murine Factor H Co-Produced in Yeast With Protein Disulfide Isomerase Ameliorated C3 Dysregulation in Factor H-Deficient Mice. Front Immunol 2021; 12:681098. [PMID: 34054871 PMCID: PMC8149785 DOI: 10.3389/fimmu.2021.681098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen.
Collapse
Affiliation(s)
- Heather Kerr
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Herbert
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Dariusz Abramczyk
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Talat H. Malik
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Hannah Lomax-Browne
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Yi Yang
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Isabel Y. Pappworth
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Harriet Denton
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Anna Richards
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Paul N. Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Laskowski J, Renner B, Pickering MC, Serkova NJ, Smith-Jones PM, Clambey ET, Nemenoff RA, Thurman JM. Complement factor H-deficient mice develop spontaneous hepatic tumors. J Clin Invest 2020; 130:4039-4054. [PMID: 32369457 PMCID: PMC7410061 DOI: 10.1172/jci135105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to detect, carries a poor prognosis, and is one of few cancers with an increasing yearly incidence. Molecular defects in complement factor H (CFH), a critical regulatory protein of the complement alternative pathway (AP), are typically associated with inflammatory diseases of the eye and kidney. Little is known regarding the role of CFH in controlling complement activation within the liver. While studying aging CFH-deficient (fH-/-) mice, we observed spontaneous hepatic tumor formation in more than 50% of aged fH-/- males. Examination of fH-/- livers (3-24 months) for evidence of complement-mediated inflammation revealed widespread deposition of complement-activation fragments throughout the sinusoids, elevated transaminase levels, increased hepatic CD8+ and F4/80+ cells, overexpression of hepatic mRNA associated with inflammatory signaling pathways, steatosis, and increased collagen deposition. Immunostaining of human HCC biopsies revealed extensive deposition of complement fragments within the tumors. Investigating the Cancer Genome Atlas also revealed that increased CFH mRNA expression is associated with improved survival in patients with HCC, whereas mutations are associated with worse survival. These results indicate that CFH is critical for controlling complement activation in the liver, and in its absence, AP activation leads to chronic inflammation and promotes hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Laskowski
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brandon Renner
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College of London, London, United Kingdom
| | - Natalie J. Serkova
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter M. Smith-Jones
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
8
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
9
|
Semis M, Gugiu GB, Bernstein EA, Bernstein KE, Kalkum M. The Plethora of Angiotensin-Converting Enzyme-Processed Peptides in Mouse Plasma. Anal Chem 2019; 91:6440-6453. [PMID: 31021607 DOI: 10.1021/acs.analchem.8b03828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I into the potent vasoconstrictor angiotensin II, which regulates blood pressure. However, ACE activity is also essential for other physiological functions, presumably through processing of peptides unrelated to angiotensin. The goal of this study was to identify novel natural substrates and products of ACE through a series of mass-spectrometric experiments. This included comparing the ACE-treated and untreated plasma peptidomes of ACE-knockout (KO) mice, validation with select synthetic peptides, and a quantitative in vivo study of ACE substrates in mice with distinct genetic ACE backgrounds. In total, 244 natural peptides were identified ex vivo as possible substrates or products of ACE, demonstrating high promiscuity of the enzyme. ACE prefers to cleave substrates with Phe or Leu at the C-terminal P2' position and Gly in the P6 position. Pro in P1' and Iso in P1 are typical residues in peptides that ACE does not cleave. Several of the novel ACE substrates are known to have biological activities, including a fragment of complement C3, the spasmogenic C3f, which was processed by ACE ex vivo and in vitro. Analyses with N-domain-inactive (NKO) ACE allowed clarification of domain selectivity toward substrates. The in vivo ACE-substrate concentrations in WT, transgenic ACE-KO, NKO, and CKO mice correspond well with the in vitro observations in that higher levels of the ACE substrates were observed when the processing domain was knocked out. This study highlights the vast extent of ACE promiscuity and provides a valuable platform for further investigations of ACE functionality.
Collapse
Affiliation(s)
- Margarita Semis
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Gabriel B Gugiu
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Ellen A Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences, Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , California 90048 , United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Diabetes and Metabolism Research Institute , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States.,Mass Spectrometry & Proteomics Core Facility , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| |
Collapse
|
10
|
Panzer SE, Joachim E, Parajuli S, Zhong W, Astor BC, Djamali A. Glomerular C3 Deposition Is an Independent Risk Factor for Allograft Failure in Kidney Transplant Recipients With Transplant Glomerulopathy. Kidney Int Rep 2019; 4:582-593. [PMID: 30993233 PMCID: PMC6451156 DOI: 10.1016/j.ekir.2019.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Transplant glomerulopathy (TG) becomes increasingly prevalent in kidney transplant recipients over time, and it is strongly associated with allograft failure. To date, our prognostic biomarkers and understanding of the processes of immunologic injury in TG are limited. METHODS This is a retrospective cohort analysis of kidney transplant recipients with TG (double contours of the glomerular basement membrane as defined by the chronic glomerulopathy score). Glomerular deposition of the complement protein C3 was determined, and its association with allograft survival was analyzed by Cox regression analysis. RESULTS Of the 111 patients with TG, 72 (65%) had allograft failure, with a median follow-up time of 3 years from biopsy diagnosis of TG. C3-positive compared to C3-negative patients did not differ with respect to cause of end-stage renal disease, induction or maintenance immunosuppression, or sensitization. A greater proportion of patients with glomerular C3 deposition developed allograft failure compared to those with no C3 deposition (78% vs. 55%, P = 0.01). C3 deposition was independently associated with allograft failure in multivariate analyses (adjusted hazard ratio [HR] = 1.38, 95% confidence interval [CI] = 1.13-1.69, P = 0.002). There was no association between C4d or C1q deposition and allograft failure. Chronicity score was also associated with allograft failure in multivariate analysis (adjusted HR 1.26, 95% CI 1.12-1.41, P = 0.0001). CONCLUSION In this cohort of patients with TG, glomerular C3 deposition was independently associated with a higher risk of allograft failure. These findings identify glomerular C3 as a novel prognostic indicator in patients with TG.
Collapse
Affiliation(s)
- Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily Joachim
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sandesh Parajuli
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Brad C. Astor
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Arjang Djamali
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Surgery, Division of Transplant Surgery, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Lin CJ, Hu ZG, Yuan GD, Lei B, He SQ. Complements are involved in alcoholic fatty liver disease, hepatitis and fibrosis. World J Hepatol 2018; 10:662-669. [PMID: 30386459 PMCID: PMC6206158 DOI: 10.4254/wjh.v10.i10.662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The complement system is a key component of the body's immune system. When abnormally activated, this system can induce inflammation and damage to normal tissues and participate in the development and progression of a variety of diseases. In the past, many scholars believed that alcoholic liver disease (ALD) is induced by the stress of ethanol on liver cells, including oxidative stress and dysfunction of mitochondria and protease bodies, causing hepatocyte injury and apoptosis. Recent studies have shown that complement activation is also involved in the genesis and development of ALD. This review focuses on the roles of complement activation in ALD and of therapeutic intervention in complement-activation pathways. We intend to provide new ideas on the diagnosis and treatment of ALD.
Collapse
Affiliation(s)
- Cheng-Jie Lin
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Gao Hu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guan-Dou Yuan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Biao Lei
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Song-Qing He
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
12
|
Luo W, Olaru F, Miner JH, Beck LH, van der Vlag J, Thurman JM, Borza DB. Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Front Immunol 2018; 9:1433. [PMID: 29988342 PMCID: PMC6023961 DOI: 10.3389/fimmu.2018.01433] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 01/15/2023] Open
Abstract
Membranous nephropathy is an immune kidney disease caused by IgG antibodies that form glomerular subepithelial immune complexes. Proteinuria is mediated by complement activation, as a result of podocyte injury by C5b-9, but the role of specific complement pathways is not known. Autoantibodies-mediating primary membranous nephropathy are predominantly of IgG4 subclass, which cannot activate the classical pathway. Histologic evidence from kidney biopsies suggests that the lectin and the alternative pathways may be activated in membranous nephropathy, but the pathogenic relevance of these pathways remains unclear. In this study, we evaluated the role of the alternative pathway in a mouse model of membranous nephropathy. After inducing the formation of subepithelial immune complexes, we found similar glomerular IgG deposition in wild-type mice and in factor B-null mice, which lack a functional alternative pathway. Unlike wild-type mice, mice lacking factor B did not develop albuminuria nor exhibit glomerular deposition of C3c and C5b-9. Albuminuria was also reduced but not completely abolished in C5-deficient mice. Our results provide the first direct evidence that the alternative pathway is necessary for pathogenic complement activation by glomerular subepithelial immune complexes and is, therefore, a key mediator of proteinuria in experimental membranous nephropathy. This knowledge is important for the rational design of new therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Wentian Luo
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States
| | - Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Laurence H Beck
- Division of Nephrology, Boston University Medical Center, Boston, MA, United States
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dorin-Bogdan Borza
- Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States.,Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
13
|
Ma H, Liu C, Shi B, Zhang Z, Feng R, Guo M, Lu L, Shi S, Gao X, Chen W, Sun L. Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis. EBioMedicine 2018; 32:21-30. [PMID: 29885865 PMCID: PMC6020800 DOI: 10.1016/j.ebiom.2018.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus (SLE) caused by uncontrolled activation of the complement system. Mesenchymal stem cells (MSCs) exhibit clinical efficacy for severe LN in our previous studies, but the underlying mechanisms of MSCs regulating complement activation remain largely unknown. Here we show that significantly elevated C5a and C5b-9 were found in patients with LN, which were notably correlated with proteinuria and different renal pathological indexes of LN. MSCs suppressed systemic and intrarenal activation of C5, increased the plasma levels of factor H (FH), and ameliorated renal disease in lupus mice. Importantly, MSCs transplantation up-regulated the decreased FH in patients with LN. Mechanistically, interferon-α enhanced the secretion of FH by MSCs. These data demonstrate that MSCs inhibit the activation of pathogenic C5 via up-regulation of FH, which improves our understanding of the immunomodulatory mechanisms of MSCs in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Haijun Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chang Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bingyu Shi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruihai Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minghao Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wanjun Chen
- Mucosal Immunology Section, NIDCR, US National Institutes of Health, Bethesda, MD, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
14
|
Goetz L, Laskowski J, Renner B, Pickering MC, Kulik L, Klawitter J, Stites E, Christians U, van der Vlag J, Ravichandran K, Holers VM, Thurman JM. Complement factor H protects mice from ischemic acute kidney injury but is not critical for controlling complement activation by glomerular IgM. Eur J Immunol 2018; 48:791-802. [PMID: 29389016 DOI: 10.1002/eji.201747240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/28/2022]
Abstract
Natural IgM binds to glomerular epitopes in several progressive kidney diseases. Previous work has shown that IgM also binds within the glomerulus after ischemia/reperfusion (I/R) but does not fully activate the complement system. Factor H is a circulating complement regulatory protein, and congenital or acquired deficiency of factor H is a strong risk factor for several types of kidney disease. We hypothesized that factor H controls complement activation by IgM in the kidney after I/R, and that heterozygous factor H deficiency would permit IgM-mediated complement activation and injury at this location. We found that mice with targeted heterozygous deletion of the gene for factor H developed more severe kidney injury after I/R than wild-type controls, as expected, but that complement activation within the glomeruli remained well controlled. Furthermore, mice that are unable to generate soluble IgM were not protected from renal I/R, even in the setting of heterozygous factor H deficiency. These results demonstrate that factor H is important for limiting injury in the kidney after I/R, but it is not critical for controlling complement activation by immunoglobulin within the glomerulus in this setting. IgM binds to glomerular epitopes after I/R, but it is not a significant source of injury.
Collapse
Affiliation(s)
- Lindsey Goetz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer Laskowski
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brandon Renner
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Liudmila Kulik
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jelena Klawitter
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erik Stites
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Uwe Christians
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Antonioli AH, White J, Crawford F, Renner B, Marchbank KJ, Hannan JP, Thurman JM, Marrack P, Holers VM. Modulation of the Alternative Pathway of Complement by Murine Factor H-Related Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:316-326. [PMID: 29187587 PMCID: PMC5736413 DOI: 10.4049/jimmunol.1602017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/27/2017] [Indexed: 01/21/2023]
Abstract
Factor H (FH) is a key alternative pathway regulator that controls complement activation both in the fluid phase and on specific cell surfaces, thus allowing the innate immune response to discriminate between self and foreign pathogens. However, the interrelationships between FH and a group of closely related molecules, designated the FH-related (FHR) proteins, are currently not well understood. Whereas some studies have suggested that human FHR proteins possess complement regulatory abilities, recent studies have shown that FHR proteins are potent deregulators. Furthermore, the roles of the FHR proteins have not been explored in any in vivo models of inflammatory disease. In this study, we report the cloning and expression of recombinant mouse FH and three FHR proteins (FHR proteins A-C). Results from functional assays show that FHR-A and FHR-B proteins antagonize the protective function of FH in sheep erythrocyte hemolytic assays and increase cell-surface C3b deposition on a mouse kidney proximal tubular cell line (TEC) and a human retinal pigment epithelial cell line (ARPE-19). We also report apparent KD values for the binding interaction of mouse C3d with mouse FH (3.85 μM), FHR-A (136 nM), FHR-B (546 nM), and FHR-C (1.04 μM), which directly correlate with results from functional assays. Collectively, our work suggests that similar to their human counterparts, a subset of mouse FHR proteins have an important modulatory role in complement activation. Further work is warranted to define the in vivo context-dependent roles of these proteins and determine whether FHR proteins are suitable therapeutic targets for the treatment of complement-driven diseases.
Collapse
Affiliation(s)
| | - Janice White
- Howard Hughes Medical Institute, Denver, CO 80206
| | | | - Brandon Renner
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Jonathan P Hannan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045
| | - Philippa Marrack
- Howard Hughes Medical Institute, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; and
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
16
|
Xavier S, Sahu RK, Landes SG, Yu J, Taylor RP, Ayyadevara S, Megyesi J, Stallcup WB, Duffield JS, Reis ES, Lambris JD, Portilla D. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Renal Physiol 2017; 312:F516-F532. [PMID: 28052876 PMCID: PMC5374314 DOI: 10.1152/ajprenal.00604.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
We have examined the pathogenic role of increased complement expression and activation during kidney fibrosis. Here, we show that PDGFRβ-positive pericytes isolated from mice subjected to obstructive or folic acid injury secrete C1q. This was associated with increased production of proinflammatory cytokines, extracellular matrix components, collagens, and increased Wnt3a-mediated activation of Wnt/β-catenin signaling, which are hallmarks of myofibroblast activation. Real-time PCR, immunoblots, immunohistochemistry, and flow cytometry analysis performed in whole kidney tissue confirmed increased expression of C1q, C1r, and C1s as well as complement activation, which is measured as increased synthesis of C3 fragments predominantly in the interstitial compartment. Flow studies localized increased C1q expression to PDGFRβ-positive pericytes as well as to CD45-positive cells. Although deletion of C1qA did not prevent kidney fibrosis, global deletion of C3 reduced macrophage infiltration, reduced synthesis of C3 fragments, and reduced fibrosis. Clodronate mediated depletion of CD11bF4/80 high macrophages in UUO mice also reduced complement gene expression and reduced fibrosis. Our studies demonstrate local synthesis of complement by both PDGFRβ-positive pericytes and CD45-positive cells in kidney fibrosis. Inhibition of complement activation represents a novel therapeutic target to ameliorate fibrosis and progression of chronic kidney disease.
Collapse
Affiliation(s)
- Sandhya Xavier
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Ranjit K Sahu
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Susan G Landes
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Jing Yu
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Ronald P Taylor
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia
| | | | - Judit Megyesi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Tumor Metastasis and Cancer Immunology Program, La Jolla, California
| | | | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia; .,Salem Veterans Affairs Medical Center, Salem, Virginia
| |
Collapse
|
17
|
Abstract
The complement (C) cascade is an ancient system of proteins whose primary role is to initiate and modulate immune responses. During C activation, circulating proteins are cleaved and nascent cleavage fragments participate in a broad range of downstream innate and adaptive immune functions. Although the majority of these functions are either homeostatic or protective, a large body of experimental and clinical evidence also highlights a central role for the C system in the pathogenesis of many types of glomerular disease. From classic pathway activation in lupus nephritis to alternative pathway dysregulation in C3 glomerulopathy, our understanding of the spectrum of C involvement in kidney disease has expanded greatly in recent years. However, the characteristics that make the glomerulus so uniquely susceptible to C-mediated injury are not fully understood, and this remains an area of ongoing investigation. Several C inhibitors have been approved for clinical use, and additional C inhibitory drugs are in development. The use of these drugs in patients with kidney disease will expand our understanding of the benefits and limitations of C inhibition.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado; and
| | - Carla M. Nester
- Stead Family Department of Pediatrics and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|