1
|
Selvavinayagam ST, Sankar S, Yong YK, Anshad AR, Chandramathi S, Somasundaram A, Palani S, Kumarasamy P, Azhaguvel R, Kumar AB, Subramaniam S, Malathi M, Vijayalakshmi V, Rajeshkumar M, Kumaresan A, Pandey RP, Muruganandam N, Gopalan N, Kannan M, Murugesan A, Balakrishnan P, Byrareddy SN, Dash AP, Velu V, Larsson M, Shankar EM, Raju S. Attrition in serum anti-DENV antibodies correlates with high anti-SARS-CoV-2 IgG levels and low DENV positivity in mosquito vectors-Findings from a state-wide cluster-randomized community-based study in Tamil Nadu, India. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003608. [PMID: 39570962 PMCID: PMC11581277 DOI: 10.1371/journal.pgph.0003608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
The decline in dengue incidence and/or prevalence during the COVID-19 pandemic (2020-22) appears to be attributed to reduced treatment-seeking rates, under-reporting, misdiagnosis, disrupted health services and reduced exposure to mosquito vectors due to prevailing lockdowns. There is limited scientific data on dengue virus (DENV) disease during the COVID-19 pandemic. Here, we conducted a community-based, cross-sectional, cluster-randomized survey to assess anti-DENV and anti-SARS-CoV-2 seroprevalence, and also estimated the spatial distribution of DENV-positive aedine mosquito vectors during the COVID-19 pandemic across all the 38 districts of Tamil Nadu, India. Using real-time PCR, the prevalence of DENV in mosquito pools during 2021 was analyzed and compared with the previous and following years of vector surveillance, and correlated with anti-DENV IgM and IgG levels in the population. Results implicate that both anti-DENV IgM and IgG seroprevalence and DENV positivity in mosquito pools were reduced across all the districts. A total of 13464 mosquito pools and 5577 human serum samples from 186 clusters were collected. Of these, 3.76% of the mosquito pools were positive for DENV. In the human sera, 4.12% were positive for anti-DENV IgM and 6.4% for anti-DENV IgG. While the anti-SARS-CoV-2 levels significantly correlated with overall DENV seropositivity, COVID-19 vaccination status significantly correlated with anti-DENV IgM levels. The study indicates a profound impact of anti-SARS-CoV-2 levels on DENV-positive mosquito pools and seropositivity. Continuous monitoring of anti-DENV antibody levels, especially with the evolving variants of SARS-CoV-2 and the surge in COVID-19 cases will shed light on the distribution, transmission and therapeutic attributes of DENV infection.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Centre for Infectious Diseases, Saveetha University, Chennai, Tamil Nadu, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Abdul R. Anshad
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Samudi Chandramathi
- Faculty of Medicine, Department of Medical Microbiology, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | | | - Sampath Palani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Parthipan Kumarasamy
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Roshini Azhaguvel
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Ajith B. Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | | | - Manickam Malathi
- Institute of Vector Control and Zoonoses, Hosur, Tamil Nadu, India
| | | | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, India
| | - Nagarajan Muruganandam
- Regional Medical Research Centre, Indian Council of Medical Research, Port Blair, Andaman and Nicobar Islands, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India
| | - Meganathan Kannan
- Department of Biotechnology, Blood and Vascular Biology, Central University of Tamil Nadu, Thiruvarur, India
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Nadu, India
| | - Pachamuthu Balakrishnan
- Saveetha Institute of Medical and Technical Sciences, Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aditya P. Dash
- Asian Institute of Public Health University, Bhubaneswar, Odisha, India
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, United States of America
| | - Marie Larsson
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Chakrabarti A, Majumder S, Sarkar A, Majumdar T. Characterization of the viral genome of Omicron variants of SARS-CoV-2 circulating in Tripura, a remote frontier state in Northeastern India. Mol Biol Rep 2024; 51:1100. [PMID: 39466467 DOI: 10.1007/s11033-024-10048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION From 2020, with advent of COVID-19 pandemic, Tripura has experienced SARS-CoV-2 viral evolution in accordance with other parts of India. Since January 2022, the Omicron variant of SARS-CoV-2 virus became the predominant lineage circulating in India and neighboring countries. This study characterizes the viral genome of the omicron variant circulating in the state since its inception to June, 2023. METHODS AND RESULTS The current study was performed on nasopharyngeal and oropharyngeal samples received from the various departments of AGMC, as well as eight district hospitals from Tripura. The positive samples with a cycle threshold value of 25 or less for the E and/or N gene were considered for whole genome sequencing using Illumina Miseq NGS platform. Majority of the sequences belonged to Clade 21 L, with BA.5.2 being the major sub variant detected during the study period. Majority of the mutations were detected in the Spike protein region, including L24-, P25-, P26-, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, S477N, T478K, Q498R, Y505H, Q954H and N969K. All the sequences uniquely showed the mutations A27S and G142D in N terminal domain in Spike protein, not being reported from other Indian sequences like BA.5 variants. T9I, A63T and P13L were major substitutions in E, M and N protein regions respectively. Escape of mutants from vaccine induced immunity was mostly observed in BA.2 sub variants, majority endowed with the triplet mutation of K417N + E484K + N501Y. CONCLUSION The current study indicates that Omicron variants circulating in the state of Tripura is comparable to other regions of India and the neighbouring country of Bangladesh. Genetic mutations increasing viral transmissibility have been identified in the circulating viral genomes.
Collapse
Affiliation(s)
- Ankan Chakrabarti
- Medical Research Scientist, Viral Research & Diagnostic Laboratory, Agartala Government Medical College & GBP Hospital, Agartala, India
| | - Saikat Majumder
- Medical Research Scientist, Viral Research & Diagnostic Laboratory, Agartala Government Medical College & GBP Hospital, Agartala, India
| | - Apurba Sarkar
- Medical Research Scientist, Viral Research & Diagnostic Laboratory, Agartala Government Medical College & GBP Hospital, Agartala, India
| | - Tapan Majumdar
- Medical Research Scientist, Viral Research & Diagnostic Laboratory, Agartala Government Medical College & GBP Hospital, Agartala, India.
| |
Collapse
|
3
|
Selvavinayagam ST, Sankar S, Yong YK, Murugesan A, Suvaithenamudhan S, Hemashree K, Rajeshkumar M, Kumaresan A, Pandey RP, Shanmugam S, Arthydevi P, Kumar MS, Gopalan N, Kannan M, Cheedarla N, Tan HY, Zhang Y, Larsson M, Balakrishnan P, Velu V, Byrareddy SN, Shankar EM, Raju S. Emergence of SARS-CoV-2 omicron variant JN.1 in Tamil Nadu, India - Clinical characteristics and novel mutations. Sci Rep 2024; 14:17476. [PMID: 39080396 PMCID: PMC11289243 DOI: 10.1038/s41598-024-68678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
In December 2023, we observed a notable shift in the COVID-19 landscape, when JN.1 omicron emerged as the predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive clinical specimens, followed by sequence analysis. Mutations within the spike protein sequences were analysed and compared with the previously reported lineages and sub-lineages, to identify the potential impact of the unique mutations on protein structure and possible alterations in the functionality. Several unique and dynamic mutations were identified herein. Molecular docking analysis showed changes in the binding affinity, and key interacting residues of wild-type and mutated structures with key host cell receptors of SARS-CoV-2 entry viz., ACE2, CD147, CD209L and AXL. Our data provides key insights on the emergence of newer variants and highlights the necessity for robust and sustained global genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Sathish Sankar
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, 625 512, India
| | - Suvaiyarasan Suvaithenamudhan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Ramendra P Pandey
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248 007, India
| | - Saravanan Shanmugam
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Masilamani Senthil Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Hong Y Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 185, Linköping, Sweden
| | - Pachamuthu Balakrishnan
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, 600 078, India
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68131, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, 600 006, India.
| |
Collapse
|
4
|
Sharma P, Gautam S, Sharma A, Parsoya D, Deeba F, Pal N, Singh R, Sharma H, Bhomia N, Sharma RP, Potdar V, Malhotra B. Genomic surveillance of SARS-CoV-2 and emergence of XBB.1.16 variant in Rajasthan. Indian J Med Microbiol 2024; 50:100659. [PMID: 38945273 DOI: 10.1016/j.ijmmb.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Genomic surveillance of positive SARS-CoV-2 samples is important to monitor the genetic changes occurring in virus, this was enhanced after the WHO designation of XBB.1.16 as a variant under monitoring in March 2023. From 5th February till May 6, 2023 all positive SARS-CoV-2 samples were monitored for genetic changes. METHODS A total of 1757 samples having Ct value <25 (for E and ORF gene) from different districts of Rajasthan were processed for Next Generation Sequencing (NGS). The FASTA files obtained on sequencing were used for lineage determination using Nextclade and phylogenetic tree construction. RESULTS AND CONCLUSIONS Sequencing and lineage identification was done in 1624 samples. XBB.1.16 was the predominant lineage in 1413 (87.0%) cases while rest was other XBB (207, 12.74%) and other lineages (4, 0.2%). Of the 1413 XBB.1.16 cases, 57.47% were males and 42.53% were females. Majority (66.53%) belonged to 19-59 year age. 84.15% of XBB.1.16 cases were infected for the first time. Hospitalization was required in only 2.2% cases and death was reported in 5 (0.35%) patients. Most of the cases were symptomatic and the commonest symptoms were fever, cough and rhinorrhea. Co-morbidities were present in 414 (29.3%) cases. Enhanced genomic surveillance helped to rapidly identify the spread of XBB variant in Rajasthan. This in turn helped to take control measures to prevent spread of virus and estimate public health risks of the new variant relative to the previously circulating lineages. XBB variant was found to spread rapidly but produced milder disease.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Swati Gautam
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Abhaya Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Dinesh Parsoya
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Farah Deeba
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Nita Pal
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Ruchi Singh
- Directorate of Medical and Health Services, Jaipur, Rajasthan, India.
| | - Himanshu Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Neha Bhomia
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Ravi P Sharma
- Directorate of Medical and Health Services, Jaipur, Rajasthan, India.
| | - Varsha Potdar
- National Institute of Virology, Pune, Maharashtra, India.
| | - Bharti Malhotra
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| |
Collapse
|
5
|
Selvavinayagam ST, Sankar S, Yong YK, Anshad AR, Chandramathi S, Somasundaram A, Palani S, Kumarasamy P, Azhaguvel R, Kumar AB, Subramaniam S, Malathi M, Vijayalakshmi V, Rajeshkumar M, Kumaresan A, Pandey RP, Muruganandam N, Gopalan N, Kannan M, Murugesan A, Balakrishnan P, Byrareddy SN, Dash AP, Larsson M, Velu V, Shankar EM, Raju S. Serosurveillance of dengue infection and correlation with mosquito pools for dengue virus positivity during the COVID-19 pandemic in Tamil Nadu, India - A state-wide cross-sectional cluster randomized community-based study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.07.24308595. [PMID: 38883728 PMCID: PMC11178022 DOI: 10.1101/2024.06.07.24308595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Dengue is a vector-borne viral disease impacting millions across the globe. Nevertheless, akin to many other diseases, reports indicated a decline in dengue incidence and seroprevalence during the COVID-19 pandemic (2020-22). This presumably could be attributed to reduced treatment-seeking rates, under-reporting, misdiagnosis, disrupted health services and reduced exposure to vectors due to lockdowns. Scientific evidence on dengue virus (DENV) disease during the COVID-19 pandemic is limited globally. Methods A cross-sectional, randomized cluster sampling community-based survey was carried out to assess anti-dengue IgM and IgG and SARS-CoV-2 IgG seroprevalence across all 38 districts of Tamil Nadu, India. The prevalence of DENV in the Aedes mosquito pools during 2021 was analyzed and compared with previous and following years of vector surveillance for DENV by real-time PCR. Findings Results implicate that both DENV-IgM and IgG seroprevalence and mosquito viral positivity were reduced across all the districts. A total of 13464 mosquito pools and 5577 human serum samples from 186 clusters were collected. Of these, 3·76% of mosquito pools were positive for DENV. In the human sera, 4·12% were positive for DENV IgM and 6·4% were positive for DENV IgG. The anti-SARS-CoV-2 antibody titres correlated with dengue seropositivity with a significant association whereas vaccination status significantly correlated with dengue IgM levels. Interpretation Continuous monitoring of DENV seroprevalence, especially with the evolving variants of the SARS-CoV-2 virus and surge in COVID-19 cases will shed light on the transmission and therapeutic attributes of dengue infection.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Sathish Sankar
- Centre for Infectious Diseases, Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Abdul R. Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | | | - Sampath Palani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Parthipan Kumarasamy
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Roshini Azhaguvel
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Ajith B. Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | | | - Manickam Malathi
- Institute of Vector Control and Zoonoses, Hosur, 635126, Tamil Nadu
| | | | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| | - Nagarajan Muruganandam
- Regional Medical Research Centre, Indian Council of Medical Research, Port Blair, Andaman and Nicobar Islands, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Nadu, India
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Aditya P. Dash
- Asian Institute of Public Health University, Bhubaneswar, Odisha, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 185 Linköping, Sweden
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Apostolopoulos V, Feehan J, Chavda VP. How do we change our approach to COVID with the changing face of disease? Expert Rev Anti Infect Ther 2024; 22:279-287. [PMID: 38642067 DOI: 10.1080/14787210.2024.2345881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION The emergence of SARS-CoV-2 triggered a global health emergency, causing > 7 million deaths thus far. Limited early knowledge spurred swift research, treatment, and vaccine developments. Implementation of public health measures such as, lockdowns and social distancing, disrupted economies and strained healthcare. Viral mutations highlighted the need for flexible strategies and strong public health infrastructure, with global collaboration crucial for pandemic control. AREAS COVERED (i) Revisiting diagnostic strategies, (ii) adapting to the evolving challenge of the virus, (iii) vaccines against new variants, (iv) vaccine hesitancy in the light of the evolving disease, (v) treatment strategies, (vi) hospital preparedness for changing clinical needs, (vii) global cooperation and data sharing, (viii) economic implications, and (ix) education and awareness- keeping communities informed. EXPERT OPINION The COVID-19 crisis forced unprecedented adaptation, emphasizing public health readiness, global unity, and scientific advancement. Key lessons highlight the importance of adaptability and resilience against uncertainties. As the pandemic evolves into a 'new normal,' ongoing vigilance, improved understanding, and available vaccines and treatments equip us for future challenges. Priorities now include proactive pandemic strategies, early warnings, supported healthcare, public education, and addressing societal disparities for better health resilience and sustainability.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, St Albans, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, St Albans, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Selvavinayagam ST, Sankar S, Yong YK, Murugesan A, Suvaithenamudhan S, Hemashree K, Rajeshkumar M, Kumaresan A, Pandey RP, Shanmugam S, Arthydevi P, Kumar MS, Gopalan N, Kannan M, Cheedarla N, Tan HY, Zhang Y, Larsson M, Balakrishnan P, Velu V, Byrareddy SN, Shankar EM, Raju S. Emergence of SARS-CoV-2 Omicron Variant JN.1 in Tamil Nadu, India - Clinical Characteristics and Novel Mutations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305882. [PMID: 38699322 PMCID: PMC11065016 DOI: 10.1101/2024.04.16.24305882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In December 2023, we observed a notable shift in the COVID-19 landscape, when the JN.1 emerged as a predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive samples, followed by sequence analysis. Mutations within the spike protein sequences were analyzed and compared with the previous lineages and sublineages of SARS-CoV-2, to identify the potential impact of these unique mutations on protein structure and possible functionality. Several unique and dynamic mutations were identified herein. Our data provides key insights into the emergence of newer variants of SARS-CoV-2 in our region and highlights the need for robust and sustained genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Sathish Sankar
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Yean K. Yong
- Laboratory Center, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
- Kelip kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni-625 512, India
| | | | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Ramendra P. Pandey
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Saravanan Shanmugam
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Masilamani S. Kumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Hong Y. Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Kelip kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58 183 Linköping, Sweden
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Esaki M. Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai 600 006, Tamil Nadu, India
| |
Collapse
|
8
|
Selvavinayagam ST, Suvaithenamudhan S, Yong YK, Hemashree K, Rajeshkumar M, Kumaresan A, Arthydevi P, Kannan M, Gopalan N, Vignesh R, Murugesan A, Sivasankaran MP, Sankar S, Cheedarla N, Anshad AR, Govindaraj S, Zhang Y, Tan HY, Larsson M, Saravanan S, Balakrishnan P, Kulanthaivel L, Singh K, Joseph N, Velu V, Byrareddy SN, Shankar EM, Raju S. Genomic surveillance of omicron B.1.1.529 SARS-CoV-2 and its variants between December 2021 and March 2023 in Tamil Nadu, India-A state-wide prospective longitudinal study. J Med Virol 2024; 96:e29456. [PMID: 38329187 DOI: 10.1002/jmv.29456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
A state-wide prospective longitudinal investigation of the genomic surveillance of the omicron B.1.1.529 SARS-CoV-2 variant and its sublineages in Tamil Nadu, India, was conducted between December 2021 and March 2023. The study aimed to elucidate their mutational patterns and their genetic interrelationship in the Indian population. The study identified several unique mutations at different time-points, which likely could attribute to the changing disease characteristics, transmission, and pathogenicity attributes of omicron variants. The study found that the omicron variant is highly competent in its mutating potentials, and that it continues to evolve in the general population, likely escaping from natural as well as vaccine-induced immune responses. Our findings suggest that continuous surveillance of viral variants at the global scenario is warranted to undertake intervention measures against potentially precarious SARS-CoV-2 variants and their evolution.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Suvaiyarasan Suvaithenamudhan
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
- School of Biomedical Sciences, Sri Balaji Vidyapeeth, (Deemed to be University), Pondicherry, India
| | - Yean K Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Kannan Hemashree
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Anandhazhvar Kumaresan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Parthiban Arthydevi
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Ramachandran Vignesh
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, Tamil Nadu, India
| | | | - Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Narayanaiah Cheedarla
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Abdul R Anshad
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Ying Zhang
- Kelip-kelip! Center of Excellence for Light Enabling Technologies, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong Y Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shanmugam Saravanan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Pachamuthu Balakrishnan
- Center for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Langeswaran Kulanthaivel
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kamalendra Singh
- Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Narcisse Joseph
- Department of Medical Microbiology, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Johnston TS, Li SH, Painter MM, Atkinson RK, Douek NR, Reeg DB, Douek DC, Wherry EJ, Hensley SE. Immunological imprinting shapes the specificity of human antibody responses against SARS-CoV-2 variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24301002. [PMID: 38260304 PMCID: PMC10802657 DOI: 10.1101/2024.01.08.24301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals and prompting the development of updated booster vaccines. Here, we determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that primarily targeted epitopes conserved between the BA.5 and ancestral spike, with poor reactivity to the XBB.1.5 variant. XBB exposures also elicited antibody responses that targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low levels of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses.
Collapse
Affiliation(s)
- Timothy S. Johnston
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Vaccine Research Center, NIAID, NIH; Bethesda, MD
- These authors contributed equally
| | - Shuk Hang Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- These authors contributed equally
| | - Mark M. Painter
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- These authors contributed equally
| | - Reilly K. Atkinson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Naomi R. Douek
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - David B. Reeg
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - E. John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| | - Scott E. Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA
| |
Collapse
|