1
|
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J Pers Med 2024; 14:1157. [PMID: 39728069 DOI: 10.3390/jpm14121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics. By identifying discrete disease subtypes, molecular biomarkers, and therapeutic targets, these technologies pave the way for personalized treatment approaches. Multi-omics integration has enhanced our understanding of CKD by revealing intricate molecular linkages and pathways that contribute to treatment resistance and disease progression. While pharmacogenomics offers insights into expected responses to personalized treatments, single-cell and spatial transcriptomics can be utilized to investigate biological heterogeneity. Despite significant development, challenges persist, including data integration concerns, high costs, and ethical quandaries. Standardized data protocols, collaborative data-sharing frameworks, and advanced computational tools such as machine learning and causal inference models are required to address these challenges. With the advancement of omics technology, nephrology may benefit from improved diagnostic accuracy, risk assessment, and personalized care. By overcoming these barriers, precision medicine has the potential to develop novel techniques for improving patient outcomes in kidney disease treatment.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Gonzalez-Vicente A, Crawford DC, Bush WS, Wu Z, Bruggeman LA, Nair V, Eichinger F, Wessely O, Kretzler M, O'Toole JF, Sedor JR. Analysis of Glomerular Transcriptomes from Nephrotic Patients Suggest APOL1 Risk Variants Impact Parietal Epithelial Cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.05.24316766. [PMID: 39830251 PMCID: PMC11741451 DOI: 10.1101/2024.11.05.24316766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The disproportionate risk for idiopathic proteinuric podocytopathies in Black people is explained, in part, by the presence of two risk alleles (G1 or G2) in the APOL1 gene. The pathogenic mechanisms responsible for this genetic association remain incompletely understood. We analyzed glomerular RNASeq transcriptomes from patients with idiopathic nephrotic syndrome of which 72 had inferred African ancestry (AA) and 152 did not (noAA). Using gene coexpression networks we found a significant association between APOL1 risk allele number and the coexpression metamodule 2 (MM2), even after adjustment for eGFR and proteinuria at biopsy. Unadjusted Kaplan-Meier curves showed that unlike noAA, AA with the highest tertile of MM2 gene activation scores were less likely to achieve complete remission (p≤0.014). Characteristic direction (ChDir) identified a signature of 1481 genes, which separated patients with APOL1 risk alleles from those homozygous for reference APOL1 . Only in AA, the tertile with the highest activation scores of these 1481 genes was less likely to achieve complete remission (p≤0.022) and showed a trend to faster progression to the composite event of kidney failure or loss of 40% eGFR (p≤0.099). The MM2 and ChDir genes significantly overlapped and were both enriched for Epithelial Mesenchymal Transition and inflammation terms. Finally, MM2 significantly overlapped with a parietal epithelial cell (PEC)-identity gene signature but not with a podocyte identity signature. Podocytes expressing variant APOL1s may generate inflammatory signals that activate PECs by paracrine mechanisms contributing to APOL1 nephropathy.
Collapse
|
3
|
Gbadegesin R, Martinelli E, Gupta Y, Friedman DJ, Sampson MG, Pollak MR, Sanna-Cherchi S. APOL1 Genotyping Is Incomplete without Testing for the Protective M1 Modifier p.N264K Variant. GLOMERULAR DISEASES 2024; 4:43-48. [PMID: 38495868 PMCID: PMC10942791 DOI: 10.1159/000537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Elena Martinelli
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Yask Gupta
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - David J Friedman
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Sampson
- Harvard Medical School, Boston, MA, USA
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
- Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA
- Division of Nephrology, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Hung AM, Assimon VA, Chen HC, Yu Z, Vlasschaert C, Triozzi JL, Chan H, Wheless L, Wilson O, Shah SC, Mack T, Thompson T, Matheny ME, Chandrasekar S, Mozaffari SV, Chung CP, Tsao P, Susztak K, Siew ED, Estrada K, Gaziano JM, Graham RR, Tao R, Hoek M, Robinson-Cohen C, Green EM, Bick AG. Genetic Inhibition of APOL1 Pore-Forming Function Prevents APOL1-Mediated Kidney Disease. J Am Soc Nephrol 2023; 34:1889-1899. [PMID: 37798822 PMCID: PMC10631602 DOI: 10.1681/asn.0000000000000219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/17/2023] [Indexed: 10/07/2023] Open
Abstract
SIGNIFICANCE STATEMENT African Americans are at increased risk of CKD in part due to high-risk (HR) variants in the apolipoprotein L1 ( APOL1 ) gene, termed G1/G2. A different APOL1 variant, p.N264K , reduced the risk of CKD and ESKD among carriers of APOL1 HR variants to levels comparable with individuals with APOL1 low-risk variants in an analysis of 121,492 participants of African ancestry from the Million Veteran Program (MVP). Functional genetic studies in cell models showed that APOL1 p.N264K blocked APOL1 pore-forming function and ion channel conduction and reduced toxicity of APOL1 HR mutations. Pharmacologic inhibitors that mimic this mutation blocking APOL1 -mediated pore formation may be able to prevent and/or treat APOL1 -associated kidney disease. BACKGROUND African Americans are at increased risk for nondiabetic CKD in part due to HR variants in the APOL1 gene. METHODS We tested whether a different APOL1 variant, p.N264K , modified the association between APOL1 HR genotypes (two copies of G1/G2) and CKD in a cross-sectional analysis of 121,492 participants of African ancestry from the MVP. We replicated our findings in the Vanderbilt University Biobank ( n =14,386) and National Institutes of Health All of Us ( n =14,704). Primary outcome was CKD and secondary outcome was ESKD among nondiabetic patients. Primary analysis compared APOL1 HR genotypes with and without p.N264K . Secondary analyses included APOL1 low-risk genotypes and tested for interaction. In MVP, we performed sequential logistic regression models adjusting for demographics, comorbidities, medications, and ten principal components of ancestry. Functional genomic studies expressed APOL1 HR variants with and without APOL1 p.N264K in cell models. RESULTS In the MVP cohort, 15,604 (12.8%) had two APOL1 HR variants, of which 582 (0.5%) also had APOL1 p.N264K . In MVP, 18,831 (15%) had CKD, 4177 (3%) had ESKD, and 34% had diabetes. MVP APOL1 HR, without p.N264K , was associated with increased odds of CKD (odds ratio [OR], 1.72; 95% confidence interval [CI], 1.60 to 1.85) and ESKD (OR, 3.94; 95% CI, 3.52 to 4.41). In MVP, APOL1 p.N264K mitigated the renal risk of APOL1 HR, in CKD (OR, 0.43; 95% CI, 0.28 to 0.65) and ESKD (OR, 0.19; CI 0.07 to 0.51). In the replication cohorts meta-analysis, APOL1 p.N264K mitigated the renal risk of APOL1 HR in CKD (OR, 0.40; 95% CI, 0.18 to 0.92) and ESKD (OR, 0.19; 95% CI, 0.05 to 0.79). In the mechanistic studies, APOL1 p.N264K blocked APOL1 pore-forming function and ion channel conduction and reduced toxicity of APOL1 HR variants. CONCLUSIONS APOL1 p.N264K is associated with reduced risk of CKD and ESKD among carriers of APOL1 HR to levels comparable with individuals with APOL1 low-risk genotypes.
Collapse
Affiliation(s)
- Adriana M. Hung
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Hua-Chang Chen
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhihong Yu
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Jefferson L. Triozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Helen Chan
- Maze Therapeutics, South San Francisco, California
| | - Lee Wheless
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Otis Wilson
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C. Shah
- VA San Diego Healthcare System and UC San Diego Health, La Jolla, California
| | - Taralynn Mack
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Trevor Thompson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael E. Matheny
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Cecilia P. Chung
- Department of Rheumatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip Tsao
- VA Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Edward D. Siew
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - J. Michael Gaziano
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard School of Medicine, Boston, Massachusetts
| | | | - Ran Tao
- Nashville VA Medical Center, VA Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maarten Hoek
- Maze Therapeutics, South San Francisco, California
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, Massachusetts
| |
Collapse
|
5
|
Osterholt T, Todorova P, Kühne L, Ehren R, Weber LT, Grundmann F, Benzing T, Brinkkötter PT, Völker LA. Repetitive administration of rituximab can achieve and maintain clinical remission in patients with MCD or FSGS. Sci Rep 2023; 13:6980. [PMID: 37117201 PMCID: PMC10141841 DOI: 10.1038/s41598-023-32576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023] Open
Abstract
Minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are glomerulopathies associated with nephrotic syndrome. Primary forms of these diseases are treated with various regimes of immunosuppression. Frequently relapsing or glucocorticoid-dependent courses remain challenging. Here, a B-cell-depleting strategy with rituximab represents a salvage option although data are sparse in the adult population. In particular, there is limited evidence on the efficacy of restoring remission after initial successful treatment with rituximab and whether patients benefit from an individualized, relapse-based approach. We identified 13 patients who received multiple therapies with rituximab from the FOrMe-registry (NCT03949972), a nationwide registry for MCD and FSGS in Germany, or from the University Hospital of Cologne. Disease status, changes in serum creatinine, proteinuria, and time to relapse were evaluated. Relapse-free survival was compared to the patients' previous therapy regimens. Through all treatment cycles, an improvement of disease activity was shown leading to a complete remission in 72% and partial remission in 26% after 3 ([Formula: see text]0.001) and 6 months ([Formula: see text]0.001). Relapse-free survival increased from 4.5 months (95%-CI 3-10 months) to 21 months (95%-CI 16-32 months) ([Formula: see text]0.001) compared to previous immunosuppression regimens with no loss in estimated glomerular filtration over time (p = 0.53). Compared to continuous B-cell depletion, an individualized relapse-based approach led to a reduced rituximab exposure and significant cost savings. Relapse-based administration of rituximab in patients with MCD/FSGS with an initial good clinical response did not result in a decreased efficacy at a median follow-up duration of 110 months. Thus, reinduction therapies may provide an alternative to continuous B-cell-depletion and reduce the long-term side effects of continuous immunosuppression.
Collapse
Affiliation(s)
- Thomas Osterholt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Polina Todorova
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lucas Kühne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Rasmus Ehren
- Faculty of Medicine, Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Faculty of Medicine, Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | - Linus Alexander Völker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Ekrikpo U, Obiagwu P, Chika-Onu U, Yadla M, Karam S, Tannor EK, Bello AK, Okpechi IG. Epidemiology and Outcomes of Glomerular Diseases in Low- and Middle-Income Countries. Semin Nephrol 2023; 42:151316. [PMID: 36773418 DOI: 10.1016/j.semnephrol.2023.151316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Glomerular diseases account for a significant proportion of chronic kidney disease in low-income and middle-income countries (LMICs). The epidemiology of glomerulonephritis is characterized inadequately in LMICs, largely owing to unavailable nephropathology services or uncertainty of the safety of the kidney biopsy procedure. In contrast to high-income countries where IgA nephropathy is the dominant primary glomerular disease, focal segmental glomerulosclerosis is common in large populations across Latin America, Africa, Middle East, and South East Asia, while IgA nephropathy is common in Chinese populations. Despite having a high prevalence of known genetic and viral risk factors that trigger focal segmental glomerulosclerosis, membranoproliferative glomerulonephritis also is common in adults and children in some African countries. Treatment of glomerular diseases in adults and children in LMICs largely is dependent on corticosteroids in combination with other immunosuppressive therapy, which often is cyclophosphamide because of its ready availability and low cost of treatment, despite significant adverse effects. Partial and/or complete remission status reported from studies of glomerular disease subtypes vary across LMIC regions, with high rates of kidney failure, mortality, and disease, and treatment complications often reported. Improving the availability of nephropathology services and ensuring availability of specific therapies are key measures to improving glomerular disease outcomes in LMICs.
Collapse
Affiliation(s)
- Udeme Ekrikpo
- Department of Medicine, University of Uyo, Uyo, Nigeria
| | - Patience Obiagwu
- Department of Paediatrics, Bayero University, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Ugochi Chika-Onu
- Department of Medicine, College of Medicine, University of Nigeria, Ituku-Ozalla, Enugu, Nigeria
| | - Manjusha Yadla
- Department of Nephrology, Gandhi Medical College, Hyderabad, Telangana, India
| | - Sabine Karam
- Division of Nephrology, University of Minnesota, Minnesota, MN; Division of Nephrology, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand, Lebanon
| | - Elliot K Tannor
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aminu K Bello
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ikechi G Okpechi
- Department of Medicine, University of Alberta, Edmonton, Canada; Division of Nephrology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
7
|
Yoshida T, Latt KZ, Rosenberg AZ, Shrivastav S, Heymann J, Halushka MK, Winkler CA, Kopp JB. Transcriptomic Analysis of Human Podocytes In Vitro: Effects of Differentiation and APOL1 Genotype. Kidney Int Rep 2022; 8:164-178. [PMID: 36644347 PMCID: PMC9831945 DOI: 10.1016/j.ekir.2022.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The mechanisms in podocytes that mediate the pathologic effects of the APOL1 high-risk (HR) variants remain incompletely understood, although various molecular and cellular mechanisms have been proposed. We previously established conditionally immortalized human urine-derived podocyte-like epithelial cell (HUPEC) lines to investigate APOL1 HR variant-induced podocytopathy. Methods We conducted comprehensive transcriptomic analysis, including mRNA, microRNA (miRNA), and transfer RNA fragments (tRFs), to characterize the transcriptional profiles in undifferentiated and differentiated HUPEC with APOL1 HR (G1/G2, 2 cell lines) and APOL1 low-risk (LR) (G0/G0, 2 cell lines) genotypes. We reanalyzed single-cell RNA-seq data from urinary podocytes from focal segmental glomerulosclerosis (FSGS) subjects to characterize the effect of APOL1 genotypes on podocyte transcriptomes. Results Differential expression analysis showed that the ribosomal pathway was one of the most enriched pathways, suggesting that altered function of the translation initiation machinery may contribute to APOL1 variant-induced podocyte injury. Expression of genes related to the elongation initiation factor 2 pathway was also enriched in the APOL1 HR urinary podocytes from single-cell RNA-seq, supporting a prior report on the role of this pathway in APOL1-associated cell injury. Expression of microRNA and tRFs were analyzed, and the profile of small RNAs differed by both differentiation status and APOL1 genotype. Conclusion We have profiled the transcriptomic landscape of human podocytes, including mRNA, miRNA, and tRF, to characterize the effects of differentiation and of different APOL1 genotypes. The candidate pathways, miRNAs, and tRFs described here expand understanding of APOL1-associated podocytopathies.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA,Correspondence: Teruhiko Yoshida, Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, 3N104, Bethesda, Maryland 20892-1268, USA.
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Cheryl A. Winkler
- Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Brandenburg JT, Govender MA, Winkler CA, Boua PR, Agongo G, Fabian J, Ramsay M. Apolipoprotein L1 High-Risk Genotypes and Albuminuria in Sub-Saharan African Populations. Clin J Am Soc Nephrol 2022; 17:798-808. [PMID: 35577564 PMCID: PMC9269651 DOI: 10.2215/cjn.14321121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Recessive inheritance of African-specific APOL1 kidney risk variants is associated with higher risk of nondiabetic kidney disease, progression to kidney failure, and early-onset albuminuria that precedes eGFR decline. The effect of APOL1 risk variants on kidney disease in continental Africans is understudied. Objectives of this study were to determine APOL1 risk allele prevalence and associations between APOL1 genotypes and kidney disease in West, East, and South Africa. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This cross-sectional population-based study in four African countries included 10,769 participants largely aged 40-60 years with sociodemographic and health information, anthropometry data, and blood and urine tests for biomarkers of kidney disease. APOL1 risk alleles were imputed from the H3Africa genotyping array, APOL1 risk allele and genotype frequencies were determined, and genetic associations were assessed for kidney disease. Kidney disease was defined as the presence of eGFR <60 ml/min per 1.73 m2, albuminuria, or a composite end point including eGFR <60 ml/min per 1.73 m2 and/or albuminuria. RESULTS High G1 allele frequencies occurred in South and West Africa (approximately 7%-13%). G2 allele frequencies were highest in South Africa (15%-24%), followed by West Africa (9%-12%). Associations between APOL1 risk variants and albuminuria were significant for recessive (odds ratio, 1.63; 95% confidence interval, 1.25 to 2.12) and additive (odds ratio, 1.39; 95% confidence interval, 1.09 to 1.76) models. Associations were stronger for APOL1 G1/G1 genotypes versus G0/G0 (odds ratio, 3.87; 95% confidence interval, 2.16 to 6.93) compared with either G2/G2 (odds ratio, 1.65; 95% confidence interval, 1.09 to 2.51) or G1/G2 (odds ratio, 1.24; 95% confidence interval, 0.83 to 1.87). No association between APOL1 risk variants and eGFR <60 ml/min per 1.73 m2 was observed. CONCLUSIONS APOL1 G1 and G2 alleles and high-risk genotype frequencies differed between and within West and South Africa and were almost absent from East Africa. APOL1 risk variants were associated with albuminuria but not eGFR <60 ml/min per 1.73 m2. There may be differential effects of homozygous G1 and G2 genotypes on albuminuria that require further investigation. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_05_16_CJN14321121.mp3.
Collapse
Affiliation(s)
- Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Melanie A Govender
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl A Winkler
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Palwende Romuald Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé-DRCO, Nanoro, Burkina Faso
| | - Godfred Agongo
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana.,Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa .,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Yang YW, Poudel B, Frederick J, Dhillon P, Shrestha R, Ma Z, Wu J, Okamoto K, Kopp JB, Booten SL, Gattis D, Watt AT, Palmer M, Aghajan M, Susztak K. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte specific APOL1 risk variant mice. Mol Ther 2022; 30:2491-2504. [PMID: 35450819 DOI: 10.1016/j.ymthe.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain the most excess risk of kidney disease observed in African Americans. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in podocyte specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. The administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that an APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.
Collapse
Affiliation(s)
- Ya-Wen Yang
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bibek Poudel
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia Frederick
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Poonam Dhillon
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rojesh Shrestha
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ziyuan Ma
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Junnan Wu
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Koji Okamoto
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | | | | | | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Hung AM, Shah SC, Bick AG, Yu Z, Chen HC, Hunt CM, Wendt F, Wilson O, Greevy RA, Chung CP, Suzuki A, Ho YL, Akwo E, Polimanti R, Zhou J, Reaven P, Tsao PS, Gaziano JM, Huffman JE, Joseph J, Luoh SW, Iyengar S, Chang KM, Casas JP, Matheny ME, O’Donnell CJ, Cho K, Tao R, Susztak K, Robinson-Cohen C, Tuteja S, Siew ED. APOL1 Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program. JAMA Intern Med 2022; 182:386-395. [PMID: 35089317 PMCID: PMC8980930 DOI: 10.1001/jamainternmed.2021.8538] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/25/2021] [Indexed: 01/30/2023]
Abstract
IMPORTANCE Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates. OBJECTIVE Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19-associated AKI and death. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information. EXPOSURES The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group). MAIN OUTCOMES AND MEASURES The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2). RESULTS Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021. CONCLUSIONS AND RELEVANCE In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.
Collapse
Affiliation(s)
- Adriana M. Hung
- Tennessee Valley Healthcare System, Nashville Campus, Nashville
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C. Shah
- GI Section, VA San Diego Healthcare System, San Diego, California
- Division of Gastroenterology, University of California, San Diego, San Diego
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhihong Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M. Hunt
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina
- VA Cooperative Studies Program Epidemiology Center, Durham VA Health Care System, Durham, North Carolina
| | - Frank Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut
- VA CT Healthcare Center, West Haven, Connecticut
| | - Otis Wilson
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert A. Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cecilia P. Chung
- Division of Rheumatology and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Rheumatology Section, Veterans Affairs, Nashville, Tennessee
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina
- VA Cooperative Studies Program Epidemiology Center, Durham VA Health Care System, Durham, North Carolina
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
| | - Elvis Akwo
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut
- VA CT Healthcare Center, West Haven, Connecticut
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Phoenix
- Phoenix VA Health Care System, Phoenix, Arizona
| | - Peter Reaven
- Phoenix VA Health Care System, Phoenix, Arizona
- Division of Endocrinology, Department of Medicine, University of Arizona, Phoenix
| | - Philip S. Tsao
- Epidemiology Research and Information Center (ERIC), VA Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - J. Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
- Division of Aging, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Jennifer E. Huffman
- Center for Population Genomics, Massachusetts Veterans Epidemiology Research & Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts
| | - Jacob Joseph
- Cardiology Section, Veterans Affairs Boston, Boston, Massachusetts
- Division of Cardiovascular Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Shiuh-Wen Luoh
- VA Portland Health Care System, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Sudha Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University and Louis Stoke, Cleveland VA, Cleveland, Ohio
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Juan P. Casas
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
- Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Michael E. Matheny
- Departments of Biomedical Informatics, Biostatistics, and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- GREEC, TVHS VA, Nashville, Tennessee
| | - Christopher J. O’Donnell
- Cardiology, VA Boston Healthcare System, Boston, Massachusetts
- Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Novartis
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston
- Department of Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Cassianne Robinson-Cohen
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sony Tuteja
- The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward D. Siew
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Shahian DM, Badhwar V, O'Brien SM, Habib RH, Han J, McDonald DE, Antman MS, Higgins RSD, Preventza O, Estrera AL, Calhoon JH, Grondin SC, Cooke DT. Social Risk Factors in Society of Thoracic Surgeons Risk Models Part 1: Concepts, Indicator Variables, and Controversies. Ann Thorac Surg 2022; 113:1703-1717. [PMID: 34998732 DOI: 10.1016/j.athoracsur.2021.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Affiliation(s)
- David M Shahian
- Division of Cardiac Surgery, Department of Surgery, and Center for Quality and Safety, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Vinay Badhwar
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown WV
| | | | | | - Jane Han
- Society of Thoracic Surgeons, Chicago, IL
| | | | | | - Robert S D Higgins
- Johns Hopkins University School of Medicine and Johns Hopkins Hospital, Baltimore, MD
| | - Ourania Preventza
- Baylor College of Medicine, Texas Heart Institute, Baylor St. Luke's Medical Center, Houston, TX
| | - Anthony L Estrera
- McGovern Medical School at UTHealth; Memorial Hermann Heart and Vascular Institute; Houston, TX
| | - John H Calhoon
- Department of Cardiothoracic Surgery, University of Texas Health Science Center at San Antonio
| | - Sean C Grondin
- Cumming School of Medicine, University of Calgary, and Foothills Medical Centre, Calgary, Alberta, Canada
| | - David T Cooke
- Division of General Thoracic Surgery, UC Davis Health, Sacramento, CA
| |
Collapse
|
12
|
Freedman BI, Mena-Gutierrez AM, Ma L. Recipient APOL1 Genotype Effects on Outcomes After Kidney Transplantation. Am J Kidney Dis 2021; 79:450-452. [PMID: 34801598 DOI: 10.1053/j.ajkd.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA.
| | - Alejandra M Mena-Gutierrez
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| |
Collapse
|
13
|
Wu J, Ma Z, Raman A, Beckerman P, Dhillon P, Mukhi D, Palmer M, Chen HC, Cohen CR, Dunn T, Reilly J, Meyer N, Shashaty M, Arany Z, Haskó G, Laudanski K, Hung A, Susztak K. APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity 2021; 54:2632-2649.e6. [PMID: 34715018 PMCID: PMC9338439 DOI: 10.1016/j.immuni.2021.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
The incidence and severity of sepsis is higher among individuals of African versus European ancestry. We found that genetic risk variants (RVs) in the trypanolytic factor apolipoprotein L1 (APOL1), present only in individuals of African ancestry, were associated with increased sepsis incidence and severity. Serum APOL1 levels correlated with sepsis and COVID-19 severity, and single-cell sequencing in human kidneys revealed high expression of APOL1 in endothelial cells. Analysis of mice with endothelial-specific expression of RV APOL1 and in vitro studies demonstrated that RV APOL1 interfered with mitophagy, leading to cytosolic release of mitochondrial DNA and activation of the inflammasome (NLRP3) and the cytosolic nucleotide sensing pathways (STING). Genetic deletion or pharmacological inhibition of NLRP3 and STING protected mice from RV APOL1-induced permeability defects and proinflammatory endothelial changes in sepsis. Our studies identify the inflammasome and STING pathways as potential targets to reduce APOL1-associated health disparities in sepsis and COVID-19.
Collapse
Affiliation(s)
- Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Archana Raman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pazit Beckerman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Chang Chen
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassiane Robinson Cohen
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Nephrology & Hypertension, Vanderbilt Precision Nephrology Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Dunn
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Reilly
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuala Meyer
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Shashaty
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adriana Hung
- Division of Nephrology & Hypertension, Tennessee Valley Healthcare System, Nashville Campus and Vanderbilt University Medical Centre, Nashville, TN, USA; Division of Nephrology & Hypertension, Vanderbilt Precision Nephrology Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ, Ma Z, Beckerman P, Laczkó D, Palmer MB, Kopp JB, Kuo JJ, Pullen SS, Boustany-Kari CM, Linkermann A, Susztak K. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Invest 2021; 131:e136329. [PMID: 34651582 PMCID: PMC8516463 DOI: 10.1172/jci136329] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Coding variants in apolipoprotein L1 (APOL1), termed G1 and G2, can explain most excess kidney disease risk in African Americans; however, the molecular pathways of APOL1-induced kidney dysfunction remain poorly understood. Here, we report that expression of G2 APOL1 in the podocytes of Nphs1rtTA/TRE-G2APOL1 (G2APOL1) mice leads to early activation of the cytosolic nucleotide sensor, stimulator of interferon genes (STING), and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. STING and NLRP3 expression was increased in podocytes from patients with high-risk APOL1 genotypes, and expression of APOL1 correlated with caspase-1 and gasdermin D (GSDMD) levels. To demonstrate the role of NLRP3 and STING in APOL1-associated kidney disease, we generated transgenic mice with the G2 APOL1 risk variant and genetic deletion of Nlrp3 (G2APOL1/Nlrp3 KO), Gsdmd (G2APOL1/Gsdmd KO), and STING (G2APOL1/STING KO). Knockout mice displayed marked reduction in albuminuria, azotemia, and kidney fibrosis compared with G2APOL1 mice. To evaluate the therapeutic potential of targeting NLRP3, GSDMD, and STING, we treated mice with MCC950, disulfiram, and C176, potent and selective inhibitors of NLRP3, GSDMD, and STING, respectively. G2APOL1 mice treated with MCC950, disulfiram, and C176 showed lower albuminuria and improved kidney function even when inhibitor treatment was initiated after the development of albuminuria.
Collapse
Affiliation(s)
- Junnan Wu
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Archana Raman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan J. Coffey
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Sheng
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Wahba
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew J. Seasock
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pazit Beckerman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dorottya Laczkó
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B. Palmer
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay J. Kuo
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Steven S. Pullen
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Katalin Susztak
- Department of Medicine, Renal-Electrolyte and Hypertension Division, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|