1
|
Altman MD, Mathews AT, Rabaglino MB, Hovey RC, Denicol AC. Canonical prolactin signaling and global mRNA expression in the skin of Holstein heifers carrying the SLICK1 allele of the prolactin receptor gene. J Dairy Sci 2025; 108:4422-4434. [PMID: 39947597 DOI: 10.3168/jds.2024-25821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/06/2025] [Indexed: 04/20/2025]
Abstract
The SLICK1 allele of the prolactin receptor gene is associated with a short hair coat and thermotolerance in cattle. SLICK1 includes a single base pair deletion that creates a premature stop codon and prevents transcription of 120 AA in the cytoplasmic tail of the prolactin receptor (PRLR). It is unknown if the presence of the SLICK1 allele modifies Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling or the transcriptional response to prolactin. To investigate PRLR-associated signaling pathways in heterozygous SLICK1+/- Holsteins (slick), we performed immunohistochemistry on skin explants obtained from slick (n = 5) and nonslick (n = 6) heifers to evaluate phosphorylated (p)STAT1, pSTAT3, and pSTAT5 immunoreactivity (pSTAT1+, pSTAT3+, pSTAT5+) in hair follicles (HF) and sweat glands (SG). In slick skin, more HF lacked pSTAT3 immunoreactivity compared with nonslick skin. No difference was found for the proportion of pSTAT1+ or pSTAT5+ HF, nor the proportion of pSTAT1+ and pSTAT3+ SG between genotypes. Within immunoreactive HF and SG, there were no differences between genotypes in the proportion of pSTAT1+, pSTAT3+, or pSTAT5+ cells in HF, or pSTAT1+ and pSTAT3+ cells in SG. Next, we investigated pSTAT3 immunoreactivity and the transcriptome of slick and nonslick skin explants after exposure to a controlled level of prolactin in vitro. Skin explants from slick (n = 6) and nonslick (n = 6) heifers were cultured for 36 h in the presence of 50 ng/mL of recombinant ovine prolactin, bisected, and each half underwent immunohistochemistry for pSTAT3 or RNA sequencing. No difference was found between genotypes in the proportion of pSTAT3+ HF or SG, nor the proportion of pSTAT3+ cells within HF or SG. RNA was poly-A enriched and sequenced using Novaseq6000 (Illumina) and 221,342,181 reads were mapped to the bovine genome (bosTau 9). Using the DESeq package of R to determine differentially expressed genes (DEG), we found 87 upregulated and 79 downregulated transcripts in slick compared with nonslick skin. Ingenuity Pathway Analysis identified IL-17, leukocyte extravasation, and wound healing as upregulated signaling pathways, as well as activation of TNF, IL-1β, OSM, IFNγ, IL-17α, and IL-1R and inhibition of SHH and BMP4 upstream of the DEG. Analysis of genomic regions within ±2 kb of all DEG respective transcription start sites revealed enrichment of 3 binding sites for the OCT1 transcription factor in slick skin. In conclusion, our results suggest differences in local immune regulation, hair growth inhibition, and tissue remodeling in slick skin.
Collapse
Affiliation(s)
- Montana D Altman
- Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - Alice T Mathews
- Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - Maria B Rabaglino
- Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - Anna C Denicol
- Department of Animal Science, University of California, Davis, Davis, CA 95616.
| |
Collapse
|
2
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
3
|
Li J, Ding Z, Zheng X, Lu G, Lu Q, Kaplan DL. Injectable silk nanofiber hydrogels as stem cell carriers to accelerate wound healing. J Mater Chem B 2021; 9:7771-7781. [PMID: 34586152 PMCID: PMC8486307 DOI: 10.1039/d1tb01320c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cells have potential utility in wound therapy, however the benefits are often limited due to cell injury from shear stress during injection and poor retention at the wound site. Here, shear-thinning silk nanofiber hydrogels were used to load bone marrow derived mesenchymal stem cells (BMSCs) and inject into wound sites to optimize cell retention and accelerate wound healing. The BMSCs in the silk nanofiber hydrogels maintained stemness better than the cells cultured on plates, and the expression of wound healing-related genes was significantly higher in the hydrogels with higher silk concentrations (2 wt%). The silk nanofibers physically prevented migration of BMSCs from the deposition site in the wound bed. In addition to faster wound healing, these BMSC-loaded hydrogels mediated angiogenesis and inflammation and improved collagen deposition and hair follicle regeneration in vivo in rats. Considering that these silk nanofiber hydrogels were successfully used here as carriers for stem cells to accelerate wound healing, further study for skin regeneration may be warranted.
Collapse
Affiliation(s)
- Jiadai Li
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
- Nanjng University of Chinese Medicine, Nanjng 210000, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, P. R. China
| | - Guozhong Lu
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Wuxi 214041, P. R. China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
4
|
Paskal W, Kopka M, Stachura A, Paskal AM, Pietruski P, Pełka K, Woessner AE, Quinn KP, Galus R, Wejman J, Włodarski P. Single Dose of N-Acetylcysteine in Local Anesthesia Increases Expression of HIF1α, MAPK1, TGFβ1 and Growth Factors in Rat Wound Healing. Int J Mol Sci 2021; 22:8659. [PMID: 34445365 PMCID: PMC8395485 DOI: 10.3390/ijms22168659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, we aimed to investigate the influence of N-acetylcysteine (NAC) on the gene expression profile, neoangiogenesis, neutrophils and macrophages in a rat model of incisional wounds. Before creating wounds on the backs of 24 Sprague-Dawley rats, intradermal injections were made. Lidocaine-epinephrin solutions were supplemented with 0.015%, 0.03% or 0.045% solutions of NAC, or nothing (control group). Scars were harvested on the 3rd, 7th, 14th and 60th day post-surgery. We performed immunohistochemical staining in order to visualize macrophages (anti-CD68), neutrophils (anti-MPO) and newly formed blood vessels (anti-CD31). Additionally, RT-qPCR was used to measure the relative expression of 88 genes involved in the wound healing process. On the 14th day, the number of cells stained with anti-CD68 and anti-CD31 antibodies was significantly larger in the tissues treated with 0.03% NAC compared with the control. Among the selected genes, 52 were upregulated and six were downregulated at different time points. Interestingly, NAC exerted a significant effect on the expression of 45 genes 60 days after its administration. In summation, a 0.03% NAC addition to the pre-incisional anesthetic solution improves neovasculature and increases the macrophages' concentration at the wound site on the 14th day, as well as altering the expression of numerous genes that are responsible for the regenerative processes.
Collapse
Affiliation(s)
- Wiktor Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Albert Stachura
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adriana M. Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Piotr Pietruski
- Centre of Postgraduate Medical Education, Department of Replantation and Reconstructive Surgery, Gruca Teaching Hospital, 05-400 Otwock, Poland;
| | - Kacper Pełka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Jarosław Wejman
- Department of Pathology, Centre of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| | - Paweł Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| |
Collapse
|
5
|
Against All Odds: RNA Extraction From Different Protocols Adapted to Formalin-fixed Paraffin-embedded Tissue. Appl Immunohistochem Mol Morphol 2021; 28:403-410. [PMID: 31135444 DOI: 10.1097/pai.0000000000000772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For the preservation of tissue samples, formalin fixation followed by paraffin embedding (FFPE) has been the method of choice for decades, mainly because it maintains the morphologic characteristics of the original tissue particularly preserved, as well as its genetic material. FFPE cells can be used to perform molecular tests, such as conventional (c) or quantitative (q) reverse transcriptase polymerase chain reaction (RT-PCR), in retrospective investigations. However, extracting RNA from archived FFPE tissues is a challenging procedure, as it requires time and the use of complex extraction methods. As specific FFPE extraction methods are not always available in the laboratories, the objective of this study was to evaluate the performance of a method based on phenol-chloroform (PC) and 2 commercial methods for RNA extraction, adapting their protocols for FFPE tissues. For this study, a pool of FFPE tissues underwent RNA extraction by PC, QIAmp Viral RNA Mini, and RNeasy Mini Kit. Both the RT-cPCR and the RT-qPCR results were favorable, demonstrating the viability of the RNA. As these results expanded the alternatives for low-budget FFPE extraction, the choice of the ideal method to be used will depend on the availability of reagents and kits.
Collapse
|
6
|
Sun X, Huang T, Zhang C, Zhang S, Wang Y, Zhang Q, Liu Z. Long non-coding RNA LINC00968 reduces cell proliferation and migration and angiogenesis in breast cancer through up-regulation of PROX1 by reducing hsa-miR-423-5p. Cell Cycle 2019; 18:1908-1924. [PMID: 31213129 DOI: 10.1080/15384101.2019.1632641] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is a common invasive malignancy in women with unclear etiology. A recent study suggested that long non-coding RNA (lncRNA), LINC00968 had a tumor-promoting effect in cancer. However, the role of LINC00968 in BC remains unclear. Therefore, we conducted the present study to determine the effect of LINC00968 in BC and its underlying mechanism. Methods: The expression of LINC00968 and hsa-miR-423-5p in BC tissues and cells was determined using reverse transcription quantitative polymerase chain reaction and western blot analysis. Dual luciferase reporter, RNA pull-down and RNA immunoprecipitation assays were used to determine the relationship among LINC00968, PROX1 and hsa-miR-423-5p. Gain- and loss-function approaches were utilized to examine the effects of LINC00968, PROX1 and hsa-miR-423-5p on cell proliferation, migration, tube formation in vitro; and tumor growth and angiogenesis in vivo. Results: LINC00968 expression reduced while hsa-miR-423-5p increased in BC tissues relative to adjacent normal tissues. Overexpression of LINC00968 was observed to inhibit BC cell proliferation, migration and tube formation abilities in vitro as well as tumor growth in vivo through inhibition of hsa-miR-423-5p. And hsa-miR-423-5p mediated BC cellular functions and tumor growth through down-regulating PROX1. LINC00968 was identified as a competing endogenous RNA to upregulate PROX1 by downregulating hsa-miR-423-5p. More importantly, it was found that LINC00968 increased PROX1 expression in vivo in a concentration-dependent manner. Conclusion: Taken together, this study suggests that LINC00968 inhibits the progression of BC through impeding hsa-miR-423-5p-mediated PROX1 inhibition. LINC00968 may be a potential therapeutic target for BC therapy that warrants further studies.
Collapse
Affiliation(s)
- Xianfu Sun
- a Department of Breast Oncology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Tao Huang
- a Department of Breast Oncology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Chengjuan Zhang
- b Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Shengze Zhang
- a Department of Breast Oncology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Yingjie Wang
- a Department of Breast Oncology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Qiang Zhang
- a Department of Breast Oncology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | - Zhenzhen Liu
- a Department of Breast Oncology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
7
|
Xie X, Zhao J, Xie L, Wang H, Xiao Y, She Y, Ma L. Identification of differentially expressed proteins in the injured lung from zinc chloride smoke inhalation based on proteomics analysis. Respir Res 2019; 20:36. [PMID: 30770755 PMCID: PMC6377712 DOI: 10.1186/s12931-019-0995-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lung injury due to zinc chloride smoke inhalation is very common in military personnel and leads to a high incidence of pulmonary complications and mortality. The aim of this study was to uncover the underlying mechanisms of lung injury due to zinc chloride smoke inhalation using a rat model. Methods: Histopathology analysis of rat lungs after zinc chloride smoke inhalation was performed by using haematoxylin and eosin (H&E) and Mallory staining. A lung injury rat model of zinc chloride smoke inhalation (smoke inhalation for 1, 2, 7 and 14 days) was developed. First, isobaric tags for relative and absolute quantization (iTRAQ) and weighted gene co-expression network analysis (WGCNA) were used to identify important differentially expressed proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to study the biological functions of differentially expressed proteins. Then, analysis of lung injury repair-related differentially expressed proteins in the early (day 1 and day 2) and middle-late stages (day 7 and day 14) of lung injury after smoke inhalation was performed, followed by the protein-protein interaction (PPI) analysis of these differentially expressed proteins. Finally, the injury repair-related proteins PARK7 and FABP5 were validated by immunohistochemistry and western blot analysis. Results Morphological changes were observed in the lung tissues after zinc chloride smoke inhalation. A total of 27 common differentially expressed proteins were obtained on days 1, 2, 7 and 14 after smoke inhalation. WGCNA showed that the turquoise module (which involved 909 proteins) was most associated with smoke inhalation time. Myl3, Ckm, Adrm1 and Igfbp7 were identified in the early stages of lung injury repair. Gapdh, Acly, Tnni2, Acta1, Actn3, Pygm, Eno3 and Tpi1 (hub proteins in the PPI network) were identified in the middle-late stages of lung injury repair. Eno3 and Tpi1 were both involved in the glycolysis/gluconeogenesis signalling pathway. The expression of PARK7 and FABP5 was validated and was consistent with the proteomics analysis. Conclusion The identified hub proteins and their related signalling pathways may play crucial roles in lung injury repair due to zinc chloride smoke inhalation.
Collapse
Affiliation(s)
- Xiaowei Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Jingan Zhao
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Lixin Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China.
| | - Haiyan Wang
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingjia She
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lingyun Ma
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Henn D, Abu-Halima M, Wermke D, Falkner F, Thomas B, Köpple C, Ludwig N, Schulte M, Brockmann MA, Kim YJ, Sacks JM, Kneser U, Keller A, Meese E, Schmidt VJ. MicroRNA-regulated pathways of flow-stimulated angiogenesis and vascular remodeling in vivo. J Transl Med 2019; 17:22. [PMID: 30635008 PMCID: PMC6330440 DOI: 10.1186/s12967-019-1767-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular shear stress promotes endothelial cell sprouting in vitro. The impact of hemodynamic forces on microRNA (miRNA) and gene expression within growing vascular networks in vivo, however, remain poorly investigated. Arteriovenous (AV) shunts are an established model for induction of neoangiogenesis in vivo and can serve as a tool for analysis of hemodynamic effects on miRNA and gene expression profiles over time. METHODS AV shunts were microsurgically created in rats and explanted on postoperative days 5, 10 and 15. Neoangiogenesis was confirmed by histologic analysis and micro-computed tomography. MiRNA and gene expression profiles were determined in tissue specimens from AV shunts by microarray analysis and quantitative real-time polymerase chain reaction and compared with sham-operated veins by bioinformatics analysis. Changes in protein expression within AV shunt endothelial cells were determined by immunohistochemistry. RESULTS Samples from AV shunts exhibited a strong overexpression of proangiogenic cytokines, oxygenation-associated genes (HIF1A, HMOX1), and angiopoetic growth factors. Significant inverse correlations of the expressions of miR-223-3p, miR-130b-3p, miR-19b-3p, miR-449a-5p, and miR-511-3p which were up-regulated in AV shunts, and miR-27b-3p, miR-10b-5p, let-7b-5p, and let-7c-5p, which were down-regulated in AV shunts, with their predicted interacting targets C-X-C chemokine receptor 2 (CXCR2), interleukin-1 alpha (IL1A), ephrin receptor kinase 2 (EPHA2), synaptojanin-2 binding protein (SYNJ2BP), forkhead box C1 (FOXC1) were present. CXCL2 and IL1A overexpression in AV shunt endothelium was confirmed at the protein level by immunohistochemistry. CONCLUSIONS Our data indicate that flow-stimulated angiogenesis is determined by an upregulation of cytokines, oxygenation associated genes and miRNA-dependent regulation of FOXC1, EPHA2 and SYNJ2BP.
Collapse
Affiliation(s)
- Dominic Henn
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg-Saar, Germany
| | - Dominik Wermke
- Institute of Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Benjamin Thomas
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Christoph Köpple
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, Homburg-Saar, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Yoo-Jin Kim
- Institute of Pathology, Kaiserslautern, Germany
| | - Justin M Sacks
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany
| | - Andreas Keller
- Institute of Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg-Saar, Germany
| | - Volker J Schmidt
- Department of Hand, Plastic and Reconstructive Surgery, University of Heidelberg, BG Trauma Center Ludwigshafen, Ludwig-Guttmann Str. 13, 67071, Ludwigshafen, Germany.
| |
Collapse
|
9
|
Wang T, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of FOXC2 in cancer. Clin Chim Acta 2018; 479:84-93. [PMID: 29341903 DOI: 10.1016/j.cca.2018.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Forkhead box protein C2 (FOXC2), a transcription factor of the forkhead/winged-helix family, is required for embryonic and prenatal development. FOXC2 acts as a crucial modulator during both angiogenesis and lymphangiogenesis via multiple angiogenic and lymphangiogenic pathways, respectively. Although recent studies have shed light on the emerging role of FOXC2 in cancer, very little is known about the precise underlying mechanisms. The purpose of this review is to summarize the current understanding of FOXC2 and provide potential mechanistic explanations of the relationship between FOXC2 and cancer, as well as discuss the prospect for future research in the promising prognostic value of FOXC2 in cancer.
Collapse
Affiliation(s)
- Teng Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Tang YC, Zhang Y, Zhou J, Zhi Q, Wu MY, Gong FR, Shen M, Liu L, Tao M, Shen B, Gu DM, Yu J, Xu MD, Gao Y, Li W. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. Int J Oncol 2017; 52:127-138. [PMID: 29115601 PMCID: PMC5743384 DOI: 10.3892/ijo.2017.4183] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Anti-angiogenic therapy has been successfully applied to treat colorectal cancer (CRC). Ginsenoside Rg3, derived from the Chinese herb ginseng, has anti-vascularization effects and can inhibit tumor growth and metastasis, and can sensitize cancer cells to chemotherapy. Therefore, in the present study, we investigated whether Rg3 could be appropriate for CRC treatment. Growth of CRC cells was assessed by an MTT (methyl thiazolyl tetrazolium) assay in vitro and using orthotopic xenograft models in vivo. mRNA expression was evaluated using real-time PCR. Protein levels were tested by western blotting, flow cytometry and immunohistochemistry. Migration was determined using a wound-healing assay. Stemness was further confirmed using a plate clone formation assay. We found that Rg3 repressed the growth and stemness of CRC cells both in vitro and in vivo. Rg3 also impaired the migration of CRC cells in vitro. Rg3 downregulated the expressions of angiogenesis-related genes, and repressed the vascularization of CRC xenografts. In addition, Rg3 strengthened the cytotoxicity of 5-Fluorouracil and oxaliplatin against orthotopic xenografts in vivo. Moreover, Rg3 downregulated the expressions of B7-H1 and B7-H3, high expressions of which were associated with reduced overall survival (OS) of CRC patients. Hence, Rg3 not only repressed the growth and stemness of CRC cells, but could also remodel the tumor microenvironment through repressing angiogenesis and promoting antitumor immunity. Therefore, Rg3 could be a novel therapeutic for the CRC treatment.
Collapse
Affiliation(s)
- Yu-Chen Tang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lu Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dong-Mei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Yu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Meng-Dan Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuan Gao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
11
|
Xu J, Zhao R, Xue Y, Xiao H, Sheng Y, Zhao D, He J, Huang H, Wang Q, Wang H. RNA-seq profiling reveals differentially expressed genes as potential markers for vital reaction in skin contusion: a pilot study. Forensic Sci Res 2017; 3:153-160. [PMID: 30483664 PMCID: PMC6197083 DOI: 10.1080/20961790.2017.1349639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 01/25/2023] Open
Abstract
Detection of the vitality of wounds is essential in forensic practice. The present study used Illumina RNA-seq technology to determine gene expression profiles in contused mouse skin. In obtained high quality sequencing reads, the reads were mapped onto a reference transcriptome (Mus_musculus.GRCm38.83). The results revealed that there were 659 up-regulated and 996 down-regulated differentially expressed genes (DEGs) in contused mouse skin. The DEGs were further analyzed using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. Genes from different functional categories and signalling pathways were enriched, including the immune system process, immune response, defense response, cytokine–cytokine receptor interaction, complement and coagulation cascades and chemokine signalling pathway. Expression patterns of 11 DEGs were verified by RT-qPCR in mice skins. In addition, alterations of five DEGs were also analyzed in postmortem human wound samples. The results were in concordance with the results of RNA-seq. These findings suggest that RNA-seq is a powerful tool to reveal DEGs as potential markers for vital reaction in terms of forensic practices.
Collapse
Affiliation(s)
- Jingtao Xu
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Huanqin Xiao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanliang Sheng
- Department of Forensic Medicine, School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Dong Zhao
- CollaborativeInnovation Center of Judicial Civilization, China and Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Jietao He
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Hongyan Huang
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- Department of Forensic Pathology, School of Forensic Mecicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Sun JH, Zhu XY, Li SQ, Dong TN, Du QX. Measuring temporal expression, systematic response, and post-mortem stability to assess potential markers for estimating wound age: an example of Fosl1 in contused skeletal muscle. AUST J FORENSIC SCI 2017. [DOI: 10.1080/00450618.2017.1334824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun-hong Sun
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xi-yan Zhu
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Chongqing Key Laboratory of Vehicle Crash/Bio-impact and Traffic Safety, Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - San-qiang Li
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ta-na Dong
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
13
|
Kodaman N, Sobota RS, Asselbergs FW, Oetjens MT, Moore JH, Brown NJ, Aldrich MC, Williams SM. Genetic Effects on the Correlation Structure of CVD Risk Factors: Exome-Wide Data From a Ghanaian Population. Glob Heart 2017; 12:133-140. [PMID: 28408189 DOI: 10.1016/j.gheart.2017.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/11/2023] Open
Abstract
Plasma concentration of plasminogen activator inhibitor-1 (PAI-1) is highly correlated with several cardiovascular disease (CVD) risk factors. It also plays a direct role in CVD, including myocardial infarction and stroke, by impeding the dissolution of thrombi in the blood. Insofar as PAI-1 links CVD's risk factors to its endpoints, genetic variants modulating the relationship between PAI-1 and risk factors may be of particular clinical and biological interest. The high heritability of PAI-1, which has not been explained by genetic association studies, may also, in large part, be due to this relationship with CVD risk factors. Using exome-wide data from 1,032 Ghanaian study participants, we tested for heterogeneity of correlation by genotype between PAI-1 and 4 CVD risk factors (body mass index, triglycerides, mean arterial pressure, and fasting glucose) under the hypothesis that loci involved in the relationship between PAI-1 and other risk factors will also modify their correlational structure. We found more significant heterogeneities of correlation by genotype than we found marginal effects, with no evidence of type I inflation. The most significant result among all univariate and multivariate tests performed in this study was the heterogeneity of correlation between PAI-1 and mean arterial pressure at rs10738554, near SLC24A2, a gene previously associated with high blood pressure in African Americans.
Collapse
Affiliation(s)
- Nuri Kodaman
- Vanderbilt Genetics Institute, Vanderbilt University Medical School, Nashville, TN, USA; Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Rafal S Sobota
- Vanderbilt Genetics Institute, Vanderbilt University Medical School, Nashville, TN, USA; Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, UMC (University Medical Center) Utrecht, Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | | | - Jason H Moore
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Department of Biostatistics and Epidemiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Brown
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical School, Nashville, TN, USA
| | - Scott M Williams
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
14
|
Perry L, Flugelman MY, Levenberg S. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle. Mol Ther 2017; 25:935-948. [PMID: 28279644 DOI: 10.1016/j.ymthe.2017.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
In vitro prevascularization of engineered tissue constructs promises to enhance their clinical applicability. We hypothesize that adult endothelial cells (ECs), isolated from limb veins of elderly patients, bear the vasculogenic properties required to form vascular networks in vitro that can later integrate with the host vasculature upon implantation. Here, we show that adult ECs formed vessel networks that were more developed and complex than those formed by human umbilical vein endothelial cells (HUVECs) seeded with various supporting cells on three-dimensional (3D) biodegradable polymer scaffolds. In parallel, secreted levels of key proangiogenic cytokines were significantly higher in adult EC-bearing scaffolds as compared to HUVEC scaffolds. As a proof of concept for applicability of this model, adult ECs were co-seeded with human myoblasts as well as supporting cells and successfully formed a branched network, which was surrounded by aligned human myotubes. The vascularized engineered muscle tissue implanted into a full-thickness defect in immunodeficient mice remained viable and anastomosed with the host vasculature within 9 days of implantation. Functional "chimeric" blood vessels and various types of anastomosis were observed. These findings provide strong evidence of the applicability of adult ECs in construction of clinically relevant autologous vascularized tissue.
Collapse
Affiliation(s)
- Luba Perry
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel; Inter-departmental Program in Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moshe Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa 32000, Israel
| | - Shulamit Levenberg
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
15
|
Sun JH, Zhu XY, Dong TN, Zhang XH, Liu QQ, Li SQ, Du QX. An “up, no change, or down” system: Time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int 2017; 272:104-110. [DOI: 10.1016/j.forsciint.2017.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
|
16
|
Klimczak-Bitner AA, Kordek R, Bitner J, Musiał J, Szemraj J. Expression of MMP9, SERPINE1 and miR-134 as prognostic factors in esophageal cancer. Oncol Lett 2016; 12:4133-4138. [PMID: 27895782 DOI: 10.3892/ol.2016.5211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
Esophageal cancer (EC) is a malignant tumor with a typically poor prognosis for patients. It is well known that certain microRNA (miRNA/miR) genes can regulate other genes responsible for carcinogenesis. In the present study, a group of these genes (miR-21, miR-134, miR-205 and miR-495) and genes connected with cancer-related pathways (MET, MMP9, PDGFA and SERPINE1) were chosen for analysis in order to find a potential correlation between their expression and the clinicopathological factors of EC. Esophageal tumors and adjacent non-cancerous tissue specimens were collected from a total of 63 patients and embedded in paraffin. Commercial arrays were used on KYSE-30, KYSE-150 and KYSE-270 EC cell lines in order to find genes of different expression profiles compared with those acquired from the control Het-1A cell line. Quantitative polymerase chain reaction was used on formalin-fixed, paraffin-embedded samples in order to analyze the expression of the genes chosen in the earlier step. The results were analyzed by the Kruskal-Wallis and Mann-Whitney U tests, Spearman's rank correlation coefficient, Kaplan-Meier methods and the long-rank test. Only miR-495 was not expressed in the analyzed samples. The expression of MMP9 and SERPINE1 was significantly coefficient with age range (P=0.011 and P=0.044, respectively) according to the Kruskal-Wallis test. The Spearman's rank-order correlation measurement showed that there was a coefficient correlation between age and miR-134 expression. The same measurement demonstrated a correlation between age range and MMP9 expression. The expression of miR-134 and MMP9 were also found to be correlated. In all cases, a value of P<0.049 was recorded. Overall, the present study demonstrated that MMP9, SERPINE1 and miR-134 were the most prognostic genes in Caucasian patients with EC.
Collapse
Affiliation(s)
- Anna Agnieszka Klimczak-Bitner
- Department of Biomedical Chemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz 92-215, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz 93-509, Poland; Department of Surgical Oncology, Cancer Centre, Copernicus Memorial Hospital, Lodz 93-513, Poland
| | - Jan Bitner
- Department of Medicinal Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz 92-215, Poland
| | - Jacek Musiał
- Department of Histopathology, SYNEVO, Lodz 93-525; Poland
| | - Janusz Szemraj
- Department of Medicinal Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
17
|
Dex S, Lin D, Shukunami C, Docheva D. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene 2016; 587:1-17. [PMID: 27129941 DOI: 10.1016/j.gene.2016.04.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Tenomodulin (TNMD, Tnmd) is a gene highly expressed in tendon known to be important for tendon maturation with key implications for the residing tendon stem/progenitor cells as well as for the regulation of endothelial cell migration in chordae tendineae cordis in the heart and in experimental tumour models. This review aims at providing an encompassing overview of this gene and its protein. In addition, its known expression pattern as well as putative signalling pathways will be described. A chronological overview of the discovered functions of this gene in tendon and other tissues and cells is provided as well as its use as a tendon and ligament lineage marker is assessed in detail and discussed. Last, information about the possible connections between TNMD genomic mutations and mRNA expression to various diseases is delivered. Taken together this review offers a solid synopsis on the up-to-date information available about TNMD and aids at directing and focusing the future research to fully uncover the roles and implications of this interesting gene.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Dasheng Lin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
18
|
Makuszewska M, Sokołowska M, Hassmann-Poznańska E, Bialuk I, Skotnicka B, Bonda T, Reszeć J, Winnicka MM. Enhanced expression of hepatocyte growth factor in the healing of experimental acute tympanic membrane perforation. Int J Pediatr Otorhinolaryngol 2015; 79:987-92. [PMID: 25920966 DOI: 10.1016/j.ijporl.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The present study was performed to investigate the expression of hepatocyte (HGF), epidermal (EGF) and vascular endothelial (VEGF) growth factors in the course of healing of experimental tympanic membrane (TM) perforations in rats. The goal was to explain the role of these growth factors in the healing process of TM and to assess the possibility of their future application as healing promoters. METHODS Seventy rats were used, of which 10 served as controls and the others had their TM perforated. The experimental animals were divided into six subgroups on the basis of time points (01, 03, 05, 07, 09, 15 day after injury). Videootoscopy and histology were employed to assess the morphology of the healing process. The expressions of HGF, EGF and VEGF were evaluated using Western blot analysis. Tissue localization of HGF was determined by the immunofluorescence method. RESULTS HGF was hardly detectable in normal TM; however, a significant increase was noted in its expression starting from the third day after injury throughout the follow-up period, with the highest level on day 05. The analysis of HGF tissue localization with immunofluorescence revealed diffuse staining in the cytoplasm of proliferating epithelial cells. The expression of EGF was elevated on the first day after injury, not reaching statistical significance, and then returned to the level observed in the control TM. No significant differences were noted in the expression of VEGF. CONCLUSION High expression of HGF during the healing process of acute TM perforations makes it a promising candidate for further studies oriented towards its possible use in augmentation of TM healing.
Collapse
Affiliation(s)
- Maria Makuszewska
- Department of Otolaryngology, J. Śniadecki District Hospital, M. Skłodowskiej-Curie 26, 15-950 Białystok, Poland
| | - Magdalena Sokołowska
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Elżbieta Hassmann-Poznańska
- Department of Pediatric Otolaryngology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland.
| | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Bożena Skotnicka
- Department of Pediatric Otolaryngology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland
| | - Tomasz Bonda
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland
| | - Maria Małgorzata Winnicka
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| |
Collapse
|