1
|
Altaffer AL, Burrage LC, Kamdar A, Vogel TP, Pereira M. The Matter at Hand: A Case of Difficult-to-Treat Arthritis. Arthritis Care Res (Hoboken) 2025; 77:291-296. [PMID: 39711103 DOI: 10.1002/acr.25488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Ana L Altaffer
- Baylor College of Medicine and Texas Children's Hospital, Houston
| | | | - Ankur Kamdar
- University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital
| | - Tiphanie P Vogel
- Baylor College of Medicine and Texas Children's Hospital, Houston
| | - Maria Pereira
- Baylor College of Medicine and Texas Children's Hospital, Houston
| |
Collapse
|
2
|
Chandler JC, Jafree DJ, Malik S, Pomeranz G, Ball M, Kolatsi-Joannou M, Piapi A, Mason WJ, Benest AV, Bates DO, Letunovska A, Al-Saadi R, Rabant M, Boyer O, Pritchard-Jones K, Winyard PJ, Mason AS, Woolf AS, Waters AM, Long DA. Single-cell transcriptomics identifies aberrant glomerular angiogenic signalling in the early stages of WT1 kidney disease. J Pathol 2024; 264:212-227. [PMID: 39177649 DOI: 10.1002/path.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer C Chandler
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - Saif Malik
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Mary Ball
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Alice Piapi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - William J Mason
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew V Benest
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - David O Bates
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Pan-African Cancer Research Institute, University of Pretoria, Hatfield, South Africa
| | - Aleksandra Letunovska
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marion Rabant
- Pathology department, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Olivia Boyer
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Paul J Winyard
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew S Mason
- Department of Biology and York Biomedical Research Institute, University of York, UK
| | - Adrian S Woolf
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Aoife M Waters
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - David A Long
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| |
Collapse
|
3
|
Labarque V, Okocha EC. Systematic Review of Genetic Modifiers Associated with the Development and/or Progression of Nephropathy in Patients with Sickle Cell Disease. Int J Mol Sci 2024; 25:5427. [PMID: 38791464 PMCID: PMC11121490 DOI: 10.3390/ijms25105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Sickle cell nephropathy (SCN) is a common complication of sickle cell disease (SCD) that significantly contributes to morbidity and mortality. In addition to clinical and life-style factors, genetic variants influence this risk. We performed a systematic review, searching five databases. Studies evaluating the effect of genetic modifiers on SCN were eligible. Twenty-eight studies (fair-to-good quality) were included: one genome-wide association study, twenty-six case-control studies, and one article combining both approaches. APOL1 was significantly associated with albuminuria and hyperfiltration in children and with worse glomerular filtration in adults. On the other hand, alpha-thalassemia protected patients against albuminuria and hyperfiltration, while BCL11A variants were protective against albuminuria alone. The HMOX1 long GT-tandem repeat polymorphism led to a lower glomerular filtration rate. No modifiers for the risk of hyposthenuria were identified. A genome-wide association approach identified three new loci for proteinuria (CRYL1, VWF, and ADAMTS7) and nine loci were linked with eGFR (PKD1L2, TOR2A, CUBN, AGGF1, CYP4B1, CD163, LRP1B, linc02288, and FPGT-TNNI3K/TNNI3K). In conclusion, this systematic review supports the role of genetic modifiers in influencing the risk and progression of SCN. Incorporating and expanding this knowledge is crucial to improving the management and clinical outcomes of patients at risk.
Collapse
Affiliation(s)
- Veerle Labarque
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven, 3000 Leuven, Belgium
- Center for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Emmanuel Chide Okocha
- Haematology Department, Faculty of Basic Clinical Sciences, College of Health Sciences, Nnamdi Azikiwe University, Nnewi PMB 5025, Anambra State, Nigeria
| |
Collapse
|
4
|
Ledru N, Wilson PC, Muto Y, Yoshimura Y, Wu H, Li D, Asthana A, Tullius SG, Waikar SS, Orlando G, Humphreys BD. Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing. Nat Commun 2024; 15:1291. [PMID: 38347009 PMCID: PMC10861555 DOI: 10.1038/s41467-024-45706-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Renal proximal tubule epithelial cells have considerable intrinsic repair capacity following injury. However, a fraction of injured proximal tubule cells fails to undergo normal repair and assumes a proinflammatory and profibrotic phenotype that may promote fibrosis and chronic kidney disease. The healthy to failed repair change is marked by cell state-specific transcriptomic and epigenomic changes. Single nucleus joint RNA- and ATAC-seq sequencing offers an opportunity to study the gene regulatory networks underpinning these changes in order to identify key regulatory drivers. We develop a regularized regression approach to construct genome-wide parametric gene regulatory networks using multiomic datasets. We generate a single nucleus multiomic dataset from seven adult human kidney samples and apply our method to study drivers of a failed injury response associated with kidney disease. We demonstrate that our approach is a highly effective tool for predicting key cis- and trans-regulatory elements underpinning the healthy to failed repair transition and use it to identify NFAT5 as a driver of the maladaptive proximal tubule state.
Collapse
Affiliation(s)
- Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Parker C Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Jia Q, Che Q, Zhang X, Chen J, Ren C, Wu Y, Liang W, Zhang X, Li Y, Li Z, Zhang Z, Shu Q. Knockdown of Galectin-9 alleviates rheumatoid arthritis through suppressing TNF-α-induced activation of fibroblast-like synoviocytes. Biochem Pharmacol 2024; 220:115994. [PMID: 38141929 DOI: 10.1016/j.bcp.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The role of Galectin-9 (Gal-9) in the pathogenesis of rheumatoid arthritis (RA) remains unclear. This study aimed to investigate the mechanism of action and therapeutic potential of Gal-9 in RA. We detected Gal-9 expression in clinical samples, explored the mechanism of function of Gal-9 by knockdown and overexpression in fibroblast-like synoviocytes (FLSs), and further verified it in collagen-induced arthritis (CIA) model. We found that the levels of Gal-9 were considerably elevated in RA synovium than in osteoarthritis (OA) patients. A substantial decrease of Gal-9 was demonstrated after tumor necrosis factor (TNF-α) inhibitor treatment in the plasma of patients with RA. Additionally, transcriptome sequencing revealed that Gal-9 was involved in the regulation of the TNF-α pathway. Gal-9 was considerably upregulated after TNF-α stimulation in FLSs, and knockdown of Gal-9 substantially inhibited TNF-α activated proliferation, migration and inflammatory response. According to cell transcriptome sequencing results, we further confirmed that Gal-9 could achieve these effects by interacting with MAFB and affecting PI3K/AKT/mTOR pathway. Finally, we knocked down Gal-9 on the CIA model and found that it could alleviate the progression of arthritis. In conclusion, our study revealed that the knockdown of Gal-9 could inhibited TNF-α induced activation in RA through MAFB, PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Qian Jia
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Qincheng Che
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiaoyu Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Jie Chen
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Chunfeng Ren
- Department of Rheumatology and Immunology, Jining NO.1 People's Hospital, Jining, China
| | - Yunpeng Wu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaojie Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Yanshan Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Zunzhong Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Zhenchun Zhang
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| |
Collapse
|
6
|
Fujino M, Ojima M, Takahashi S. Exploring Large MAF Transcription Factors: Functions, Pathology, and Mouse Models with Point Mutations. Genes (Basel) 2023; 14:1883. [PMID: 37895232 PMCID: PMC10606904 DOI: 10.3390/genes14101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Large musculoaponeurotic fibrosarcoma (MAF) transcription factors contain acidic, basic, and leucine zipper regions. Four types of MAF have been elucidated in mice and humans, namely c-MAF, MAFA, MAFB, and NRL. This review aimed to elaborate on the functions of MAF transcription factors that have been studied in vivo so far, as well as describe the pathology of human patients and corresponding mouse models with c-MAF, MAFA, and MAFB point mutations. To identify the functions of MAF transcription factors in vivo, we generated genetically modified mice lacking c-MAF, MAFA, and MAFB and analyzed their phenotypes. Further, in recent years, c-MAF, MAFA, and MAFB have been identified as causative genes underpinning many rare diseases. Careful observation of human patients and animal models is important to examine the pathophysiological mechanisms underlying these conditions for targeted therapies. Murine models exhibit phenotypes similar to those of human patients with c-MAF, MAFA, and MAFB mutations. Therefore, generating these animal models emphasizes their usefulness for research uncovering the pathophysiology of point mutations in MAF transcription factors and the development of etiology-based therapies.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
7
|
Garrett ME, Soldano KL, Erwin KN, Zhang Y, Gordeuk VR, Gladwin MT, Telen MJ, Ashley-Koch AE. Genome-wide meta-analysis identifies new candidate genes for sickle cell disease nephropathy. Blood Adv 2023; 7:4782-4793. [PMID: 36399516 PMCID: PMC10469559 DOI: 10.1182/bloodadvances.2022007451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Sickle cell disease nephropathy (SCDN), a common SCD complication, is strongly associated with mortality. Polygenic risk scores calculated from recent transethnic meta-analyses of urinary albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR) trended toward association with proteinuria and eGFR in SCD but the model fit was poor (R2 < 0.01), suggesting that there are likely unique genetic risk factors for SCDN. Therefore, we performed genome-wide association studies (GWAS) for 2 critical manifestations of SCDN, proteinuria and decreased eGFR, in 2 well-characterized adult SCD cohorts, representing, to the best of our knowledge, the largest SCDN sample to date. Meta-analysis identified 6 genome-wide significant associations (false discovery rate, q ≤ 0.05): 3 for proteinuria (CRYL1, VWF, and ADAMTS7) and 3 for eGFR (LRP1B, linc02288, and FPGT-TNNI3K/TNNI3K). These associations are independent of APOL1 risk and represent novel SCDN loci, many with evidence for regulatory function. Moreover, GWAS SNPs in CRYL1, VWF, ADAMTS7, and linc02288 are associated with gene expression in kidney and pathways important to both renal function and SCD biology, supporting the hypothesis that SCDN pathophysiology is distinct from other forms of kidney disease. Together, these findings provide new targets for functional follow-up that could be tested prospectively and potentially used to identify patients with SCD who are at risk, before onset of kidney dysfunction.
Collapse
Affiliation(s)
- Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Karen L. Soldano
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Kyle N. Erwin
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marilyn J. Telen
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
8
|
Elshani M, Um IH, Leung S, Reynolds PA, Chapman A, Kudsy M, Harrison DJ. Transcription Factor NFE2L1 Decreases in Glomerulonephropathies after Podocyte Damage. Cells 2023; 12:2165. [PMID: 37681897 PMCID: PMC10487238 DOI: 10.3390/cells12172165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.
Collapse
Affiliation(s)
- Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
- NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Steve Leung
- Urology Department, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - Alex Chapman
- Urology Department, Victoria Hospital, Hayfield Road, Kirkcaldy KY2 5AH, UK
| | - Mary Kudsy
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK (D.J.H.)
- Pathology, Laboratory Medicine, Royal Infirmary of Edinburgh, Little France, Edinburgh EH16 6NA, UK
| |
Collapse
|
9
|
Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, Muratani M, Okada R, Shiba D, Kudo T, Takeda S, Takahashi S. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep 2023; 42:112289. [PMID: 36952339 DOI: 10.1016/j.celrep.2023.112289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.
Collapse
Affiliation(s)
- Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
10
|
Morito N, Usui T, Ishibashi S, Yamagata K. Podocyte-specific Transcription Factors: Could MafB Become a Therapeutic Target for Kidney Disease? Intern Med 2023; 62:11-19. [PMID: 35249929 PMCID: PMC9876710 DOI: 10.2169/internalmedicine.9336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increasing number of patients with chronic kidney disease (CKD) is being recognized as an emerging global health problem. Recently, it has become clear that injury and loss of glomerular visceral epithelial cells, known as podocytes, is a common early event in many forms of CKD. Podocytes are highly specialized epithelial cells that cover the outer layer of the glomerular basement membrane. They serve as the final barrier to urinary protein loss through the formation and maintenance of specialized foot-processes and an interposed slit-diaphragm. We previously reported that the transcription factor MafB regulates the podocyte slit diaphragm protein production and transcription factor Tcf21. We showed that the forced expression of MafB was able to prevent CKD. In this review, we discuss recent advances and offer an updated overview of the functions of podocyte-specific transcription factors in kidney biology, aiming to present new perspectives on the progression of CKD and respective therapeutic strategies.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Toshiaki Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Shun Ishibashi
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
11
|
Inoue Y, Liao CW, Tsunakawa Y, Tsai IL, Takahashi S, Hamada M. Macrophage-Specific, Mafb-Deficient Mice Showed Delayed Skin Wound Healing. Int J Mol Sci 2022; 23:9346. [PMID: 36012611 PMCID: PMC9409077 DOI: 10.3390/ijms23169346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages play essential roles throughout the wound repair process. Nevertheless, mechanisms regulating the process are poorly understood. MAFB is specifically expressed in the macrophages in hematopoietic tissue and is vital to homeostatic function. Comparison of the skin wound repair rates in macrophage-specific, MAFB-deficient mice (Mafbf/f::LysM-Cre) and control mice (Mafbf/f) showed that wound healing was significantly delayed in the former. For wounded GFP knock-in mice with GFP inserts in the Mafb locus, flow cytometry revealed that their GFP-positive cells expressed macrophage markers. Thus, macrophages express Mafb at wound sites. Immunohistochemical (IHC) staining, proteome analysis, and RT-qPCR of the wound tissue showed relative downregulation of Arg1, Ccl12, and Ccl2 in Mafbf/f::LysM-Cre mice. The aforementioned genes were also downregulated in the bone marrow-derived, M2-type macrophages of Mafbf/f::LysM-Cre mice. Published single-cell RNA-Seq analyses showed that Arg1, Ccl2, Ccl12, and Il-10 were expressed in distinct populations of MAFB-expressing cells. Hence, the MAFB-expressing macrophage population is heterogeneous. MAFB plays the vital role of regulating multiple genes implicated in wound healing, which suggests that MAFB is a potential therapeutic target in wound healing.
Collapse
Affiliation(s)
- Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yuki Tsunakawa
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - I-Lin Tsai
- Global Innovation Joint-Degree Program, International Joint Degree Master’s Program, Agro-Biomedical Science in Food and Health, College of Medicine, National Taiwan University (NTU GIP-TRIAD), No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
12
|
Drovandi S, Lugani F, Boyer O, La Porta E, Giordano P, Hummel A, Knebelmann B, Cornet J, Baujat G, Lipska-Ziętkiewicz BS, Ghiggeri GM, Caridi G, Angeletti A. Multicentric Carpotarsal Osteolysis Syndrome Associated Nephropathy: Novel Variants of MAFB Gene and Literature Review. J Clin Med 2022; 11:4423. [PMID: 35956038 PMCID: PMC9369440 DOI: 10.3390/jcm11154423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Multicentric carpo-tarsal osteolysis (MCTO) is a rare osteolysis syndrome mainly involving carpal and tarsal bones usually presenting in early childhood. MCTO has autosomal dominant inheritance with heterozygous mutation in the MAFB gene. The skeletal disorder is often associated with chronic kidney disease. Data on clinical characterization and best treatment option of MCTO-associated nephropathy are scarce and mostly limited to case reports. With the aim to better define the phenotype and long-term outcomes of MCTO-associated nephropathy, we launched an online survey through the Workgroup for hereditary glomerulopathies of the European Rare Kidney Disease Network (ERKNet). Overall, we collected clinical and genetic data of 54 MCTO patients, of which 42 previously described and 12 new patients. We observed a high rate of kidney involvement (70%), early age of kidney disease onset, nephrotic-range proteinuria, and a kidney survival around of 40% at long-term follow-up. Our finding confirmed the heterogeneity of clinical manifestations and widen the spectrum of phenotypes resulting from MCTO-associated nephropathy. Furthermore, we report the first case of complete remission after treatment with cyclosporine A. We demonstrated that multidisciplinary care is essential for MCTO patients and early referral to nephrologists is therefore warranted to facilitate prompt treatment.
Collapse
Affiliation(s)
- Stefania Drovandi
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.D.); (E.L.P.); (P.G.); (G.M.G.)
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (F.L.); (G.C.)
| | - Olivia Boyer
- PHP, Service de Néphrologie Pédiatrique, Institut Imagine, Centre de Référence MARHEA, Hôpital Universitaire Necker-Enfants Malades, Université Paris Cité, 75015 Paris, France; (O.B.); (A.H.)
| | - Edoardo La Porta
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.D.); (E.L.P.); (P.G.); (G.M.G.)
| | - Paolo Giordano
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.D.); (E.L.P.); (P.G.); (G.M.G.)
| | - Aurélie Hummel
- PHP, Service de Néphrologie Pédiatrique, Institut Imagine, Centre de Référence MARHEA, Hôpital Universitaire Necker-Enfants Malades, Université Paris Cité, 75015 Paris, France; (O.B.); (A.H.)
| | - Bertrand Knebelmann
- Nephrology Department, Reference Center for Inherited Kidney Diseases (MARHEA), APHP, Necker Hospital, Paris University, 75015 Paris, France; (B.K.); (J.C.)
| | - Joséphine Cornet
- Nephrology Department, Reference Center for Inherited Kidney Diseases (MARHEA), APHP, Necker Hospital, Paris University, 75015 Paris, France; (B.K.); (J.C.)
| | - Genevieve Baujat
- Reference Centre for Constitutional Bone Diseases, Laboratory of Osteochondrodysplasia, INSERM UMR 1163, Imagine Institute, Université de Paris, 75015 Paris, France;
| | - Beata S. Lipska-Ziętkiewicz
- Rare Diseases Centre, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Biology and Medical Genetics, Clinical Genetics Unit, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.D.); (E.L.P.); (P.G.); (G.M.G.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (F.L.); (G.C.)
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (F.L.); (G.C.)
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, and Transplantation, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.D.); (E.L.P.); (P.G.); (G.M.G.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (F.L.); (G.C.)
| |
Collapse
|
13
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Zhu X, Tang L, Mao J, Hameed Y, Zhang J, Li N, Wu D, Huang Y, Li C. Decoding the Mechanism behind the Pathogenesis of the Focal Segmental Glomerulosclerosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1941038. [PMID: 35693262 PMCID: PMC9175094 DOI: 10.1155/2022/1941038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease associated with podocyte injury which is named after the pathologic features of the kidney. The aim of this study is to decode the key changes in gene expression and regulatory network involved in the formation of FSGS. Integrated network analysis included Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between FSGS patients and healthy donors. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the key modules were assured. The expression levels of DEGs were validated using the additional dataset. Eventually, transcription factors and ceRNA networks were established to illuminate the regulatory relationships in the formation of FSGS. 1130 DEGs including 475 upregulated genes and 655 downregulated genes with functional enrichment analysis were determined. Further analysis uncovered that the validated hub genes were defined as candidate genes, including Complement C3a Receptor 1 (C3AR1), C-C Motif Chemokine Receptor 1(CCR1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Melatonin Receptor 1A (MTNR1A), and Purinergic Receptor P2Y13 (P2RY13). More importantly, we identified transcription factors and mRNA-miRNA-lncRNA regulatory networks associated with the candidate genes. The candidate genes and regulatory networks discovered in this study can help to comprehend the molecular mechanism of FSGS and supply potential targets for the diagnosis and therapy of FSGS.
Collapse
Affiliation(s)
- Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Liping Tang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100091, China
| | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jingyu Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Ning Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Danny Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|
15
|
Global Loss of Core 1-Derived O-Glycans in Mice Leads to High Mortality Due to Acute Kidney Failure and Gastric Ulcers. Int J Mol Sci 2022; 23:ijms23031273. [PMID: 35163200 PMCID: PMC8835874 DOI: 10.3390/ijms23031273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022] Open
Abstract
The core 1 structure is the major constituent of mucin-type O-glycans, which are added via glycosylation—a posttranslational modification present on membrane-bound and secretory proteins. Core 1 β1,3-galactosyltransferase (C1galt1), an enzyme that synthesizes the core 1 structure, requires Cosmc, a C1galt1-specific molecular chaperone, for its enzymatic activity. Since Cosmc-knockout mice exhibit embryonic lethality, the biological role of core 1-derived O-glycans in the adult stage is not fully understood. We generated ubiquitous and inducible CAGCre-ERTM/Cosmc-knockout (iCAG-Cos) mice to investigate the physiological function of core 1-derived O-glycans. The iCAG-Cos mice exhibited a global loss of core 1-derived O-glycans, high mortality, and showed a drastic reduction in weights of the thymus, adipose tissue, and pancreas 10 days after Cosmc deletion. They also exhibited leukocytopenia, thrombocytopenia, severe acute pancreatitis, and atrophy of white and brown adipose tissue, as well as spontaneous gastric ulcers and severe renal dysfunction, which were considered the causes underlying the high mortality of the iCAG-Cos mice. Serological analysis indicated the iCAG-Cos mice have lower blood glucose and total blood protein levels and higher triglyceride, high-density lipoprotein, and total cholesterol levels than the controls. These data demonstrate the importance of core 1-derived O-glycans for homeostatic maintenance in adult mice.
Collapse
|
16
|
Kaimori JY, Mori T, Namba-Hamano T, Morimoto T, Takuwa A, Motooka D, Okazaki A, Kobayashi K, Asahina Y, Kajimoto S, Doi Y, Oka T, Sakaguchi Y, Nakaya A, Isaka Y. Cyclosporine A Treatment of Proteinuria in a New Case of MAFB-Associated Glomerulopathy without Extrarenal Involvement: A Case Report. Nephron Clin Pract 2021; 145:445-450. [PMID: 33975323 DOI: 10.1159/000516248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/20/2021] [Indexed: 11/19/2022] Open
Abstract
The MAFB gene encodes an important basic leucine zipper transcription factor that functions in glomerular podocytes, macrophages, and osteoclasts. Recently, MAFB was identified as the gene that was responsible for causing nephropathy with focal segmental glomerulosclerosis (FSGS) with multicentric carpotarsal osteolysis (MCTO) or Duane retraction syndrome (DRS). Here, we describe a patient with nephropathy associated with FSGS who exhibited a novel stop-gain variant in the MAFB gene (NM_005461:c.590C>A (p.Ser197Ter)). The patient's father exhibited proteinuria with FSGS with possible DRS, whereas the patient exhibited nephropathy with FSGS and nearly normal eye movement and hearing function, as well as intact bone structure in the extremities. Conventional oral steroids or immunosuppressive drugs have not demonstrated effectiveness for patients with nephropathy who exhibit pathogenic variants in MAFB, except for a patient with nephropathy with FSGS and MCTO who experienced attenuated proteinuria within the subnephrotic range in response to cyclosporine A (CyA) treatment for at least 4 years. Thus, we attempted administration of CyA in our patient. Unexpectedly, the patient demonstrated good and rapid responses to CyA, including a partial reduction in proteinuria from approximately 2.0 g/g Cr to proteinuria within the subnephrotic range (0.27 g/g Cr) after 13 months of observation. Our findings suggest that CyA may be a suitable treatment option for patients with nephropathy with FSGS who exhibit pathogenic MAFB variants.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuhiko Mori
- Medical Education Center, Osaka Medical College, Takatsuki, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Morimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayako Takuwa
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Atsuko Okazaki
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaori Kobayashi
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Japan.,Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | - Yuta Asahina
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sachio Kajimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiro Nakaya
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Suita, Japan.,Laboratory of Genome Data Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
17
|
Takahashi S. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases. Exp Anim 2021; 70:264-271. [PMID: 33762508 PMCID: PMC8390310 DOI: 10.1538/expanim.21-0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The large MAF transcription factor group is a group of transcription factors with an acidic region, a basic region, and a leucine zipper region. Four types of MAF, MAFA, MAFB, c-MAF, and NRL, have been identified in humans and mice. In order to elucidate the functions of the large MAF transcription factor group in vivo, our research group created genetically modified MAFA-, MAFB-, and c-MAF-deficient mice and analyzed their phenotypes. MAFA is expressed in pancreatic β cells and is essential for insulin transcription and secretion. MAFB is essential for the development of pancreatic endocrine cells, formation of inner ears, podocyte function in the kidneys, and functional differentiation of macrophages. c-MAF is essential for lens formation and osteoblast differentiation. Furthermore, a single-base mutation in genes encoding the large MAF transcription factor group causes congenital renal disease, eye disease, bone disease, diabetes, and tumors in humans. This review describes the functions of large MAF transcription factors in vivo and their relationships with human diseases.
Collapse
Affiliation(s)
- Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
18
|
Text Mining Gene Selection to Understand Pathological Phenotype Using Biological Big Data. Bioinformatics 2021. [DOI: 10.36255/exonpublications.bioinformatics.2021.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
19
|
Podocyte healthy self-eating boosted by a spermidine meal? Kidney Int 2020; 98:1390-1392. [PMID: 33276862 DOI: 10.1016/j.kint.2020.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022]
Abstract
The mechanisms sustaining a high level of autophagy in podocytes are not well delineated. Seminal studies had unraveled that the polyamine pathway is involved in the regulation of aging and autophagy. Polyamines (e.g., spermine, spermidine, and putrescine) are ubiquitous molecules essential for the physiological processes, including cell growth, development, and differentiation. Liang et al. examined the role of ornithine decarboxylase, and spermidine synthase, and demonstrated that endogenous spermidine is required to maintain intact podocyte autophagy.
Collapse
|