1
|
Chen J, Zhang B, Huang Q, Fang R, Ren Z, Liu D. Key RNA-binding proteins in renal fibrosis: a comprehensive bioinformatics and machine learning framework for diagnostic and therapeutic insights. Ren Fail 2025; 47:2463560. [PMID: 39957043 PMCID: PMC11834823 DOI: 10.1080/0886022x.2025.2463560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Renal fibrosis is a critical factor in chronic kidney disease progression, with limited diagnostic and therapeutic options. Emerging evidence suggests RNA-binding proteins (RBPs) are pivotal in regulating cellular mechanisms underlying fibrosis. METHODS Utilizing an extensive GEO dataset (175 renal fibrosis and 99 normal kidney samples), we identified and validated key RBPs through integrated bioinformatics and machine learning approaches, including lasso and logistic regression models. Differentially expressed genes were analyzed for pathway enrichment using Gene Ontology and KEGG. Single-cell RNA sequencing delineated cell-specific RBP expression, and a murine unilateral ureteral obstruction (UUO) model provided experimental validation. RESULTS A diagnostic model incorporating five RBPs (FKBP11, DCDC2, COL6A3, PLCB4, and GNB5) achieved high accuracy (AUC = 0.899) and robust external validation. These RBPs are implicated in immune-mediated pathways such as cytokine signaling and inflammatory responses. Single-cell analysis highlighted their expression in specific renal cell populations, underscoring functional diversity. Immunofluorescence linked FKBP11 with macrophage infiltration, suggesting its potential as a therapeutic target. CONCLUSION his study identifies novel RBPs associated with renal fibrosis, advancing the understanding of its pathogenesis and offering actionable biomarkers and therapeutic targets. The integration of bioinformatics and machine learning emphasizes their translational potential in kidney care.
Collapse
Affiliation(s)
- Jie Chen
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology, the Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Binghan Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qixuan Huang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ronghua Fang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhao W, Luo J, Wang F, Shi Y, Zhang J, Zhang Y, Li Y, Wang X, Chen Y, Zhang X, Wang X, Mu Y, Ji D, Xiao S, Wang Q, Zhang L, Zhang C, Zhou D. Engineering sialylated N-glycans on adeno-associated virus capsids for targeted gene delivery and therapeutic applications. J Control Release 2025; 380:563-578. [PMID: 39938722 DOI: 10.1016/j.jconrel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Glycans with diverse biological functions have been extensively identified on enveloped viruses, whereas glycosylation on adeno-associated virus (AAV) serotypes remains poorly understood. Identifying potential glycosylation sites on AAVs could provide critical docking sites for rational engineering of AAV capsids, enabling targeted delivery of therapeutic genes. This study presents a strategy that integrates azido-monosaccharide metabolic incorporation, 1,2-diamino-4,5-methylenedioxybenzene-labeled sialic acid analysis, and mass spectrometry to identify N-glycosylation sites and glycoforms on AAVs. We identified sialylated N- oligosaccharides, particularly the conserved NNNS motif, on AAV2, AAV6, AAV7, and AAV9 capsids. These glycans play critical roles in maintaining capsid stability and enhancing resistance to neutralizing antibodies. Furthermore, we engineered an AAV vector with an azido-labeled terminal sialic acid, which was conjugated via click chemistry to cyclic Arg-Gly-Asp (RGD), a high-affinity ligand for integrin αvβ3, to generate an integrin-targeted delivery vehicle. This approach enabled the efficient delivery of c-Met-targeting shRNA in a glioma mouse model and facilitated CRISPR/Cas9-mediated SMOC2 knockout in a mouse model of kidney fibrosis using single-guide RNA (sgRNA). Our findings establish a foundation for creating editable AAV vectors through sialylated termini, thereby expanding their potential applications in basic research and therapeutic development.
Collapse
Affiliation(s)
- Weixuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jinhuan Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Fudi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Jiawen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinchen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yingying Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Dezhong Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, Guangdong 518107, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, Zhejiang 315832, China; Peking University - Yunnan Baiyao International Medical Research Center, Beijing 100191, China.
| |
Collapse
|
3
|
Aylward RE, Hayward S, Chesnaye NC, Janse RJ, Jonsson PA, Torino C, Demetrio A, Szymczak M, Drechsler C, Dekker FW, Evans M, Jager KJ, Wanner C, Rayner B, Ben-Shlomo Y, Tiffin N, Caskey FJ, Birnie K. Cardiometabolic protein expression levels and pathways associated with kidney function decline in older European adults with advanced kidney disease. Clin Kidney J 2025; 18:sfaf079. [PMID: 40342947 PMCID: PMC12059643 DOI: 10.1093/ckj/sfaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 05/11/2025] Open
Abstract
Background Cardiovascular disease and chronic kidney disease (CKD) progression pathophysiology are similar. We investigated associations of cardiometabolic protein expression and pathways with kidney function decline in older adults with advanced CKD referred for nephrology assessment. Methods Two plasma proteomic panels analysed at baseline (Olink® cardiometabolic T96 and cardiovascular II T96, Uppsala, Sweden) and longitudinal estimated glomerular filtration rate (eGFR) data from European adults aged >65 years with a single eGFR of <20 mL/min/1.73 m2 [European Quality (EQUAL) Study] were used to explore mechanisms of CKD progression. Protein-slope associations were estimated using generalized linear mixed-effects models and with a false-discovery rate P < .05 taken to validation to verify the effect size of the association. Proteins were further modularized into biological pathways using pathway enrichment analysis. Results A discovery sub-cohort of 238 complete-case participants from Germany, the UK and Poland (median age 76 years, 41% female sex, median baseline eGFR 17.8 mL/min/1.73 m2) were included and 246 participants from Sweden formed the validation sub-cohort (median age 75 years, 28% female, median baseline eGFR 17.5 mL/min/1.73 m2). Of the 175 analysed proteins, higher expression levels of Receptor-type tyrosine-protein phosphatase S [-15.4% change in eGFR per year per doubling of protein expression; 95% confidence interval (CI) -23.5%, -7.6%], Insulin-like growth factor binding protein 6 (-7.9%; 95% CI -12.3%, -3.5%) and Ficolin 2 (-7.4%; 95% CI -12.0%, -2.8%) showed a validated association with eGFR decline. Conclusions Higher expression levels of proteins and biological pathways involving fibrogenesis and the complement cascade were found to be associated with kidney function loss. However, study limitations and unavailability of concurrent kidney cellular proteomic signatures necessitate further study.
Collapse
Affiliation(s)
- Ryan E Aylward
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Nephrology and Hypertension, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Renal Service Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Nicholas C Chesnaye
- ERA Registry, Department of Medical Informatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, The Netherlands
| | - Roemer J Janse
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Andreas Jonsson
- Department of Public Health and Clinical Medicine, Umeå university, Umeå, Sweden
| | - Claudia Torino
- Institute of Clinical Physiology, National Research Council, Reggio Calabria, Italy
| | - Antonio Demetrio
- Institute of Clinical Physiology, National Research Council, Reggio Calabria, Italy
| | - Maciej Szymczak
- Clinical Department of Nephrology, Transplantation Medicine and Internal Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Friedo W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie Evans
- Department of Clinical Sciences Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kitty J Jager
- ERA Registry, Department of Medical Informatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, The Netherlands
| | - Christoph Wanner
- Division of Nephrology, University Hospital of Wurzburg, Wurzburg, Germany
| | - Brian Rayner
- Division of Nephrology and Hypertension, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicki Tiffin
- South African Medical Research Council Bioinformatics Unit, University of Western Cape, Cape Town, South Africa
| | - Fergus J Caskey
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Renal Service Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Kate Birnie
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Fan Y, Yang J, Yang X, Xie Y, Li H, Yang S, Sun G, Ge G, Ding X, Lai S, Liao Y, Ji S, Yang R, Zhang X. Unveiling the power of Treg.Sig: a novel machine-learning derived signature for predicting ICI response in melanoma. Front Immunol 2025; 16:1508638. [PMID: 40226609 PMCID: PMC11985843 DOI: 10.3389/fimmu.2025.1508638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Background Although immune checkpoint inhibitor (ICI) represents a significant breakthrough in cancer immunotherapy, only a few patients benefit from it. Given the critical role of Treg cells in ICI treatment resistance, we explored a Treg-associated signature in melanoma, which had never been elucidated yet. Methods A new Treg signature, Treg.Sig, was created using a computational framework guided by machine learning, utilizing transcriptome data from both single-cell RNA-sequencing (scRNA-seq) and bulk RNA-sequencing (bulk-seq). Among the 10 Treg.Sig genes, hub gene STAT1's function was further validated in ICI resistance in melanoma mice receiving anti-PD-1 treatment. Results Treg.Sig, based on machine learning, was able to forecast survival outcomes for melanoma across training dataset and external test dataset, and more importantly, showed superior predictive power than 51 previously established signatures. Analysis of the immune profile revealed that groups with high Treg.Sig levels exhibited immune-suppressive conditions, with inverse correlations observed between Treg.Sig and anti-cancer immune responses. Notably, among the 10 Treg.Sig genes, hub gene STAT1 mutation harbored lower response rate in ICIs-treated cohort. Mechanistically, STAT1 impinged on ICI resistances by modulating the phenotypic switch in N2 neutrophil polarization in melanoma mice receiving anti-PD-1 therapy, which affects overall survival. Conclusion The study developed a promising Treg.Sig signature that predicts ICI response of melanomas and could be used for selecting patients for immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting Treg-associated genes.
Collapse
Affiliation(s)
- Yunlong Fan
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Jiaman Yang
- Zhujiang Hospital, Southern Medical University or The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Yang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulin Xie
- Zhujiang Hospital, Southern Medical University or The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haiyang Li
- Chinese PLA Medical School, Beijing, China
| | - Shuo Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Ge Ge
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Ding
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Yong Liao
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Li Z, Jiang J, Cai K, Qiao Y, Zhang X, Wang L, Kang Y, Wu X, Zhao B, Wang X, Zhang T, Lin Z, Wu J, Lu S, Gao H, Jin H, Xu C, Huangfu X, James Z, Chen Q, Zheng X, Liu NN, Zhao J. CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis. Bone Res 2025; 13:26. [PMID: 39994205 PMCID: PMC11850813 DOI: 10.1038/s41413-025-00400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 02/26/2025] Open
Abstract
Knee arthrofibrosis, characterized by excessive matrix protein production and deposition, substantially impairs basic daily functions, causing considerable distress and financial burden. However, the underlying pathomechanisms remain unclear. Here, we characterized the heterogeneous cell populations and cellular pathways by combination of flow cytometry and single-cell RNA-seq analysis of synovial tissues from six patients with or without knee arthrofibrosis. Increased macrophages and fibroblasts were observed with decreased numbers of fibroblast-like synoviocytes, endothelial cells, vascular smooth muscle cells, and T cells in the arthrofibrosis group compared with negative controls. Notably, fibroblasts were discovered to interact with macrophages, and lead to fibrosis through TGF-β pathway induced CCN2 expression in fibroblasts. CCN2 was demonstrated to be required for fibroblast pro-fibrotic functions (activation, proliferation, and migration) through TGFBR/SMAD pathway. The expression of CCN2 was positively correlated with the collagen volume and TGF-β expression and negatively associated with patient-reported outcome measures in another cohort of patients with knee arthrofibrosis. Our study reveals the role of CCN2 in the fibroblast-macrophage interaction through TGF-β pathway which might help to shed light on CCN2 as a potential biomarker.
Collapse
Affiliation(s)
- Ziyun Li
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kangwen Cai
- Shanghai Normal University, Shanghai, 200233, China
| | - Yi Qiao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuancheng Zhang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liren Wang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiulin Wu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Benpeng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuli Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinlong Wu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Lu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haihan Gao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Caiqi Xu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhengzhi James
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qiuhua Chen
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
6
|
Picolo BU, Silva NR, Martins MM, Almeida-Souza HO, de Sousa LCM, Polveiro RC, Goulart Filho LR, Sabino-Silva R, Alonso-Goulart V, Saraiva da Silva L. Salivary proteomics profiling reveals potential biomarkers for chronic kidney disease: a pilot study. Front Med (Lausanne) 2025; 11:1302637. [PMID: 39895822 PMCID: PMC11784343 DOI: 10.3389/fmed.2024.1302637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Chronic kidney disease (CKD) is a global public health problem, and the absence of reliable and accurate diagnostic and monitoring tools contributes to delayed treatment, impacting patients' quality of life and increasing treatment costs in public health. Proteomics using saliva is a key strategy for identifying potential disease biomarkers. Methods We analyzed the untargeted proteomic profiles of saliva samples from 20 individuals with end-stage kidney disease (ESKD) (n = 10) and healthy individuals (n = 10) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify potential biomarkers for CKD. A volcano plot was generated using a p-value of ≤0.05 and a fold change (FC) ≥ 2.0. Multivariate analysis was performed to generate the orthogonal partial least squares discriminant analysis (OPLS-DA) model and the variable importance in projection (VIP) scores. The accuracy of candidate biomarker proteins was evaluated using receiver operating characteristic (ROC) curves. Results In total, 431 proteins were identified in the salivary proteomic profile, and 3 proteins were significantly different between the groups: apoptosis inhibitor 5 (API5), phosphoinositide phospholipase C (PI-PLC), and small G protein signaling modulator 2 (Sgsm2). These proteins showed good accuracy based on the ROC curve and a VIP score of >2.0. During pathway enrichment, PI-PLC participates in the synthesis of IP3 and IP4 in the cytosol. Gene ontology (GO) analysis revealed data on molecular functions, biological processes, cellular components, and protein classes. Conclusion We can conclude that the salivary API5, PI-PLC, and Sgsm2 can be potential biomarker candidates for CKD detection. These proteins may participate in pathways related to renal fibrosis and other associated diseases, such as mineral and bone disorders.
Collapse
Affiliation(s)
- Bianca Uliana Picolo
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mário Machado Martins
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Hebréia Oliveira Almeida-Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Richard Costa Polveiro
- Faculty of Veterinary Medicine and Animal Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luiz Ricardo Goulart Filho
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
7
|
Chen TK, Surapaneni AL, Schmidt IM, Waikar SS, Coresh J, Liu H, Susztak K, Rhee EP, Liu C, Schlosser P, Grams ME. Proteomics and Incident Kidney Failure in Individuals With CKD: The African American Study of Kidney Disease and Hypertension and the Boston Kidney Biopsy Cohort. Kidney Med 2024; 6:100921. [PMID: 39634331 PMCID: PMC11615895 DOI: 10.1016/j.xkme.2024.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Rationale & Objective Individuals with chronic kidney disease (CKD) are at increased risk of morbidity and mortality, particularly as they progress to kidney failure. Identifying circulating proteins that underlie kidney failure development may guide the discovery of new targets for intervention. Study Design Prospective cohort. Setting & Participants 703 African American Study of Kidney Disease and Hypertension (AASK) and 434 Boston Kidney Biopsy Cohort (BKBC) participants with baseline proteomics data. Exposures Circulating proteins measured using SomaScan. Outcomes Kidney failure, defined as dialysis initiation or kidney transplantation. Analytical Approach Using adjusted Cox models, we studied associations of 6,284 circulating proteins with kidney failure risk separately in AASK and BKBC and meta-analyzed results. We then performed gene set enrichment analyses to identify underlying perturbations in biological pathways. In separate data sets with kidney-tissue level gene expression, we ascertained dominant regions of expression and correlated kidney tubular gene expression with fibrosis and estimated glomerular filtration rate (eGFR). Results Over median follow-up periods of 8.8 and 3.1 years, 210 AASK (mean age: 55 years, 39% female, mean GFR: 46 mL/min/1.73 m2) and 115 BKBC (mean age: 54 years, 47% female, mean eGFR: 51 mL/min/1.73 m2) participants developed kidney failure, respectively. We identified 143 proteins that were associated with incident kidney failure, of which only 1 (Testican-2) had a lower risk. Notable proteins included those related to vascular permeability (endothelial cell-selective adhesion molecule), glomerulosclerosis (ephrin-A1), glomerular development (ephrin-B2), intracellular sorting/transport (vesicular integral-membrane protein VIP36), podocyte effacement (pigment epithelium-derived factor), complement activation (complement decay-accelerating factor), and fibrosis (ephrin-A1, ephrin-B2, and pigment epithelium-derived factor). Gene set enrichment analyses detected overrepresented pathways that could be related to CKD progression, such as ephrin signaling, cell-cell junctions, intracellular transport, immune response, cell proliferation, and apoptosis. At the kidney level, glomerular expression predominated for genes corresponding to circulating proteins of interest, and several gene expression levels were correlated with eGFR and/or fibrosis. Limitations Possible residual confounding. Conclusions Multimodal data identified proteins and pathways associated with the development of kidney failure.
Collapse
Affiliation(s)
- Teresa K. Chen
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California, San Francisco, CA
- San Francisco VA Health Care System, San Francisco, CA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aditya L. Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, NY
| | | | | | - Josef Coresh
- Department of Medicine, New York University Langone School of Medicine, New York, NY
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hongbo Liu
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eugene P. Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Celina Liu
- Department of Medicine, New York University Langone School of Medicine, New York, NY
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Faculty of Medicine and Medical Center, Institute of Genetic Epidemiology, University of Freiburg, Freiburg, Germany
| | - Morgan E. Grams
- Department of Medicine, New York University Langone School of Medicine, New York, NY
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
8
|
Kwon S, Cheon S, Kim KH, Seo A, Bae E, Lee JW, Cha RH, Hwang JH, Kim YC, Kim DK, Kim YS, Han D, Yang SH. Unveiling the role of transgelin as a prognostic and therapeutic target in kidney fibrosis via a proteomic approach. Exp Mol Med 2024; 56:2296-2308. [PMID: 39375532 PMCID: PMC11542076 DOI: 10.1038/s12276-024-01319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 10/09/2024] Open
Abstract
Chronic kidney disease (CKD) progression involves tubulointerstitial fibrosis, a process characterized by excessive extracellular matrix accumulation. To identify potential biomarkers for kidney fibrosis, we performed mass spectrometry-based proteomic profiling of human kidney tubular epithelial cells and kidney tissue from a 5/6 nephrectomy rat model. Multidisciplinary analysis across kidney fibrosis models revealed 351 differentially expressed proteins associated with kidney fibrosis, and they were enriched in processes related to the extracellular matrix, kidney aging, and mitochondrial functions. Network analysis of the selected proteins revealed five crucial proteins, of which transgelin emerged as a candidate protein that interacts with known fibrosis-related proteins. Concordantly, the gene expression of transgelin in the kidney tissue from the 5/6 nephrectomy model was elevated. Transgelin expression in kidney tissue gradually increased from intermediate to advanced fibrosis stages in 5/6 Nx rats and mice with unilateral ureteral obstruction. Subsequent validation in kidney tissue and urine samples from patients with CKD confirmed the upregulation of transgelin, particularly under advanced disease stages. Moreover, we investigated whether blocking TAGLN ameliorated kidney fibrosis and reduced reactive oxygen species levels in cellular models. In conclusion, our proteomic approach identified TAGLN as a potential noninvasive biomarker and therapeutic target for CKD-associated kidney fibrosis, suggesting its role in modulating mitochondrial dysfunction and oxidative stress responses.
Collapse
Affiliation(s)
- Soie Kwon
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Clinical Medical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Kyu-Hong Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Areum Seo
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Gyeongsang University Changwon Hospital, Gyeongsang, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Seung-Hee Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Li X, Zhang X, Wang S, Li Y, Meng C, Wang J, Chang B, Yang J. Simultaneous detection of multiple urinary biomarkers in patients with early-stage diabetic kidney disease using Luminex liquid suspension chip technology. Front Endocrinol (Lausanne) 2024; 15:1443573. [PMID: 39229378 PMCID: PMC11369644 DOI: 10.3389/fendo.2024.1443573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Background Several urinary biomarkers have good diagnostic value for diabetic kidney disease (DKD); however, the predictive value is limited with the use of single biomarkers. We investigated the clinical value of Luminex liquid suspension chip detection of several urinary biomarkers simultaneously. Methods The study included 737 patients: 585 with diabetes mellitus (DM) and 152 with DKD. Propensity score matching (PSM) of demographic and medical characteristics identified a subset of 78 patients (DM = 39, DKD = 39). Two Luminex liquid suspension chips were used to detect 11 urinary biomarkers according to their molecular weight and concentration. The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), α1-microglobulin (α1-MG), β2-microglobulin (β2-MG), vitamin D binding protein (VDBP), tissue inhibitor of metalloproteinases-1 (TIMP-1), tumor necrosis factor receptor-1 (TNFR-1), and tumor necrosis factor receptor-2 (TNFR-2) were compared in the DM and DKD groups. The diagnostic values of single biomarkers and various biomarker combinations for early diagnosis of DKD were assessed using receiver operating characteristic (ROC) curve analysis. Results Urinary levels of VDBP, RBP4, and KIM-1 were markedly higher in the DKD group than in the DM group (p < 0.05), whereas the TIMP-1, TNFR-1, TNFR-2, α1-MG, β2-MG, CysC, nephrin, and EGF levels were not significantly different between the groups. RBP4, KIM-1, TNFR-2, and VDBP reached p < 0.01 in univariate analysis and were entered into the final analysis. VDBP had the highest AUC (0.780, p < 0.01), followed by RBP4 (0.711, p < 0.01), KIM-1 (0.640, p = 0.044), and TNFR-2 (0.615, p = 0.081). However, a combination of these four urinary biomarkers had the highest AUC (0.812), with a sensitivity of 0.742 and a specificity of 0.760. Conclusions The urinary levels of VDBP, RBP4, KIM-1, and TNFR-2 can be detected simultaneously using Luminex liquid suspension chip technology. The combination of these biomarkers, which reflect different mechanisms of kidney damage, had the highest diagnostic value for DKD. However, this finding should be explored further to understand the synergistic effects of these biomarkers.
Collapse
Affiliation(s)
- Xinran Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xinxin Zhang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shenglan Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Cheng Meng
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
10
|
Kim T, Surapaneni AL, Schmidt IM, Eadon MT, Kalim S, Srivastava A, Palsson R, Stillman IE, Hodgin JB, Menon R, Otto EA, Coresh J, Grams ME, Waikar SS, Rhee EP. Plasma Proteins Associated with Chronic Histopathologic Lesions on Kidney Biopsy. J Am Soc Nephrol 2024; 35:910-922. [PMID: 38656806 PMCID: PMC11230715 DOI: 10.1681/asn.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Key Points Proteomic profiling identified 35 blood proteins associated with chronic histopathologic lesions in the kidney. Testican-2 was expressed in the glomerulus, released by the kidney into circulation, and inversely associated with glomerulosclerosis severity. NELL1 was expressed in tubular epithelial cells, released by the kidney into circulation, and inversely associated with interstitial fibrosis and tubular atrophy severity. Background The severity of chronic histopathologic lesions on kidney biopsy is independently associated with higher risk of progressive CKD. Because kidney biopsies are invasive, identification of blood markers that report on underlying kidney histopathology has the potential to enhance CKD care. Methods We examined the association between 6592 plasma protein levels measured by aptamers and the severity of interstitial fibrosis and tubular atrophy (IFTA), glomerulosclerosis, arteriolar sclerosis, and arterial sclerosis among 434 participants of the Boston Kidney Biopsy Cohort. For proteins significantly associated with at least one histologic lesion, we assessed renal arteriovenous protein gradients among 21 individuals who had undergone invasive catheterization and assessed the expression of the cognate gene among 47 individuals with single-cell RNA sequencing data in the Kidney Precision Medicine Project. Results In models adjusted for eGFR, proteinuria, and demographic factors, we identified 35 proteins associated with one or more chronic histologic lesions, including 20 specific for IFTA, eight specific for glomerulosclerosis, and one specific for arteriolar sclerosis. In general, higher levels of these proteins were associated with more severe histologic score and lower eGFR. Exceptions included testican-2 and NELL1, which were associated with less glomerulosclerosis and IFTA, respectively, and higher eGFR; notably, both of these proteins demonstrated significantly higher levels from artery to renal vein, demonstrating net kidney release. In the Kidney Precision Medicine Project, 13 of the 35 protein hits had cognate gene expression enriched in one or more cell types in the kidney, including podocyte expression of select glomerulosclerosis markers (including testican-2) and tubular expression of several IFTA markers (including NELL1). Conclusions Proteomic analysis identified circulating proteins associated with chronic histopathologic lesions, some of which had concordant site-specific expression within the kidney.
Collapse
Affiliation(s)
- Taesoo Kim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Aditya L. Surapaneni
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Michael T. Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anand Srivastava
- Division of Nephrology, University of Illinois Chicago, Chicago, Illinois
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Isaac E. Stillman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Edgar A. Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Josef Coresh
- Departments of Population Health and Medicine, New York University Grossman School of Medicine, New York, New York
| | - Morgan E. Grams
- Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Eugene P. Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Chen X, Zhong X, Luo D, Lei Y, Huang R. Plasma SMOC2 Predicts Prognosis in Patients with Heart Failure: A Prospective Cohort. Int J Gen Med 2024; 17:1651-1664. [PMID: 38706743 PMCID: PMC11069073 DOI: 10.2147/ijgm.s445457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Background Heart failure (HF) is a chronic disease with a poor prognosis, making it extremely important to assess the prognosis of patients with HF for accurate treatment. Secreted modular calcium-binding protein 2 (SMOC2) is a cysteine-rich acidic secreted protein that plays a pathophysiological role in many diseases, including regulation of vascular growth factor activity. It has previously been found that SMOC2 plays an essential role in cardiac fibrosis in our previous preclinical study, but whether it can be used as a clinical marker in heart failure patients remains unclear. The purpose of this research was to evaluate the correlation between plasma levels of SMOC2 and the prognosis for individuals with HF. Methods HF patients diagnosed with ischemic cardiomyopathy were enrolled from January to December 2021. Baseline plasma levels of SMOC2 were measured after demographic and clinical features were collected. Linear and nonlinear multivariate Cox regression models were used to determine the association between plasma SMOC2 and patient outcomes during follow-up. All analysis was performed using SPSS, EmpowerStats, and R software. Results The study included 188 patients, and the average follow-up time was 489.5±88.3 days. The plasma SMOC2 concentrations were positively correlated with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDd), and length of hospital stay and were negatively correlated with left ventricular ejection fraction (LVEF) at baseline. A total of 53 patients (28.2%) were rehospitalized due to cardiac deterioration, 14 (7.4%) died, and 37 (19.7%) developed malignant arrhythmias. A fully adjusted multivariate COX regression model showed that SMOC2 is associated with readmission (HR = 1.02, 95% CI:1.012-1.655). A significant increase in rehospitalization risk was observed in group Q2 (HR =1.064, 95% CI: 1.037, 3.662, p=0.005) and group Q3 (HR =1.085, 95% CI:1.086, 3.792, p=0.009) in comparison with group Q1. The p for trend also shows a linear correlation across the three models (P < 0.001). SMOC2 was associated with the severity of HF in patients, but not with all-cause deaths and arrhythmias during follow-up. Conclusion Plasma SMOC2 is associated with the severity of HF and readmission rate, and is a good predictor of the risk of readmission in patients.
Collapse
Affiliation(s)
- Xin Chen
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Xing Zhong
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Department of Medicine, Hubei Minzu University, Enshi, Hubei Province, People’s Republic of China
| | - Dan Luo
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Yuhua Lei
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, People’s Republic of China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshii, Hubei Province, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bio applications, Enshii, Hubei Province, People’s Republic of China
| |
Collapse
|
12
|
Rupprecht H, Catanese L, Amann K, Hengel FE, Huber TB, Latosinska A, Lindenmeyer MT, Mischak H, Siwy J, Wendt R, Beige J. Assessment and Risk Prediction of Chronic Kidney Disease and Kidney Fibrosis Using Non-Invasive Biomarkers. Int J Mol Sci 2024; 25:3678. [PMID: 38612488 PMCID: PMC11011737 DOI: 10.3390/ijms25073678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.
Collapse
Affiliation(s)
- Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany; (H.R.); (L.C.)
- Department of Nephrology, Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
| | - Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany; (H.R.); (L.C.)
- Department of Nephrology, Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Felicitas E. Hengel
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Maja T. Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (A.L.); (H.M.); (J.S.)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (A.L.); (H.M.); (J.S.)
| | - Ralph Wendt
- Department of Nephrology, Hospital St. Georg, 04129 Leipzig, Germany;
| | - Joachim Beige
- Department of Nephrology, Hospital St. Georg, 04129 Leipzig, Germany;
- Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
13
|
Garrett ME, Foster MW, Telen MJ, Ashley-Koch AE. Nontargeted Plasma Proteomic Analysis of Renal Disease and Pulmonary Hypertension in Patients with Sickle Cell Disease. J Proteome Res 2024; 23:1039-1048. [PMID: 38353026 PMCID: PMC11938347 DOI: 10.1021/acs.jproteome.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sickle cell disease (SCD) is characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, damage to multiple organ systems, and, as a result, shortened life expectancy. Sickle cell disease nephropathy (SCDN) and pulmonary hypertension (pHTN) are common and frequently co-occurring complications of SCD; both are associated with markedly accelerated mortality. To identify candidate circulating biomarkers of SCDN and pHTN, we used mass spectrometry to quantify the relative abundance of >1000 proteins in plasma samples from 189 adults with SCD from the Outcome Modifying Genes in SCD (OMG-SCD) cohort (ProteomeXchange identifier PXD048716). Forty-four proteins were differentially abundant in SCDN, most significantly cystatin-C and collagen α-1(XVIII) chain (COIA1), and 55 proteins were dysregulated in patients with SCDN and pHTN, most significantly insulin-like growth factor-binding protein 6 (IBP6). Network analysis identified a module of 133 coregulated proteins significantly associated with SCDN, that was enriched for extracellular matrix proteins, insulin-like growth factor binding proteins, cell adhesion proteins, EGF-like calcium binding proteins, and several cadherin family members. Collectively, these data provide a comprehensive understanding of plasma protein changes in SCDN and pHTN which validate numerous studies of chronic kidney disease and suggest shared profiles of protein disruption in kidney dysfunction and pHTN among SCD patients.
Collapse
Affiliation(s)
- Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Matthew W. Foster
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, NC, 27701, USA
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Marilyn J. Telen
- Department of Medicine, Division of Hematology and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, 27701, USA
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| |
Collapse
|
14
|
Bai F, Han L, Yang J, Liu Y, Li X, Wang Y, Jiang R, Zeng Z, Gao Y, Zhang H. Integrated analysis reveals crosstalk between pyroptosis and immune regulation in renal fibrosis. Front Immunol 2024; 15:1247382. [PMID: 38343546 PMCID: PMC10853448 DOI: 10.3389/fimmu.2024.1247382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
PURPOSE The pathogenesis of renal fibrosis (RF) involves intricate interactions between profibrotic processes and immune responses. This study aimed to explore the potential involvement of the pyroptosis signaling pathway in immune microenvironment regulation within the context of RF. Through comprehensive bioinformatics analysis and experimental validation, we investigated the influence of pyroptosis on the immune landscape in RF. METHODS We obtained RNA-seq datasets from Gene Expression Omnibus (GEO) databases and identified Pyroptosis-Associated Regulators (PARs) through literature reviews. Systematic evaluation of alterations in 27 PARs was performed in RF and normal kidney samples, followed by relevant functional analyses. Unsupervised cluster analysis revealed distinct pyroptosis modification patterns. Using single-sample gene set enrichment analysis (ssGSEA), we examined the correlation between pyroptosis and immune infiltration. Hub regulators were identified via weighted gene coexpression network analysis (WGCNA) and further validated in a single-cell RNA-seq dataset. We also established a unilateral ureteral obstruction-induced RF mouse model to verify the expression of key regulators at the mRNA and protein levels. RESULTS Our comprehensive analysis revealed altered expression of 19 PARs in RF samples compared to normal samples. Five hub regulators, namely PYCARD, CASP1, AIM2, NOD2, and CASP9, exhibited potential as biomarkers for RF. Based on these regulators, a classifier capable of distinguishing normal samples from RF samples was developed. Furthermore, we identified correlations between immune features and PARs expression, with PYCARD positively associated with regulatory T cells abundance in fibrotic tissues. Unsupervised clustering of RF samples yielded two distinct subtypes (Subtype A and Subtype B), with Subtype B characterized by active immune responses against RF. Subsequent WGCNA analysis identified PYCARD, CASP1, and NOD2 as hub PARs in the pyroptosis modification patterns. Single-cell level validation confirmed PYCARD expression in myofibroblasts, implicating its significance in the stress response of myofibroblasts to injury. In vivo experimental validation further demonstrated elevated PYCARD expression in RF, accompanied by infiltration of Foxp3+ regulatory T cells. CONCLUSIONS Our findings suggest that pyroptosis plays a pivotal role in orchestrating the immune microenvironment of RF. This study provides valuable insights into the pathogenesis of RF and highlights potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Fengxia Bai
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Longchao Han
- Department of Gastrointestinal Oncology, Affiliated Xingtai People's Hospital of Hebei Medical University, Xingtai, China
| | - Jifeng Yang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuxiu Liu
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiangmeng Li
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Yaqin Wang
- Department of Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruijian Jiang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yan Gao
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Haisong Zhang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
15
|
Zhao D, Wang W, Niu YY, Ren XH, Shen AJ, Xiang YS, Xie HY, Wu LH, Yu C, Zhang YY. Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Application in Renal Fibrosis: A Radiological-Pathological-Based Analysis. Am J Nephrol 2024; 55:334-344. [PMID: 38228096 DOI: 10.1159/000536232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Renal fibrosis (RF), being the most important pathological change in the progression of CKD, is currently assessed by the evaluation of a biopsy. This present study aimed to apply a novel functional MRI (fMRI) protocol named amide proton transfer (APT) weighting to evaluate RF noninvasively. METHODS Male Sprague-Dawley (SD) rats were initially subjected to bilateral kidney ischemia/reperfusion injury (IRI), unilateral ureteral obstruction, and sham operation, respectively. All rats underwent APT mapping on the 7th and 14th days after operation. Besides, 26 patients underwent renal biopsy at the Nephrology Department of Shanghai Tongji Hospital between July 2022 and May 2023. Patients underwent APT and apparent diffusion coefficient (ADC) mappings within 1 week before biopsy. MRI results of both patients and rats were calculated by comparing with gold standard histology for fibrosis assessment. RESULTS In animal models, the cortical APT (cAPT) and medullary APT (mAPT) values were positively correlated with the degree of RF. Compared to the sham group, IRI group showed significantly increased cAPT and mAPT values on the 7th and 14th days after surgery, but no group differences were found in ADC values. Similar results were found in human patients. Cortical/medullary APT values were significantly increased in patients with moderate-to-severe fibrosis than in patients with mild fibrosis. ROC curve analysis indicated that APT value displayed a better diagnostic value for RF. Furthermore, combination of cADC and cAPT improved fibrosis detection by imaging variables alone (p < 0.1). CONCLUSION APT values had better diagnostic capability at early stage of RF compared to ADC values, and the addition of APT imaging to conventional ADC will significantly improve the diagnostic performance for predicting kidney fibrosis.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Wei Wang
- Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang-Yang Niu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Hui Ren
- Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ai-Jun Shen
- Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-Sheng Xiang
- Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Yan Xie
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Le-Hao Wu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying-Ying Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Zhang G, Wang X, Zhang Q. Cdh11: Roles in different diseases and potential value in disease diagnosis and treatment. Biochem Biophys Rep 2023; 36:101576. [PMID: 38034129 PMCID: PMC10682823 DOI: 10.1016/j.bbrep.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Cadherin is a homophilic, Ca2+-dependent cell adhesion glycoprotein that mediates cell-cell adhesion. Among them, Cadherin-11 (CDH11), as a classical cadherin, participates in and influences many crucial aspects of human growth and development. Furthermore, The involvement of CDH11 has been identified in an increasing number of diseases, primarily including various tumorous diseases, fibrotic diseases, autoimmune diseases, neurodevelopmental disorders, and more. In various tumorous diseases, CDH11 acts not only as a tumor suppressor but can also promote migration and invasion of certain tumors through various mechanisms. Likewise, in non-tumorous diseases, CDH11 remains a pivotal factor in disease progression. In this context, we summarize the specific functionalities and mechanisms of CDH11 in various diseases, aiming to gain a more comprehensive understanding of the potential value of CDH11 in disease diagnosis and treatment. This endeavor seeks to provide more effective diagnostic and therapeutic strategies for clinical management across diverse diseases.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xi Wang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Qingguo Zhang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| |
Collapse
|
17
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus IM, Hong G, Fromme JC, Liu J. SMOC-1 interacts with both BMP and glypican to regulate BMP signaling in C. elegans. PLoS Biol 2023; 21:e3002272. [PMID: 37590248 PMCID: PMC10464977 DOI: 10.1371/journal.pbio.3002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Secreted modular calcium-binding proteins (SMOCs) are conserved matricellular proteins found in organisms from Caenorhabditis elegans to humans. SMOC homologs characteristically contain 1 or 2 extracellular calcium-binding (EC) domain(s) and 1 or 2 thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate proteoglycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans. We showed that CeSMOC-1 binds to the heparin sulfate proteoglycan GPC3 homolog LON-2/glypican, as well as the mature domain of the BMP2/4 homolog DBL-1. Moreover, CeSMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between CeSMOC-1 and LON-2/glypican is mediated specifically by the EC domain of CeSMOC-1, while the full interaction between CeSMOC-1 and DBL-1/BMP requires full-length CeSMOC-1. We provide both in vitro biochemical and in vivo functional evidence demonstrating that CeSMOC-1 functions both negatively in a LON-2/glypican-dependent manner and positively in a DBL-1/BMP-dependent manner to regulate BMP signaling. We further showed that in silico, Drosophila and vertebrate SMOC proteins can also bind to mature BMP dimers. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Timothy Y. Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Isabel M. Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Garam Hong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
19
|
Ren Y, Wu Y, He W, Tian Y, Zhao X. SMOC2 plays a role in heart failure via regulating TGF-β1/Smad3 pathway-mediated autophagy. Open Med (Wars) 2023; 18:20230752. [PMID: 37465345 PMCID: PMC10350896 DOI: 10.1515/med-2023-0752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Heart failure (HF) is a major global cause of morbidity and mortality. This study aimed to elucidate the role of secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2) in HF development and its underlying mechanism. Using a rat HF model, SMOC2 expression was examined and then knocked down via transfection to assess its impact on cardiac function and damage. The study also evaluated the effects of SMOC2 knockdown on autophagy-related molecules and the transforming growth factor beta 1 (TGF-β1)/SMAD family member 3 (Smad3) signaling pathway. Intraperitoneal injection of the TGF-β agonist (SRI-011381) into the HF rat model was performed to explore the SMOC2-TGF-β1/Smad3 pathway relationship. SMOC2 expression was elevated in HF rats, while its downregulation improved cardiac function and damage. SMOC2 knockdown reversed alterations in the LC3-II/I ratio, Beclin-1, and p62 levels in HF rats. Through transmission electron microscope, we observed that SMOC2 knockdown restored autophagosome levels. Furthermore, SMOC2 downregulation inhibited the TGF-β1/Smad3 signaling pathway, which was counteracted by SRI-011381. In conclusion, SMOC2 knockdown inhibits HF development by modulating TGF-β1/Smad3 signaling-mediated autophagy, suggesting its potential as a therapeutic target for HF.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Yun Wu
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Wenshuai He
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Yingjie Tian
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Xingsheng Zhao
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| |
Collapse
|
20
|
Zhou L, Peng F, Li J, Gong H. Exploring novel biomarkers in dilated cardiomyopathy‑induced heart failure by integrated analysis and in vitro experiments. Exp Ther Med 2023; 26:325. [PMID: 37346398 PMCID: PMC10280324 DOI: 10.3892/etm.2023.12024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 06/23/2023] Open
Abstract
Despite the availability of several effective and promising treatment methods, heart failure (HF) remains a significant public health concern that requires advanced therapeutic strategies and techniques. Dilated cardiomyopathy (DCM) is a crucial factor that contributes to the development and deterioration of HF. The aim of the present study was to identify novel biomarkers and biological pathways to enhance the diagnosis and treatment of patients with DCM-induced HF using weighted gene co-expression network analysis (WGCNA). A total of 24 co-expressed gene modules connected with DCM-induced HF were obtained by WGCNA. Among these, the blue module had the highest correlation with DCM-induced HF (r=0.91; P<0.001) and was enriched in the AGE-RAGE signaling pathway in diabetic complications, the p53 and MAPK signaling pathway, adrenergic signaling in cardiomyocytes, the Janus kinase-STAT signaling pathway and cGMP/PKG signaling. Eight key genes, including secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2), serpin family A member 3 (SERPINA3), myosin heavy chain 6 (MYH6), S100 calcium binding protein A9 (S100A9), tubulin α (TUBA)3E, TUBA3D, lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) and phospholipase C ε1 (PLCE1), were selected as the therapeutic targets of DCM-induced HF based on WGCNA and differentially expressed gene analysis. Immune cell infiltration analysis revealed that the proportion of naive B cells and CD4-activated memory T cells was markedly upregulated in DCM-induced HF tissues compared with tissues from healthy controls. Furthermore, reverse transcription-quantitative PCR in AC16 human cardiomyocyte cells treated with doxorubicin showed that among the eight key genes, only SERPINA3, MYH6, S100A9, LYVE1 and PLCE1 exhibited expression levels identical to those revealed by bioinformatics analysis, suggesting that these genes may be involved in the development of DCM-induced HF.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
21
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 254] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Lee CH, Lui DTW, Cheung CYY, Fong CHY, Yuen MMA, Chow WS, Xu A, Lam KSL. Circulating thrombospondin-2 level for identifying individuals with rapidly declining kidney function trajectory in type 2 diabetes: a prospective study of the Hong Kong West Diabetes Registry. Nephrol Dial Transplant 2023; 40:gfad034. [PMID: 36857285 PMCID: PMC11960736 DOI: 10.1093/ndt/gfad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Thrombospondin-2 (TSP2) is a matricellular protein with tissue expression induced by hyperglycaemia. TSP2 has been implicated in non-diabetic renal injury in preclinical studies and high circulating levels were associated with worse kidney function in cross-sectional clinical studies. Therefore, we investigated the prospective associations of circulating TSP2 level with kidney function decline and the trajectories of estimated glomerular filtration rate (eGFR) in type 2 diabetes. METHODS Baseline serum TSP2 level was measured in 5471 patients with type 2 diabetes to evaluate its association with incident eGFR decline, defined as ≥ 40% sustained eGFR decline, using multivariable Cox regression analysis. Among participants with relatively preserved kidney function (Baseline eGFR ≥ 60 ml/min/1.73m2), joint latent class modelling was employed to identify three different eGFR trajectories. Their associations with baseline serum TSP2 was evaluated using multinomial logistic regression analysis. The predictive performance of serum TSP2 level was examined using time-dependent c-statistics and calibration statistics. RESULTS Over a median follow-up of 8.8 years, 1083 patients (19.8%) developed eGFR decline. Baseline serum TSP2 level was independently associated with incident eGFR decline (HR 1.21, 95%CI 1.07-1.37, P = 0.002). With internal validation, incorporating serum TSP2 to a model of clinical risk factors including albuminuria led to significant improvement in c-statistics from 83.9 to 84.4 (P < 0.001). Among patients with eGFR ≥ 60 ml/min/1.73m2, baseline serum TSP2 level was independently associated with a rapidly declining eGFR trajectory (HR 1.63, 95%CI 1.26-2.10, P < 0.001). CONCLUSION Serum TSP2 level was independently associated with incident eGFR decline, particularly a rapidly declining trajectory, in type 2 diabetes.
Collapse
Affiliation(s)
- Chi-Ho Lee
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong
| | - David Tak-Wai Lui
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
| | - Chloe Yu-Yan Cheung
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
| | - Carol Ho-Yi Fong
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
| | - Michele Mae-Ann Yuen
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
| | - Wing-Sun Chow
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong
| | - Karen Siu-Ling Lam
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Larsen FT, Hansen D, Terkelsen MK, Bendixen SM, Avolio F, Wernberg CW, Lauridsen MM, Grønkjaer LL, Jacobsen BG, Klinggaard EG, Mandrup S, Di Caterino T, Siersbæk MS, Indira Chandran V, Graversen JH, Krag A, Grøntved L, Ravnskjaer K. Stellate cell expression of SPARC-related modular calcium-binding protein 2 is associated with human non-alcoholic fatty liver disease severity. JHEP Rep 2023; 5:100615. [PMID: 36687468 PMCID: PMC9850195 DOI: 10.1016/j.jhepr.2022.100615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Background & Aims Histological assessment of liver biopsies is the gold standard for diagnosis of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), despite its well-established limitations. Therefore, non-invasive biomarkers that can offer an integrated view of the liver are needed to improve diagnosis and reduce sampling bias. Hepatic stellate cells (HSCs) are central in the development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods We performed RNA-sequencing on liver biopsies from a histologically characterised cohort of obese patients (n = 30, BMI >35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings using single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared to no-NAFLD (p.adj <0.001). Single-cell RNA-sequencing data indicated that SMOC2 was primarily expressed by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p <0.001), with a predictive accuracy of AUROC 0.88. Conclusions Increased SMOC2 in plasma appears to reflect HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH. Impact and implications Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the most common forms of chronic liver diseases. Currently, liver biopsies are the gold standard for diagnosing NAFLD. Blood-based biomarkers to complement liver biopsies for diagnosis of NAFLD are required. We found that activated hepatic stellate cells, a cell type central to NAFLD pathogenesis, upregulate expression of the secreted protein SPARC-related modular calcium-binding protein 2 (SMOC2). SMOC2 was elevated in blood samples from patients with NASH and may hold promise as a blood-based biomarker for the diagnosis of NAFLD.
Collapse
Key Words
- AUROC, area under the receiver operating characteristic curve
- ECM, extracellular matrix
- HSC, hepatic stellate cells
- LSM, liver stiffness measurement
- MCP, matricellular protein
- NAFL, non-alcoholic fatty liver
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- PCA, principal component analysis
- SAF, steatosis, activity, and fibrosis
- SE, sensitivity
- SMOC2
- SMOC2, SPARC-related modular calcium-binding protein 2
- SP, specificity
- SPARC, secreted protein acidic and cysteine-rich
- VSMCs, vascular smooth muscle cells
- WGCNA, weighted gene co-expression network analysis
- aHSC, activated HSC
- hepatic stellate cells
- non-invasive biomarker
- qHSC, quiescent HSC
- smFISH, single-molecule fluorescence in situ hybridisation
- transcriptomics
Collapse
Affiliation(s)
- Frederik T. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Daniel Hansen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Mike K. Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Sofie M. Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Fabio Avolio
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Charlotte W. Wernberg
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
- Center for Liver Research (FLASH), Department of Gastroenterology and
Hepatology, Odense University Hospital, Odense, Denmark
| | - Mette M. Lauridsen
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
| | - Lea L. Grønkjaer
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
| | - Birgitte G. Jacobsen
- Department of Gastroenterology and Hepatology, University Hospital of
Southern Denmark, Esbjerg, Denmark
| | - Ellen G. Klinggaard
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Tina Di Caterino
- Department of Pathology, Odense University Hospital, Odense,
Denmark
| | - Majken S. Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Vineesh Indira Chandran
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense,
Denmark
| | - Jonas H. Graversen
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense,
Denmark
| | - Aleksander Krag
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Center for Liver Research (FLASH), Department of Gastroenterology and
Hepatology, Odense University Hospital, Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern
Denmark, Odense, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of
Southern Denmark, Odense, Denmark
- Corresponding author. Address: Department of Biochemistry and Molecular
Biology, Campusvej 55, 5230 Odense M, Denmark. Tel.: +45 65508906/+45
93979317.
| |
Collapse
|
24
|
DeGroot MS, Williams B, Chang TY, Maas Gamboa ML, Larus I, Fromme JC, Liu J. C. elegans SMOC-1 interacts with both BMP and glypican to regulate BMP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523017. [PMID: 36711863 PMCID: PMC9881921 DOI: 10.1101/2023.01.06.523017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secreted modular calcium binding (SMOC) proteins are conserved matricellular proteins found in organisms from C. elegans to humans. SMOC homologs characteristically contain one or two extracellular calcium (EC) binding domain(s) and one or two thyroglobulin type-1 (TY) domain(s). SMOC proteins in Drosophila and Xenopus have been found to interact with cell surface heparan sulfate protein glycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein in C. elegans . We showed that SMOC-1 binds LON-2/glypican, as well as the mature domain of DBL-1/BMP. Moreover, SMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between SMOC-1 and LON-2/glypican is mediated by the EC domain of SMOC-1, while the interaction between SMOC-1 and DBL-1/BMP involves full-length SMOC-1. We further showed that while SMOC-1(EC) is sufficient to promote BMP signaling when overexpressed, both the EC and TY domains are required for SMOC-1 function at the endogenous locus. Finally, when overexpressed, SMOC-1 can promote BMP signaling in the absence of LON-2/glypican. Taken together, our findings led to a model where SMOC-1 functions both negatively in a LON-2-dependent manner and positively in a LON-2-independent manner to regulate BMP signaling. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling.
Collapse
Affiliation(s)
- Melisa S. DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Timothy Y Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Maria L. Maas Gamboa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Isabel Larus
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
25
|
Zhou XJ, Zhong XH, Duan LX. Integration of artificial intelligence and multi-omics in kidney diseases. FUNDAMENTAL RESEARCH 2023; 3:126-148. [PMID: 38933564 PMCID: PMC11197676 DOI: 10.1016/j.fmre.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022] Open
Abstract
Kidney disease is a leading cause of death worldwide. Currently, the diagnosis of kidney diseases and the grading of their severity are mainly based on clinical features, which do not reveal the underlying molecular pathways. More recent surge of ∼omics studies has greatly catalyzed disease research. The advent of artificial intelligence (AI) has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically actionable knowledge. This review discusses how AI and multi-omics can be applied and integrated, to offer opportunities to develop novel diagnostic and therapeutic means in kidney diseases. The combination of new technology and novel analysis pipelines can lead to breakthroughs in expanding our understanding of disease pathogenesis, shedding new light on biomarkers and disease classification, as well as providing possibilities of precise treatment.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing 100034, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing 100034, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing 100034, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, China
| | - Xu-Hui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li-Xin Duan
- The Big Data Research Center, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
26
|
SMOC2 promotes aggressive behavior of fibroblast-like synoviocytes in rheumatoid arthritis through transcriptional and post-transcriptional regulating MYO1C. Cell Death Dis 2022; 13:1035. [PMID: 36513634 PMCID: PMC9747908 DOI: 10.1038/s41419-022-05479-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Fibroblast-like synoviocytes (FLSs), play a key role in perpetuating synovial inflammation and bone erosion in rheumatoid arthritis (RA), however, the underlying mechanism(s) of RA FLSs activation and aggression remain unclear. Identifying endogenous proteins that selectively target FLSs is urgently needed. Here, we systematically identified that secreted modular calcium-binding protein 2 (SMOC2), was significantly increased in RA FLSs and synovial tissues. SMOC2 knockdown specifically regulated cytoskeleton remodeling and decreased the migration and invasion of RA FLSs. Mechanistically, cytoskeleton-related genes were significantly downregulated in RA FLSs with reduced SMOC2 expression, especially the motor protein myosin1c (MYO1C). SMOC2 controlled MYO1C expression by SRY-related high-mobility group box 4 (SOX4) and AlkB homolog 5 (ALKHB5) mediated-m6A modification through transcriptional and post-transcriptional regulation. Furthermore, intra-articular Ad-shRNA-SMOC2 treatment attenuated synovial inflammation as well as bone and cartilage erosion in rats with collagen-induced arthritis (CIA). Our findings suggest that increased SMOC2 expression in FLSs may contribute to synovial aggression and joint destruction in RA. SMOC2 may serve as a potential target against RA. SMOC2-mediated regulation of the synovial migration and invasion in RA FLSs. In RA FLSs, SMOC2 is significantly increased, leading to the increased level of MYO1C via SOX4-mediated transcriptional regulation and ALKBH5-mediated m6A modification, thereby causing cytoskeleton remodeling and promoting RA FLSs migration and invasion. The Figure was drawn by Figdraw.
Collapse
|
27
|
Barinotti A, Radin M, Cecchi I, Foddai SG, Rubini E, Roccatello D, Sciascia S. Serum Biomarkers of Renal Fibrosis: A Systematic Review. Int J Mol Sci 2022; 23:ijms232214139. [PMID: 36430625 PMCID: PMC9697720 DOI: 10.3390/ijms232214139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a widely diffuse pathological condition which deeply impacts upon an affected patient's quality of life and its worldwide rate is predicted to further rise. The main biological mechanism underlying CKD is renal fibrosis, a non-reversible process representing, for the affected system, a point of no return of tissue damage and dysfunction, deeply reducing the possible therapeutic strategies at the disposal of physicians. The best tool clinicians can use to address the extent of renal fibrosis at any level (glomeruli, tubule-interstitium, vasculature) is kidney biopsy that, despite its overall safety, remains an invasive procedure showing some shortcomings. Thus, the identification of novel non-invasive renal fibrosis biomarkers would be of fundamental importance. Here, when systematically reviewing the available evidence on serological biomarkers associated with renal fibrosis evaluated in patients suffering from CKD in the last five years, we found that despite the presence of several promising biomarkers, the level of observed evidence is still very scattered. Probably, the use of multiple measures capable of addressing different aspects involved in this condition would be the most suitable way to capture the high complexity characterizing the renal fibrotic process, having consequently a great impact on clinical practice by maximizing prevention, diagnosis, and management.
Collapse
Affiliation(s)
- Alice Barinotti
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Massimo Radin
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Irene Cecchi
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Silvia Grazietta Foddai
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Elena Rubini
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-Net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hub Hospital, 10154 Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-0112402056; Fax: +39-0112402052
| |
Collapse
|
28
|
Surapaneni A, Schlosser P, Zhou L, Liu C, Chatterjee N, Arking DE, Dutta D, Coresh J, Rhee EP, Grams ME. Identification of 969 protein quantitative trait loci in an African American population with kidney disease attributed to hypertension. Kidney Int 2022; 102:1167-1177. [PMID: 35870639 DOI: 10.1016/j.kint.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Investigations into the causal underpinnings of disease processes can be aided by the incorporation of genetic information. Genetic studies require populations varied in both ancestry and prevalent disease in order to optimize discovery and ensure generalizability of findings to the global population. Here, we report the genetic determinants of the serum proteome in 466 African Americans with chronic kidney disease attributed to hypertension from the richly phenotyped African American Study of Kidney Disease and Hypertension (AASK) study. Using the largest aptamer-based protein profiling platform to date (6,790 proteins or protein complexes), we identified 969 genetic associations with 900 unique proteins; including 52 novel cis (local) associations and 379 novel trans (distant) associations. The genetic effects of previously published cis-protein quantitative trait loci (pQTLs) were found to be highly reproducible, and we found evidence that our novel genetic signals colocalize with gene expression and disease processes. Many trans- pQTLs were found to reflect associations mediated by the circulating cis protein, and the common trans-pQTLs are enriched for processes involving extracellular vesicles, highlighting a plausible mechanism for distal regulation of the levels of secreted proteins. Thus, our study generates a valuable resource of genetic associations linking variants to protein levels and disease in an understudied patient population to inform future studies of drug targets and physiology.
Collapse
Affiliation(s)
- Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Celina Liu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diptavo Dutta
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
29
|
Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Ryu S, Shin JW, Kwon S, Lee J, Kim YC, Bae YS, Bae YS, Kim DK, Kim YS, Yang SH, Kim HY. Siglec-F-expressing neutrophils are essential for creating a pro-fibrotic microenvironment in the renal fibrosis. J Clin Invest 2022; 132:156876. [PMID: 35482420 PMCID: PMC9197522 DOI: 10.1172/jci156876] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The roles of neutrophils in renal inflammation are currently unclear. On examining these cells in the unilateral ureteral obstruction murine model of chronic kidney disease, we found that the injured kidney bore a large and rapidly expanding population of neutrophils that expressed the eosinophil marker Siglec-F. We first confirmed that these cells were neutrophils. Siglec-F+ neutrophils were recently detected for the first time by several studies on other disease contexts. We then showed that (i) these cells were derived from conventional neutrophils in the renal vasculature by TGF-β1 and GM-CSF, (ii) they differed from their parent cells by more frequent hypersegmentation, higher expression of pro-fibrotic inflammatory cytokines, and, notably, expression of Collagen 1, and (iii) their depletion reduced collagen deposition and disease progression, but adoptive transfer increased renal fibrosis. These findings have thus unveiled a subtype of neutrophils that participate in renal fibrosis and maybe a new therapeutic target in chronic kidney disease.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jae Woo Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Jiwon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea, Republic of
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea, Republic of
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea, Republic of
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
31
|
Li Y, Gao H, Dong H, Wang W, Xu Z, Wang G, Liu Y, Wang H, Ju W, Qiao J, Xu K, Fu C, Zeng L. PEDF reduces malignant cells proliferation and inhibits the progression of myelofibrosis in myeloproliferative neoplasms. Biochem Pharmacol 2022; 199:115013. [DOI: 10.1016/j.bcp.2022.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
32
|
Rui H, Zhao F, Yuhua L, Hong J. Suppression of SMOC2 alleviates myocardial fibrosis via the ILK/p38 pathway. Front Cardiovasc Med 2022; 9:951704. [PMID: 36935650 PMCID: PMC10017443 DOI: 10.3389/fcvm.2022.951704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 03/06/2023] Open
Abstract
Background Fibrosis of the myocardium is one of the main pathological changes of adverse cardiac remodeling, which is associated with unsatisfactory outcomes in patients with heart disease. Further investigations into the precise molecular mechanisms of cardiac fibrosis are urgently required to seek alternative therapeutic strategies for individuals suffering from heart failure. SMOC2 has been shown to be essential to exert key pathophysiological roles in various physiological processes in vivo, possibly contributing to the pathogenesis of fibrosis. A study investigating the relationship between SMOC2 and myocardial fibrosis has yet to be conducted. Methods Mice received a continuous ISO injection subcutaneously to induce cardiac fibrosis, and down-regulation of SMOC2 was achieved by adeno-associated virus-9 (AAV9)-mediated shRNA knockdown. Neonatal fibroblasts were separated and cultured in vitro with TGFβ to trigger fibrosis and infected with either sh-SMOC2 or sh-RNA as a control. The role and mechanisms of SMOC2 in myocardial fibrosis were further examined and analyzed. Results SMOC2 knockdown partially reversed cardiac functional impairment and cardiac fibrosis in vivo after 21 consecutive days of ISO injection. We further demonstrated that targeting SMOC2 expression effectively slowed down the trans-differentiation and collagen deposition of cardiac fibroblasts stimulated by TGFβ. Mechanistically, targeting SMOC2 expression inhibited the induction of ILK and p38 in vivo and in vitro, and ILK overexpression increased p38 phosphorylation activity and compromised the protective effects of sh-SMOC2-mediated cardiac fibrosis. Conclusion Therapeutic SMOC2 silencing alleviated cardiac fibrosis through inhibition of the ILK/p38 signaling, providing a preventative and control strategy for cardiac remodeling management in clinical practice.
Collapse
Affiliation(s)
- Huang Rui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Fang Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lei Yuhua
- Department of Cardiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, China
| | - Jiang Hong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Jiang Hong,
| |
Collapse
|