1
|
Li X, Zhu L. Comprehensive profiling of cell type-specific expression and distribution of complement genes in mouse and human kidneys: insights into normal physiology and response to kidney transplantations. Ren Fail 2025; 47:2471568. [PMID: 40015727 PMCID: PMC11869339 DOI: 10.1080/0886022x.2025.2471568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Recent studies innovatively revealed the localized expression of complement genes in kidneys and shed light on the vital roles of the intracellular complement system in the physiologic function and pathological conditions. However, a comprehensive analysis of the expression of complement genes in the context of the evolving cellular landscape of the kidney is not available. METHODS We analyzed single-cell RNA sequencing data from healthy human subjects, C57BL/6 mice, and kidney transplant-rejected mice. The data were sourced from the NCBI Gene Expression Omnibus and processed using quality control measures and unsupervised clustering. Differential gene analyses were based on expression levels. RESULTS In total, 50 complement genes were categorized into pattern recognition molecules, proteases, complement components, receptors, and regulators. In normal mice kidneys, complement genes were expressed at relatively low levels. Among different complement gene categories, receptor genes were most widely expressed in kidney cells. Comparatively, macrophages and mesangial cells are the most abundant immune and nonimmune cell types for complement gene expression. A comparison of human and mouse data showed similar expression patterns, but human kidney complement gene expression was more abundant. Comparative analysis between mouse transplant-rejected and normal kidneys demonstrated stronger complement gene expression in transplant-rejected kidneys. CONCLUSIONS This study illustrated significant similarities in complement gene expression between murine and human kidneys and highlighted the responsive nature of complement genes to kidney injury, underscoring the dynamic nature of local complement regulation. These findings enhance our understanding of the complex regulation of the complement system within the kidney, offering insights into its role in renal disease pathogenesis.
Collapse
Affiliation(s)
- Xianzhi Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
2
|
Nüsken E, Voggel J, Saschin L, Weber LT, Dötsch J, Alcazar MAA, Nüsken KD. Kidney lipid metabolism: impact on pediatric kidney diseases and modulation by early-life nutrition. Pediatr Nephrol 2025; 40:1839-1852. [PMID: 39601825 PMCID: PMC12031794 DOI: 10.1007/s00467-024-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Our review summarizes and evaluates the current state of knowledge on lipid metabolism in relation to the pathomechanisms of kidney disease with a focus on common pediatric kidney diseases. In addition, we discuss how nutrition in early childhood can alter kidney development and permanently shape kidney lipid and protein metabolism, which in turn affects kidney health and disease throughout life. Comprehensive integrated lipidomics and proteomics network analyses are becoming increasingly available and offer exciting new insights into metabolic signatures. Lipid accumulation, lipid peroxidation, oxidative stress, and dysregulated pro-inflammatory lipid mediator signaling have been identified as important mechanisms influencing the progression of minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease, and acute kidney injury. We outline key features of metabolic homeostasis and lipid metabolic physiology in renal cells and discuss pathophysiological aspects in the pediatric context. On the one hand, special vulnerabilities such as reduced antioxidant capacity in neonates must be considered. On the other hand, there is a unique window of opportunity during kidney development, as nutrition in early life influences the composition of cellular phospholipid membranes in the growing kidney and thus affects local signaling pathways far beyond the growth phase.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lutz T Weber
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
3
|
Li L, Yuan H, Li H, Cheng R, Zhou Z, Hu F, Xu L. Inhibiting fatty acid-binding protein 4 reverses inflammation and apoptosis in wasp sting-induced acute kidney injury. Food Chem Toxicol 2025; 200:115428. [PMID: 40185302 DOI: 10.1016/j.fct.2025.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Fatty acid-binding protein 4 (FABP4) has been implicated in the pathogenesis of several forms of acute kidney injury (AKI), including rhabdomyolysis, ischemia/reperfusion, sepsis, and cisplatin-induced AKI. However, whether FABP4 inhibition confers a renoprotective effect in wasp sting-induced AKI remains unclear. Therefore, in this study, we investigated the role of FABP4 in wasp sting-induced AKI in vivo and in vitro. We assessed renal dysfunction, mitochondrial injury, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway-mediated inflammation, and apoptosis. FABP4 expression was significantly higher in wasp sting-induced models of AKI than in the control groups, and pharmacological inhibition of FABP4 attenuated renal dysfunction and tubular injury. Wasp sting-induced AKI was associated with mitochondrial damage induced by excessive mitochondrial fission, which was effectively mitigated by FABP4 inhibition. The FABP4 inhibitor reduced the release of mitochondrial DNA (mtDNA) and cytochrome c (Cyt-c) from damaged mitochondria. cGAS-STING activation induced by mtDNA was downregulated by FABP4 inhibition. Subsequently, inflammation and apoptosis in wasp sting-induced AKI were significantly alleviated, as evidenced by decreased levels of inflammatory mediators and apoptosis-related proteins. In conclusion, FABP4 was found to play a key role in the occurrence and progression of wasp sting-induced AKI.
Collapse
Affiliation(s)
- Ling Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Haoran Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Rui Cheng
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Zilin Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| |
Collapse
|
4
|
Cai X, Li X, Shi J, Tang L, Yang J, Yu R, Wang Z, Wang D. S100A8/A9 high-expression macrophages mediate renal tubular epithelial cell damage in acute kidney injury following acute type A aortic dissection surgery. Front Mol Biosci 2025; 12:1530741. [PMID: 40270593 PMCID: PMC12015165 DOI: 10.3389/fmolb.2025.1530741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Background Acute kidney injury (AKI) is a major complication after acute type A aortic dissection (ATAAD), with an incidence rate of 20-66.7%. Many patients with AKI after ATAAD surgery show no clear signs of ischemia-reperfusion injury. In our previous study, S100A8 and S100A9 were identified as predictive biomarkers of AKI after ATAAD surgery. These proteins are primarily expressed in neutrophils and macrophages, where they contribute to cell damage and immune cell activation. However, the roles of S100A8/A9 in ATAAD-associated AKI remain unclear. Methods In this study, transcriptomics sequence was applied to identify differentially expressed genes in renal tubular epithelial cells (TCMK-1), stimulated by culture supernatant of S100A8/A9 overexpressed and downregulated RAW264.7 cells. Single-cell sequencing data were used to identify cell clusters with high S100A8/A9 expression. Cross-analysis between RNA sequencing datasets was used to investigate common pathways enrichment in both in vitro and in vivo models. Molecular biology experiments were used to explore the downstream signaling pathways of S100A8/S100A9. Results We found that S100A8/S100A9 expression levels were increased and co-localized primarily with macrophages in the kidneys of AKI mice. Marker genes of M1-type macrophages, like Nos2 and Il1b, were upregulated in S100A8/A9 overexpressed M1-type macrophages, while the opposite was observed in the downregulated group. In transcription sequencing results, TCMK-1 cells stimulated by the supernatant from S100A8/A9 overexpressed and downregulated RAW264.7 cells can activate the TNF and PPAR pathway respectively. Cross-analysis revealed that the TNF signaling, IL-17 signaling, and other inflammatory pathways were enriched in both S100A8/A9-related renal tubular epithelial cell impairment and other AKI sequencing datasets. Finally, recombinant protein S100A8/A9 activated the TNF signaling pathway in renal tubular epithelial cells. Conclusion These findings suggested that S100A8/A9 were promising predictive biomarkers for AKI after surgery for ATAAD. S100A8/A9 were upregulated and primarily localized in renal macrophages, where they promoted the transformation of macrophages into the M1 phenotype. S100A8/A9 overexpressed macrophages activated the TNF signaling pathway through secretion and direct interaction with renal tubular epithelial cells, highlighting the critical role of TNF signaling in AKI after ATAAD surgery.
Collapse
Affiliation(s)
- Xiujuan Cai
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Li
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jian Shi
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Tang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ronghuang Yu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhigang Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Wagner L, Kujat J, Langhans V, Prskalo L, Metzke D, Grothgar E, Freund P, Goerlich N, Brand H, Timm S, Ochs M, Grützkau A, Baumgart S, Skopnik CM, Schreiber A, Hiepe F, Riemekasten G, Enghard P, Klocke J. Flow-Cytometric Quantification of Urine Kidney Epithelial Cells Specifically Reflects Tubular Damage in Acute Kidney Diseases. Kidney Int Rep 2025; 10:1260-1273. [PMID: 40303202 PMCID: PMC12034873 DOI: 10.1016/j.ekir.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Tubular injury is one of the main mechanisms driving acute kidney injury (AKI); however, clinicians still have a limited diagnostic repertoire to precisely monitor damage to tubular epithelial cells (TECs). In our previous study, we used single-cell sequencing to identify TEC subsets as the main components of the urine signature of AKI. This study aimed to establish TECs as clinical markers of tubular damage. Methods A total of 243 patients were analyzed. For sequencing, we collected 8 urine samples from patients with AKI and glomerular disease. We developed a protocol for the flow cytometric quantification of CD10/CD13+ proximal TECs (PTECs) and CD227/CD326+ distal TECs (DTECs) in urine by aligning urinary single-cell transcriptomes and TEC surface proteins using Cellular Indexing of Transcriptome and Epitope Sequencing (CITE-Seq). Marker combinations were confirmed in kidney biopsies. We validated our approach in 4 cohorts of 235 patients as follows: patients with AKI (n = 63), COVID-19 infection (n = 47), antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) with active disease or stable remission (n = 110), and healthy controls (n = 15). Results Our findings demonstrated that CD10/CD13 and CD227/CD326 adequately identified PTECs and DTECs, respectively. Distal urinary TEC counts correlate with the severity of AKI based on Kidney Disease: Improving Global Outcomes (KDIGO) stage and acute estimated glomerular filtration rate (GFR) loss in 2 separate cohorts and can successfully discriminate AKI from healthy controls and glomerular disease. Conclusion We propose that urinary CD227/CD326+ TEC count is a specific, noninvasive marker for tubular injury in AKI. Our protocol provides a basis for a deeper phenotypic analysis of urinary TECs.
Collapse
Affiliation(s)
- Leonie Wagner
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jacob Kujat
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Valerie Langhans
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Paul Freund
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Hannah Brand
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Sabine Baumgart
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Institute for Immunology/Core Facility Cytometry, Jena University Hospital, Jena, Germany
| | - Christopher M. Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Falk Hiepe
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Department of Rheumatology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
6
|
Catalano A, Haas LS, Zodel K, Adlesic M, Cuomo F, Peighambari A, Metzger P, Huang H, Haug S, Köttgen A, Köhler N, Boerries M, Frew IJ. Mutations in tumor suppressor genes Vhl and Rassf1a cause DNA damage, chromosomal instability and induce gene expression changes characteristic of clear cell renal cell carcinoma. Kidney Int 2025; 107:666-686. [PMID: 39725222 DOI: 10.1016/j.kint.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity. Combined Rassf1a and Vhl deletion in kidney epithelial cells in vivo increased proliferation and caused mild tubular disorganization, but did not lead to the development of kidney tumors. Single cell RNA-sequencing unexpectedly revealed that Rassf1a or Vhl deletion both induce the expression of an overlapping set of genes in a sub-population of proximal tubule cells. Many of these genes are also upregulated in the Vhl/Trp53/Rb1 deficient mouse model of ccRCC. In other subsets of proximal tubule cells, combined Vhl/Rassf1a deletion induced the expression of additional genes that were not upregulated in each of the single knockouts. The expression of the human homologues of Rassf1a-regulated genes correlate negatively with RASSF1 expression levels in human ccRCC. Our results suggest that the loss of RASSF1A function establishes a ccRCC-characteristic gene expression pattern.
Collapse
Affiliation(s)
- Antonella Catalano
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura S Haas
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kyra Zodel
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mojca Adlesic
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesca Cuomo
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Asin Peighambari
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hsin Huang
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Natalie Köhler
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Ian J Frew
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Ma D, Wang D, Yu J, Huang N, Luo N, Yang Y, Xu M, Li J, Qiu Y, Fan J, Li Z, Chen W, Zhou Q. Single-Cell Profiling of Tubular Epithelial Cells in Adaptive State in the Urine Sediment of Patients With Early and Advanced Diabetic Kidney Disease. Kidney Int Rep 2025; 10:892-905. [PMID: 40225386 PMCID: PMC11993230 DOI: 10.1016/j.ekir.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 04/15/2025] Open
Abstract
Introduction Tubular epithelial cells (TECs) under adaptive state (aTECs) have been frequently reported in the injured kidney closely associated with disease progression. However, whether aTECs is present in the urine of patients with diabetic kidney disease (DKD) and its clinical implication have not been assessed. Methods Urine samples from patients with early and advanced DKD were collected and subjected to single-cell RNA sequencing (scRNA-seq). Kidney single nucleus RNA-seq, spatial scRNA-seq, and bulk RNA-seq datasets were employed to reconstruct their local environment and to delineate differences between shed cells and local residence. Results Most urinary TEC in patients with DKD are under adaptive states. Whereas the composition of urinary TEC is consistent in early and advanced DKD, a higher ratio of aTECs under progenitor and fibrosis state is defined in early DKD. Trajectory inference reveals that some aTECs are early derivatives of injured proximal tubule (PT). Spatial mapping reveals that proliferative and fibrosis aTECs reside close to the glomerulus region. Systemic evaluation of different states of urinary aTECs in patients of diverse-cause kidney injury suggests that the ratio of progenitor or proliferative aTECs to fibrosis aTECs is of diagnostic value. Conclusion Urine is an underestimated source of aTECs providing us noninvasive manner to interrogate the injured state of tubule. The ratio of fibrosis aTECs and progenitor or proliferative aTECs in urine features tubular injury state and may help improve DKD diagnosis.
Collapse
Affiliation(s)
- Dongzhao Ma
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Dan Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Yue Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Minghui Xu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Yagui Qiu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University and NHC Key Laboratory of Clinical Nephrology and Guangdong Provincial Key Laboratory of Nephrology, Guangdong, China
| |
Collapse
|
8
|
Davidson JA, Iguidbashian J, Khailova L, Lehmann T, Suarez-Pierre A, Thomson LM, Zakrzewski J, Ali E, Lee S, Frank BS, Ing RJ, Stone ML, Osorio Lujan S, Niemiec S, Mancuso CA. Cardiopulmonary bypass with deep hypothermic circulatory arrest results in organ-specific transcriptomic responses in pediatric swine. Transl Res 2025; 277:64-74. [PMID: 39827912 PMCID: PMC12034226 DOI: 10.1016/j.trsl.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The organ-level molecular response to cardiac surgery with cardiopulmonary bypass (CPB) remains inadequately understood and may be heterogeneous. Here, we measured organ-specific gene expression in a piglet model of CPB with deep hypothermic circulatory arrest (DHCA). Infant piglets underwent peripheral CPB with 75 min of DHCA and 6 h of critical care after separation from CPB. Mechanically ventilated animals served as controls. Tissue was obtained from the lung, kidney, liver, heart, and ileum. RNA sequencing was performed using NovaSeq 6000 and evaluated via differentially expressed gene (DEG) and pathway/network analyses. CPB/DHCA induced significant transcriptomic alterations, with greater changes seen in liver (2,166 DEGs), heart (775 DEGs), and kidney (1,759 DEGs) compared to lung (401 DEGs) and ileum (11 DEGs), and little overlap across organs (<20 % differentially expressed in >1 organ). Key upregulated systems included ribosomal proliferation and mitochondrial assembly in the liver, oxidative stress response and proximal tubular repair in the kidney, myofilament structural genes and pro-hypertrophy pathways in the heart, and solute channels and arginine metabolism in the lung. Downregulation of adaptive immunity genes occurred in multiple organs. Transcriptomics could inform the investigation of targeted therapies and adverse event screening after cardiac surgery.
Collapse
Affiliation(s)
- Jesse A Davidson
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA.
| | - John Iguidbashian
- University of Colorado School of Medicine, Aurora, CO, Department of Surgery, USA
| | - Ludmila Khailova
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA
| | - Tanner Lehmann
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA
| | | | - Lindsay M Thomson
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA
| | - Jack Zakrzewski
- University of Colorado School of Medicine, Aurora, CO, Department of Surgery, USA
| | - Eiman Ali
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA
| | - Schuyler Lee
- University of Colorado School of Medicine, Aurora, CO, Department of Pulmonary Sciences and Critical Care, USA
| | - Benjamin S Frank
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA
| | - Richard J Ing
- University of Colorado School of Medicine, Aurora, CO, Department of Anesthesia, USA
| | - Matthew L Stone
- University of Colorado School of Medicine, Aurora, CO, Department of Surgery, USA
| | - Suzanne Osorio Lujan
- University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, USA
| | - Sierra Niemiec
- University of Colorado School of Public Health, Aurora, CO, Department of Biostatistics and Bioinformatics, USA
| | - Christopher A Mancuso
- University of Colorado School of Public Health, Aurora, CO, Department of Biostatistics and Bioinformatics, USA
| |
Collapse
|
9
|
Kulow VA, Roegner K, Labes R, Kasim M, Mathia S, Czopek CS, Berndt N, Becker PN, Ter-Avetisyan G, Luft FC, Enghard P, Hinze C, Klocke J, Eckardt KU, Schmidt-Ott KM, Persson PB, Rosenberger C, Fähling M. Beyond hemoglobin: Critical role of 2,3-bisphosphoglycerate mutase in kidney function and injury. Acta Physiol (Oxf) 2025; 241:e14242. [PMID: 39422260 DOI: 10.1111/apha.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
AIM 2,3-bisphosphoglycerate mutase (BPGM) is traditionally recognized for its role in modulating oxygen affinity to hemoglobin in erythrocytes. Recent transcriptomic analyses, however, have indicated a significant upregulation of BPGM in acutely injured murine and human kidneys, suggesting a potential renal function for this enzyme. Here we aim to explore the physiological role of BPGM in the kidney. METHODS A tubular-specific, doxycycline-inducible Bpgm-knockout mouse model was generated. Histological, immunofluorescence, and proteomic analyses were conducted to examine the localization of BPGM expression and the impact of its knockout on kidney structure and function. In vitro studies were performed to investigate the metabolic consequences of Bpgm knockdown under osmotic stress. RESULTS BPGM expression was localized to the distal nephron and was absent in proximal tubules. Inducible knockout of Bpgm resulted in rapid kidney injury within 4 days, characterized by proximal tubular damage and tubulointerstitial fibrosis. Proteomic analyses revealed involvement of BPGM in key metabolic pathways, including glycolysis, oxidative stress response, and inflammation. In vitro, Bpgm knockdown led to enhanced glycolysis, decreased reactive oxygen species elimination capacity under osmotic stress, and increased apoptosis. Furthermore, interactions between nephron segments and immune cells in the kidney suggested a mechanism for propagating stress signals from distal to proximal tubules. CONCLUSION BPGM fulfills critical functions beyond the erythrocyte in maintaining glucose metabolism in the distal nephron. Its absence leads to metabolic imbalances, increased oxidative stress, inflammation, and ultimately kidney injury.
Collapse
Affiliation(s)
- Vera A Kulow
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Kameliya Roegner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Robert Labes
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Mumtaz Kasim
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Susanne Mathia
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Claudia S Czopek
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp N Becker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Gohar Ter-Avetisyan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Christian Hinze
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jan Klocke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Kai-Uwe Eckardt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Kai M Schmidt-Ott
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| | - Christian Rosenberger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m.S. Nephrologie und Internistische Intensivmedizin (CCM), Berlin, Germany
| | - Michael Fähling
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Translationale Physiologie (CCM), Berlin, Germany
| |
Collapse
|
10
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Duan ZY, Zhang C, Chen XM, Cai GY. Blood and urine biomarkers of disease progression in IgA nephropathy. Biomark Res 2024; 12:72. [PMID: 39075557 PMCID: PMC11287988 DOI: 10.1186/s40364-024-00619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
The prognosis of patients with IgA nephropathy (IgAN) is variable but overall not good. Almost all patients with IgAN are at risk of developing end-stage renal disease within their expected lifetime. The models presently available for prediction of the risk of progression of IgAN, including the International IgA Nephropathy Prediction Tool, consist of traditional clinical, pathological, and therapeutic indicators. Finding biomarkers to improve the existing risk prediction models or replace pathological indicators is important for clinical practice. Many studies have attempted to identify biomarkers for prediction of progression of IgAN, such as galactose-deficient IgA1, complement, a spectrum of protein biomarkers, non-coding RNA, and shedding cells. This article reviews the biomarkers of progression of IgAN identified in recent years, with a focus on those with clinical value, in particular the combination of multiple biomarkers into a biomarker spectrum. Future research should focus on establishing a model based primarily on biomarkers that can predict progression of IgAN and testing it in various patient cohorts.
Collapse
Affiliation(s)
- Zhi-Yu Duan
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Chun Zhang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
12
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 PMCID: PMC11660082 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Koch B, Filzmayer M, Patyna S, Wetzstein N, Lampe S, Schmid T, Geiger H, Baer PC, Dolnik O. Transcriptomics of Marburg virus-infected primary proximal tubular cells reveals negative correlation of immune response and energy metabolism. Virus Res 2024; 342:199337. [PMID: 38346476 PMCID: PMC10875301 DOI: 10.1016/j.virusres.2024.199337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Marburg virus, a member of the Filoviridae, is the causative agent of Marburg virus disease (MVD), a hemorrhagic fever with a case fatality rate of up to 90 %. Acute kidney injury is common in MVD and is associated with increased mortality, but its pathogenesis in MVD remains poorly understood. Interestingly, autopsies show the presence of viral proteins in different parts of the nephron, particularly in proximal tubular cells (PTC). These findings suggest a potential role for the virus in the development of MVD-related kidney injury. To shed light on this effect, we infected primary human PTC with Lake Victoria Marburg virus and conducted transcriptomic analysis at multiple time points. Unexpectedly, infection did not induce marked cytopathic effects in primary tubular cells at 20 and 40 h post infection. However, gene expression analysis revealed robust renal viral replication and dysregulation of genes essential for different cellular functions. The gene sets mainly downregulated in PTC were associated with the targets of the transcription factors MYC and E2F, DNA repair, the G2M checkpoint, as well as oxidative phosphorylation. Importantly, the downregulated factors comprise PGC-1α, a well-known factor in acute and chronic kidney injury. By contrast, the most highly upregulated gene sets were those related to the inflammatory response and cholesterol homeostasis. In conclusion, Marburg virus infects and replicates in human primary PTC and induces downregulation of processes known to be relevant for acute kidney injury as well as a strong inflammatory response.
Collapse
Affiliation(s)
- Benjamin Koch
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| | - Maximilian Filzmayer
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main 60596, Germany
| | - Sammy Patyna
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Nils Wetzstein
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine, Infectious Diseases, Frankfurt am Main 60596, Germany
| | - Sebastian Lampe
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Tobias Schmid
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Helmut Geiger
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Patrick C Baer
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Olga Dolnik
- Philipps University Marburg, Institute of Virology, Hans-Meerwein-Str. 2, Marburg 35043, Germany.
| |
Collapse
|
14
|
Schildknecht K, Samans B, Gussmann J, Baron U, Raschke E, Babel N, Oppatt J, Gellhaus K, Rossello A, Janack I, Olek S. Specifications of qPCR based epigenetic immune cell quantification. Clin Chem Lab Med 2024; 62:615-626. [PMID: 37982750 DOI: 10.1515/cclm-2023-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Immune monitoring is an important aspect in diagnostics and clinical trials for patients with compromised immune systems. Flow cytometry is the standard method for immune cell counting but faces limitations. Best practice guidelines are available, but lack of standardization complicates compliance with e.g., in vitro diagnostic regulations. Limited sample availability forces immune monitoring to predominantly use population-based reference intervals. Epigenetic qPCR has evolved as alternative with broad applicability and low logistical demands. Analytical performance specifications (APS) have been defined for qPCR in several regulated fields including testing of genetically modified organisms or vector-shedding. METHODS APS were characterized using five epigenetic qPCR-based assays quantifying CD3+, CD4+, CD8+ T, B and NK cells in light of regulatory requirements. RESULTS Epigenetic qPCR meets all specifications including bias, variability, linearity, ruggedness and sample stability as suggested by pertinent guidelines and regulations. The assays were subsequently applied to capillary blood from 25 normal donors over a 28-day period. Index of individuality (IoI) and reference change values were determined to evaluate potential diagnostic gains of individual reference intervals. Analysis of the IoI suggests benefits for individual over population-based references. Reference change values (RCVs) show that changes of approx. Fifty percent from prior measurement are suggestive for clinically relevant changes in any of the 5 cell types. CONCLUSIONS The demonstrated precision, long-term stability and obtained RCVs render epigenetic cell counting a promising tool for immune monitoring in clinical trials and diagnosis.
Collapse
Affiliation(s)
- Konstantin Schildknecht
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Björn Samans
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Jasmin Gussmann
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Udo Baron
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Eva Raschke
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Nina Babel
- Marienhospital Herne, Klinik I für Innere Medizin, Centrum für Translationale Medizin, Herne, Germany
| | - Julia Oppatt
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | | | - Araceli Rossello
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Isabell Janack
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| | - Sven Olek
- Ivana Türbachova Laboratory for Epigenetics, Epiontis, Precision for Medicine GmbH, Berlin, Germany
| |
Collapse
|
15
|
Anandakrishnan N, Yi Z, Sun Z, Liu T, Haydak J, Eddy S, Jayaraman P, DeFronzo S, Saha A, Sun Q, Yang D, Mendoza A, Mosoyan G, Wen HH, Schaub JA, Fu J, Kehrer T, Menon R, Otto EA, Godfrey B, Suarez-Farinas M, Leffters S, Twumasi A, Meliambro K, Charney AW, García-Sastre A, Campbell KN, Gusella GL, He JC, Miorin L, Nadkarni GN, Wisnivesky J, Li H, Kretzler M, Coca SG, Chan L, Zhang W, Azeloglu EU. Integrated multiomics implicates dysregulation of ECM and cell adhesion pathways as drivers of severe COVID-associated kidney injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304401. [PMID: 38562892 PMCID: PMC10984064 DOI: 10.1101/2024.03.18.24304401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.
Collapse
|
16
|
Legouis D, Rinaldi A, Malpetti D, Arnoux G, Verissimo T, Faivre A, Mangili F, Rinaldi A, Ruinelli L, Pugin J, Moll S, Clivio L, Bolis M, de Seigneux S, Azzimonti L, Cippà PE. A transfer learning framework to elucidate the clinical relevance of altered proximal tubule cell states in kidney disease. iScience 2024; 27:109271. [PMID: 38487013 PMCID: PMC10937833 DOI: 10.1016/j.isci.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
The application of single-cell technologies in clinical nephrology remains elusive. We generated an atlas of transcriptionally defined cell types and cell states of human kidney disease by integrating single-cell signatures reported in the literature with newly generated signatures obtained from 5 patients with acute kidney injury. We used this information to develop kidney-specific cell-level information ExtractoR (K-CLIER), a transfer learning approach specifically tailored to evaluate the role of cell types/states on bulk RNAseq data. We validated the K-CLIER as a reliable computational framework to obtain a dimensionality reduction and to link clinical data with single-cell signatures. By applying K-CLIER on cohorts of patients with different kidney diseases, we identified the most relevant cell types associated with fibrosis and disease progression. This analysis highlighted the central role of altered proximal tubule cells in chronic kidney disease. Our study introduces a new strategy to exploit the power of single-cell technologies toward clinical applications.
Collapse
Affiliation(s)
- David Legouis
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
| | - Anna Rinaldi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Daniele Malpetti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Gregoire Arnoux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
| | - Thomas Verissimo
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Francesca Mangili
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncological Research, 6500 Bellinzona, Switzerland
| | | | - Jerome Pugin
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Solange Moll
- Division of Pathology, Department of Diagnostic, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Luca Clivio
- Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Computational Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University of Geneva, 1205 Geneva, Switzerland
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Laura Azzimonti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
| | - Pietro E. Cippà
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
17
|
Benson LN, Mu S. Interferon gamma in the pathogenesis of hypertension - recent insights. Curr Opin Nephrol Hypertens 2024; 33:154-160. [PMID: 38164939 PMCID: PMC10842676 DOI: 10.1097/mnh.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
18
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Slaats GG, Chen J, Levtchenko E, Verhaar MC, Arcolino FO. Advances and potential of regenerative medicine in pediatric nephrology. Pediatr Nephrol 2024; 39:383-395. [PMID: 37400705 PMCID: PMC10728238 DOI: 10.1007/s00467-023-06039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 07/05/2023]
Abstract
The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Junyu Chen
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Chung E, Park JS, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Sci Rep 2024; 14:439. [PMID: 38172172 PMCID: PMC10764314 DOI: 10.1038/s41598-023-50195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Mike Adam
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - S Steven Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Eckardt KU, Delgado C, Heerspink HJL, Pecoits-Filho R, Ricardo AC, Stengel B, Tonelli M, Cheung M, Jadoul M, Winkelmayer WC, Kramer H. Trends and perspectives for improving quality of chronic kidney disease care: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2023; 104:888-903. [PMID: 37245565 DOI: 10.1016/j.kint.2023.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Chronic kidney disease (CKD) affects over 850 million people globally, and the need to prevent its development and progression is urgent. During the past decade, new perspectives have arisen related to the quality and precision of care for CKD, owing to the development of new tools and interventions for CKD diagnosis and management. New biomarkers, imaging methods, artificial intelligence techniques, and approaches to organizing and delivering healthcare may help clinicians recognize CKD, determine its etiology, assess the dominant mechanisms at given time points, and identify patients at high risk for progression or related events. As opportunities to apply the concepts of precision medicine for CKD identification and management continue to be developed, an ongoing discussion of the potential implications for care delivery is required. The 2022 KDIGO Controversies Conference on Improving CKD Quality of Care: Trends and Perspectives examined and discussed best practices for improving the precision of CKD diagnosis and prognosis, managing the complications of CKD, enhancing the safety of care, and maximizing patient quality of life. Existing tools and interventions currently available for the diagnosis and treatment of CKD were identified, with discussion of current barriers to their implementation and strategies for improving the quality of care delivered for CKD. Key knowledge gaps and areas for research were also identified.
Collapse
Affiliation(s)
- Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Cynthia Delgado
- Division of Nephrology, University of California, San Francisco, San Francisco, California, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; The George Institute for Global Health, Sydney, Australia
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA; School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Brazil
| | - Ana C Ricardo
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Bénédicte Stengel
- CESP, Centre de Recherche en Epidémiologie et Santé des Populations, Clinical Epidemiology Team, INSERM UMRS 1018, University Paris-Saclay, Villejuif, France
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael Cheung
- Kidney Disease: Improving Global Outcomes (KDIGO), Brussels, Belgium
| | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Holly Kramer
- Departments of Public Health Sciences and Medicine, Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
22
|
Kim S, Noh JH, Lee MJ, Park YJ, Kim BM, Kim YS, Hwang S, Park C, Kim K. Effects of Mitochondrial Transplantation on Transcriptomics in a Polymicrobial Sepsis Model. Int J Mol Sci 2023; 24:15326. [PMID: 37895006 PMCID: PMC10607172 DOI: 10.3390/ijms242015326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, we demonstrated that mitochondrial transplantation has beneficial effects in a polymicrobial sepsis model. However, the mechanism has not been fully investigated. Mitochondria have their own genes, and genomic changes in sepsis are an important issue in terms of pathophysiology, biomarkers, and therapeutic targets. To investigate the changes in transcriptomic features after mitochondrial transplantation in a polymicrobial sepsis model, we used a rat model of fecal slurry polymicrobial sepsis. Total RNA from splenocytes of sham-operated (SHAM, n = 10), sepsis-induced (SEPSIS, n = 7), and sepsis receiving mitochondrial transplantation (SEPSIS + MT, n = 8) samples was extracted and we conducted a comparative transcriptome-wide analysis between three groups. We also confirmed these results with qPCR. In terms of percentage of mitochondrial mapped reads, the SEPSIS + MT group had a significantly higher mapping ratio than the others. RT1-M2 and Cbln2 were identified as highly expressed in SEPSIS + MT compared with SEPSIS. Using SHAM expression levels as another control variable, we further identified six genes (Fxyd4, Apex2l1, Kctd4, 7SK, SNORD94, and SNORA53) that were highly expressed after sepsis induction and observed that their expression levels were attenuated by mitochondrial transplantation. Changes in transcriptomic features were identified after mitochondrial transplantation in sepsis. This might provide a hint for exploring the mechanism of mitochondrial transplantation in sepsis.
Collapse
Affiliation(s)
- Seongmin Kim
- School of Biological Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Heon Noh
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Ji Lee
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Ye Jin Park
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Bo Mi Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Yun-Seok Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| | - Sangik Hwang
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Republic of Korea
| |
Collapse
|
23
|
Yang J, Gan Y, Feng X, Chen X, Wang S, Gao J. Effects of melatonin against acute kidney injury: A systematic review and meta-analysis. Int Immunopharmacol 2023; 120:110372. [PMID: 37279642 DOI: 10.1016/j.intimp.2023.110372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Melatonin is a hormone synthesized by the pineal gland, and has antioxidative effects in reducing acute kidney injury (AKI). In the past three years, an increasing number of studies have evaluated whether melatonin has a protective effect on AKI. The study systematically reviewed and assessed the efficacy and safety of melatonin in preventing AKI. MATERIAL AND METHODS A systematic literature search was conducted in the PubMed, Embase, and Web of Science databases on February 15, 2023. Eligible records were screened according to the inclusion and exclusion criteria. The odds ratio and Hedges' gwith the corresponding 95% confidence intervals were selected to evaluate the effects of melatonin on AKI. We pooled extracted data using a fixed- or random-effects model based on a heterogeneity test. RESULTS There were five studies (one cohort study and four randomized controlled trials) included in the meta-analysis. Although the glomerular filtration rate (GFR) may be significantly improved by melatonin, the incidence of AKI was not significantly decreased in the melatonin group compared with the control group in randomized controlled trials (RCTs). CONCLUSIONS In our study, the present results do not support a direct effect of melatonin use on the reduction of AKI. More well-designed clinical studies with larger sample size are required in the future.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400016, China.
| | - Yuanxiu Gan
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400016, China.
| | - Xuanyun Feng
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400016, China.
| | - Xiangyu Chen
- Department of Emergency, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shu Wang
- Department of Intensive Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400016, China.
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
24
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2880248. [PMID: 37293022 PMCID: PMC10246229 DOI: 10.21203/rs.3.rs-2880248/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8, while the surviving proximal tubules (PTs) showed restored transcriptional signature. Furthermore, we found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
| | - Mike Adam
- Cincinnati Children's Hospital Medical Center
| | | | | | - Qing Ma
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pregizer S, Vreven T, Mathur M, Robinson LN. Multi-omic single cell sequencing: Overview and opportunities for kidney disease therapeutic development. Front Mol Biosci 2023; 10:1176856. [PMID: 37091871 PMCID: PMC10113659 DOI: 10.3389/fmolb.2023.1176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Single cell sequencing technologies have rapidly advanced in the last decade and are increasingly applied to gain unprecedented insights by deconstructing complex biology to its fundamental unit, the individual cell. First developed for measurement of gene expression, single cell sequencing approaches have evolved to allow simultaneous profiling of multiple additional features, including chromatin accessibility within the nucleus and protein expression at the cell surface. These multi-omic approaches can now further be applied to cells in situ, capturing the spatial context within which their biology occurs. To extract insights from these complex datasets, new computational tools have facilitated the integration of information across different data types and the use of machine learning approaches. Here, we summarize current experimental and computational methods for generation and integration of single cell multi-omic datasets. We focus on opportunities for multi-omic single cell sequencing to augment therapeutic development for kidney disease, including applications for biomarkers, disease stratification and target identification.
Collapse
|
26
|
Hasegawa S. Urinary single-cell transcriptomics: a promising noninvasive method for assessing acute kidney injury. Kidney Int 2022; 102:1219-1221. [PMID: 36411018 DOI: 10.1016/j.kint.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
Noninvasive methods for obtaining intrarenal information are required to understand the mechanism of acute kidney injury (AKI). Klocke et al. explored the feasibility of using urinary single-cell RNA sequencing in assessing human AKI. Urine samples from patients with AKI included tubular epithelial cells with injury-related dedifferentiation and adaptive phenotypes, which could reflect kidney tissue damage. Thus, urinary single-cell RNA sequencing would provide new insights into human AKI, leading to the identification of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan; Division of Nephrology and Endocrinology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
27
|
Abstract
Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.
Collapse
Affiliation(s)
- Louisa M S Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|