1
|
Jung JY, Song YW, Jeong K, Park H, So MH, Lee HY. A SNaPshot Assay for Epigenetic Age Prediction of Costal Cartilage. Electrophoresis 2025; 46:413-423. [PMID: 40145379 PMCID: PMC12039170 DOI: 10.1002/elps.8132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025]
Abstract
Estimating age at death narrows the pool of potential donors in mass disasters and criminal investigations. In this study, we developed a capillary electrophoresis-based SNaPshot assay for age prediction of costal cartilage and used it to analyze DNA methylation at 11 CpG sites across six genes in 136 samples from deceased Koreans aged 28-84 years. To develop the predictive model, DNA methylation levels at these sites from a training set of 83 samples were analyzed using multivariate linear regression in five ways. We then compared the performance parameters calculated from the training set and a test set of 53 samples. Considering experimental simplicity, we selected a model that incorporates four CpGs (MIR29B2CHG_C2, FHL2_C4, TRIM59_C3, and KLF14_C3) as the optimal age prediction model, demonstrating high performance with a mean absolute error of 4.60 years and a root mean square error of 5.41 years in the test set. Subsequently, we developed a multiplex SNaPshot system covering CpGs included in the optimal model, requiring a minimum of 4 ng of bisulfite-converted DNA for reliable prediction and demonstrating multi-tissue applicability, particularly in blood and buccal swabs. We believe this tool will support forensic investigations, including the identification of victims and missing persons.
Collapse
Affiliation(s)
- Ju Yeon Jung
- Forensic DNA DivisionNational Forensic Service Seoul InstituteSeoulRepublic of Korea
- Department of Forensic MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yeon Woo Song
- Forensic DNA SectionNational Forensic Service Jeju BranchJejuRepublic of Korea
| | - Kyu‐Sik Jeong
- Forensic DNA DivisionNational Forensic ServiceWonjuRepublic of Korea
| | - Hyun‐Chul Park
- Forensic DNA DivisionNational Forensic ServiceWonjuRepublic of Korea
| | - Moon Hyun So
- Department of Forensic MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Hwan Young Lee
- Department of Forensic MedicineSeoul National University College of MedicineSeoulRepublic of Korea
- Institute of Forensic and Anthropological ScienceSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
2
|
Paparazzo E, Aceto MA, Serra Cassano T, Bruno F, Lagrotteria D, Geracitano S, La Russa A, Bauleo A, Falcone E, Lagani V, Passarino G, Montesanto A. Reproducibility and validation of a targeted and flexible epigenetic clock for forensic applications. Forensic Sci Int 2025; 369:112409. [PMID: 39983295 DOI: 10.1016/j.forsciint.2025.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
DNA methylation variants have been widely used as biomarkers of ageing and several mathematical models have been developed to estimate the biological age. More recently, DNA technology has triggered efforts toward the simplification of the array-based epigenetic clocks and targeted approaches, based on the assessment of a small number of CpG sites have been developed. Among the markers included in these clocks, ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 resulted to be the most strongly validated markers. We tested the reproducibility and validation of a previously developed targeted epigenetic clock purposely optimized for the measurement of chronological age in blood samples. The clock includes DNAm biomarkers strongly correlated with chronological age whose DNA methylation levels were measured by using a multiplex methylation SNaPshot assay. We found that epigenetic age, calculated using the developed clock, was highly correlated with age (r = 0.97) in a total of 201 blood samples covering a full spectrum of human ages. For 74 of these, methylation profiles of the whole genome were obtained through the Infinium Methylation EPIC v2.0 Kit which also allowed to estimate the most frequently used clocks of Horvath. These results show the potential of our efficient and affordable test for simultaneously measuring DNA methylation levels at multiple target CpG sites to assess chronological age. We observed a strong correlation between the prediction models for the analyzed CpG sites measured using the SNaPshot method and those obtained with the Illumina EPIC array, especially with the Horvath2 clock, which was specifically developed for DNA from skin and blood cells.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Mirella Aurora Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Teresa Serra Cassano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy; University of Florence, Department of Statistic, Computer Science and Application, DiSIA, Viale Morgagni, 59, Florence, FI 50134, Italy
| | - Francesco Bruno
- Department of Human and Social Sciences, Faculty of Social and Communication Sciences, Universitas Mercatorum, Piazza Mattei 10, Rome 00186, Italy
| | - Davide Lagrotteria
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Antonella La Russa
- Nephrology Unit, Department of Health Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Alessia Bauleo
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, ASP 87100, Italy
| | - Elena Falcone
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, ASP 87100, Italy
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal 23952, Saudi Arabia; Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
3
|
Lee JE, Cho S, So MH, Lee HY. DNA methylation-based semen age prediction using the markers identified in Koreans and Europeans. Forensic Sci Int Genet 2025; 77:103243. [PMID: 40023960 DOI: 10.1016/j.fsigen.2025.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
In the forensic field, sexual assaults have consistently been the important issue, with semen frequently serving as the primary evidence. When the suspect is unidentified, estimating the perpetrator's age using investigating semen can provide important information. The VISAGE consortium conducted research on the semen age prediction focused on European semen samples, but the age prediction model has remained undisclosed. Additionally, several studies have reported methylation differences across populations, indicating that the European semen age prediction model might not be broadly applicable to other groups. A study did explore semen age prediction in Koreans using Illumina's Infinium Methylation450K BeadChip array, however recent developments in technology could enhance this approach. To address this, we conducted a study on Korean males aged 18-70 years. We initially analyzed 49 samples utilizing Illumina's Infinium MethylationEPIC BeadChip array to identify age-related CpG sites. From this analysis, we identified 9 age-related CpG markers, excluding one due to difficulties in locus-specific analysis. As a result, we used 11 markers including 8 newly identified CpGs from the EPIC array and 3 CpG markers from previous research utilizing the SNaPshot assay. Furthermore, we incorporated 13 CpG markers from the European study to analyze a total of 159 semen samples using the Illumina Nextera MPS system. This approach enabled us to test age-related markers identified in Europeans within the Korean population and to construct a more accurate age prediction model using markers from both Korean and European sources.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sohee Cho
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Marcante B, Marino L, Cattaneo NE, Delicati A, Tozzo P, Caenazzo L. Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review. Int J Mol Sci 2025; 26:3158. [PMID: 40243941 PMCID: PMC11988829 DOI: 10.3390/ijms26073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Forensic age estimation is crucial for identifying unknown individuals and narrowing suspect pools in criminal investigations. Over the past 15 years, significant progress has been made in using biochemical, genetic, and epigenetic markers to estimate chronological age. METHODS From research on PubMed a total of 155 studies, related to advancements in age prediction techniques, were selected following PRISMA guidelines. Studies considered eligible dealt with radiocarbon dating, aspartic acid racemization, mitochondrial DNA analysis, signal joint T-cell receptor excision circles, RNA analysis, telomeres, and DNA methylation in the last 15 years and were summarized in a table. RESULTS Despite these advancements, challenges persist, including variability in prediction accuracy, sample degradation, and the lack of standardization and reproducibility. DNA methylation emerged as the most promising approach capable of high accuracy across diverse populations and age ranges. Multimodal methods integrating several biomarkers show promise in improving reliability and addressing these limitations. CONCLUSION While significant progress has been made, further standardization, validation, and technological integration are needed to enhance forensic age estimation. These efforts are essential for meeting the growing demands of forensic science while addressing ethical and legal considerations.
Collapse
Affiliation(s)
- Beatrice Marcante
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy
| | - Laura Marino
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| | - Narjis Elisa Cattaneo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| | - Arianna Delicati
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy
| | - Pamela Tozzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| | - Luciana Caenazzo
- Legal Medicine Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (B.M.); (L.M.); (N.E.C.); (A.D.); (P.T.)
| |
Collapse
|
5
|
Li Y, Liu X, Chen M, Yi S, He X, Xiao C, Huang D. DNA methylation-based age estimation from semen: Genome-wide marker identification and model development. Forensic Sci Int Genet 2025; 76:103215. [PMID: 39752798 DOI: 10.1016/j.fsigen.2024.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 03/04/2025]
Abstract
DNA methylation at age-related CpG (AR-CpG) sites holds significant promise for forensic age estimation. However, somatic models perform poorly in semen due to unique methylation dynamics during spermatogenesis, and current studies are constrained by the limited coverage of methylation microarrays. This study aimed to identify novel semen-specific AR-CpG sites using double-enzyme reduced representation bisulfite sequencing (dRRBS) and validate these markers, alongside previously reported sites and neighboring CpGs, using bisulfite amplicon sequencing (BSAS) to develop robust age estimation models. A methylome-wide association study was conducted on semen samples from 21 healthy Chinese men across three age groups, generating over 4 million CpG sites per sample at ≥ 5 × depth. Analysis of 721,840 shared CpG sites revealed that more than 95 % were not covered by conventional methylation microarrays. Differential methylation and correlation analyses identified 139 AR-CpG sites. A two-stage validation process using multiplex PCR-based BSAS was performed. In the first stage, 47 top dRRBS-identified AR-CpG sites, 26 literature-reported sites, and 242 neighboring CpGs were assessed in 129 semen samples (22-64 years), validating 31 dRRBS, 26 literature-reported, and 152 neighboring CpGs as age-related. The second stage examined 154 CpG sites in 247 samples (22-67 years), confirming 71 AR-CpG sites with |rho| > 0.50. Among these, chr2:129071885 (cg19998819) emerged as the strongest age-associated marker (rho = 0.81). Using the second BSAS dataset, age estimation models were developed with multiple linear regression and random forest (RF) algorithms within a repeated nested cross-validation (CV) framework (10-fold outer CV with 10-fold inner CV, repeated 10 times). The RF models demonstrated superior accuracy across feature subsets of 5-25 CpGs. The optimized 9-CpG RF model achieved an average root mean square error of 4.73 years (4.62-4.96, SD=0.10) and an average mean absolute error of 3.30 years (3.23-3.43, SD=0.06). This study demonstrates the utility of dRRBS for large-scale AR-CpG discovery and provides a robust age estimation model and a comprehensive reference database of semen-specific AR-CpG sites for forensic applications.
Collapse
Affiliation(s)
- Ya Li
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Maomin Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
6
|
Onofri M, Alessandrini F, Aneli S, Buscemi L, Chierto E, Fabbri M, Fattorini P, Garofano P, Gentile F, Presciuttini S, Previderè C, Robino C, Severini S, Tommolini F, Tozzo P, Verzeletti A, Carnevali E. A Ge.F.I. Collaborative Study: Evaluating Reproducibility and Accuracy of a DNA-Methylation-Based Age-Predictive Assay for Routine Implementation in Forensic Casework. Electrophoresis 2025; 46:76-91. [PMID: 39763091 PMCID: PMC11773317 DOI: 10.1002/elps.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
The increasing interest in DNA methylation (DNAm) analysis within the forensic scientific community prompted a collaborative project by Ge.F.I. (Genetisti Forensi Italiani). The study evaluated a standardized bisulfite conversion-based Single Base Extension (SBE) protocol for the analysis of the methylation levels at five age-predictive loci (ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59). The study encompassed three phases: (1) setting up and validating the protocol to ensure consistency and reproducibility; (2) comparing fresh peripheral blood with blood spots; and (3) evaluating sources of intra- and inter-laboratory variability. Samples from 22 Italian volunteers were analyzed by 6 laboratories in replicates for a total of 528 records. From phase I emerged that the choice of genetic sequencer significantly contributed to inter-laboratory data variation, resulting in separate regression analyses performed for each laboratory. In phase II, blood spots were found to be a reliable source for DNAm analysis, despite exhibiting increased experimental variation compared to fresh peripheral blood. In phase III, a strong correlation between the individual's predicted and true ages was observed across different laboratories. Analysis of variance (ANOVA) of the residuals indicated that one-third of the total variance could be attributed to laboratory-specific factors, whereas two-thirds could be attributed to inter-individual biological differences. The leave-one-out cross-validation (LOO-CV) method yielded an overall mean absolute deviation (MAD) value of 4.41 years, with an average 95% confidence interval of 5.24 years. Stepwise regression analysis proved that a restricted model (ELOVL2, C1orf132/MIR29B2C, and TRIM59) produced results virtually indistinguishable from the five-loci model. Additionally, the analysis of samples in replicates greatly improved the fit of the regression model, balancing the slight effects of intra-laboratory variability. In conclusion, the bisulfite conversion-based SBE protocol, combined with replicate analysis and in-lab calibration of a regression-prediction model, proves to be a reliable and easily implementable method for age prediction in forensic laboratories.
Collapse
Affiliation(s)
- Martina Onofri
- Section of Legal MedicineDepartment of Medicine and SurgeryUniversity of PerugiaTerniItaly
| | - Federica Alessandrini
- Department of Biomedical Sciences and Public HealthPolytechnic University of MarcheAnconaItaly
| | - Serena Aneli
- Department of Public Health Sciences and PediatricsUniversity of TurinTurinItaly
| | - Loredana Buscemi
- Department of Biomedical Sciences and Public HealthPolytechnic University of MarcheAnconaItaly
| | - Elena Chierto
- Department of Public Health Sciences and PediatricsUniversity of TurinTurinItaly
| | - Matteo Fabbri
- Section of Legal MedicineDepartment of Translational MedicineUniversity of FerraraFerraraItaly
| | - Paolo Fattorini
- Department of MedicineSurgery and HealthUniversity of TriesteTriesteItaly
| | - Paolo Garofano
- Forensic Genetics Laboratory – Regional Antidoping Centre “A. Bertinaria”OrbassanoItaly
| | - Fabiano Gentile
- Reparto Carabinieri Investigazioni Scientifiche di ParmaBiology SectionParmaItaly
| | - Silvano Presciuttini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Carlo Previderè
- Department of Public HealthExperimental and Forensic MedicineUniversity of PaviaPaviaItaly
| | - Carlo Robino
- Department of Public Health Sciences and PediatricsUniversity of TurinTurinItaly
| | - Simona Severini
- Forensic Sciences Laboratory, Section of Legal MedicineDepartment of Medicine and SurgerySanta Maria HospitalUniversity of PerugiaTerniItaly
| | - Federica Tommolini
- Forensic Sciences Laboratory, Section of Legal MedicineDepartment of Medicine and SurgerySanta Maria HospitalUniversity of PerugiaTerniItaly
| | - Pamela Tozzo
- Department of CardiacThoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Andrea Verzeletti
- Institute of Legal Medicine of BresciaUniversity of BresciaBresciaItaly
| | - Eugenia Carnevali
- Forensic Sciences Laboratory, Section of Legal MedicineDepartment of Medicine and SurgerySanta Maria HospitalUniversity of PerugiaTerniItaly
| |
Collapse
|
7
|
Er S, Abik Z, Ersoy G, Filoglu G, Ozkara H, Bulbul O. A semen-specific deoxyribonucleic acid methylation model for epigenetic age estimation and its robustness under environmental challenges. Electrophoresis 2024; 45:1820-1833. [PMID: 39162072 DOI: 10.1002/elps.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
In forensic investigations, semen samples are a common form of biological evidence, especially in cases involving sexual assault. Therefore, accurately estimating the age of an individual is crucial in criminal cases. This study presents a novel age estimation model based on semen-specific CpG methylation patterns. A multiplex panel was developed, consisting of 12 CpG sites (PARP14, C5orf25, cg23488376, MXRA5, PFKFB3, DLL1, NOX4, cg12837463, TTC7B, KCNA7, NKX2-1, and SYNE4), which exhibit strong correlations with age. Additionally, this study investigates the resilience of these methylation markers under simulated environmental challenges. We collected ejaculate samples from a diverse cohort of 115 male individuals, aged 20-71 years, who underwent deoxyribonucleic acid extraction and bisulfite conversion. Methylation levels of the selected CpG sites were assessed using a SNaPshot assay, which revealed significant correlations with chronological age. We developed and validated two robust age estimation models through stepwise and enter regression analyses, achieving reliable accuracy with mean absolute errors ranging from 3.81 to 4.1 years. Additionally, the study also investigated the robustness of semen stains under diverse environmental conditions, including fabric type, washing, hematin exposure, and UV-C light. The selected methylation markers demonstrated remarkable resilience despite the challenges posed by washing procedures and environmental exposure, confirming their potential for age estimation in forensic genetics. This research presents successful age estimation models, emphasizing the strong correlations between methylation levels and chronological age. The proposed methodology's accuracy is affirmed through model validation on an independent test set, while also highlighting the resilience of semen stains on fabrics under varying storage and washing conditions.
Collapse
Affiliation(s)
- Sena Er
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zehra Abik
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gokhan Ersoy
- Department of Forensic Medicine, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonul Filoglu
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hamdi Ozkara
- Department of Urology, Department of Surgical Medical Sciences, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozlem Bulbul
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
8
|
So MH, Lee JE, Lee HY. Strategies to deal with genetic analyzer-specific DNA methylation measurements. Electrophoresis 2024; 45:906-915. [PMID: 38488745 DOI: 10.1002/elps.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 05/23/2024]
Abstract
Targeted bisulfite sequencing using single-base extension (SBE) can be used to measure DNA methylation via capillary electrophoresis on genetic analyzers in forensic labs. Several accurate age prediction models have been reported using this method. However, using different genetic analyzers with different software settings can generate different methylation values, leading to significant errors in age prediction. To address this issue, the study proposes and compares four methods as follows: (1) adjusting methylation values using numerous actual body fluid DNA samples, (2) adjusting methylation values using control DNAs with varying methylation ratios, (3) constructing new age prediction models for each genetic analyzer type, and (4) constructing new age prediction models that could be applied to all types of genetic analyzers. To test the methods for adjusting values using actual body fluid DNA samples, previously reported adjusting equations were used for blood/saliva DNA age prediction markers (ELOVL2, FHL2, KLF14, MIR29B2CHG/C1orf132, and TRIM59). New equations were generated for semen DNA age prediction markers (TTC7B, LOC401324/cg12837463, and LOC729960/NOX4) by drawing polynomial regression lines between the results of the three types of genetic analyzers (3130, 3500, and SeqStudio). The same method was applied to obtain adjustment equations using 11 control DNA samples. To develop new age prediction models for each genetic analyzer type, linear regression analysis was conducted using DNA methylation data from 150 blood, 150 saliva, and 62 semen samples. For the genetic analyzer-independent models, control DNAs were used to formulate equations for calibrating the bias of the data from each genetic analyzer, and linear regression analysis was performed using calibrated body fluid DNA data. In the comparison results, the genetic analyzer-specific models showed the highest accuracy. However, genetic analyzer-independent models through bias adjustment also provided accurate age prediction results, suggesting its use as an alternative in situations with multiple constraints.
Collapse
Affiliation(s)
- Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
10
|
Gutiérrez-Hurtado IA, Sánchez-Méndez AD, Becerra-Loaiza DS, Rangel-Villalobos H, Torres-Carrillo N, Gallegos-Arreola MP, Aguilar-Velázquez JA. Loss of the Y Chromosome: A Review of Molecular Mechanisms, Age Inference, and Implications for Men's Health. Int J Mol Sci 2024; 25:4230. [PMID: 38673816 PMCID: PMC11050192 DOI: 10.3390/ijms25084230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular diseases, neurodegenerative disorders, and many types of cancer. Nevertheless, the mechanisms that generate mLOY in men have not been studied so far. This task is of great importance because it will allow focusing on possible methods of prophylaxis or therapy for diseases associated with mLOY. On the other hand, it would allow better understanding of mLOY as a possible marker for inferring the age of male samples in cases of human identification. Due to the above, in this work, a comprehensive review of the literature was conducted, presenting the most relevant information on the possible molecular mechanisms by which mLOY is generated, as well as its implications for men's health and its possible use as a marker to infer age.
Collapse
Affiliation(s)
- Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Jalisco, Mexico
| | - Astrid Desireé Sánchez-Méndez
- Laboratorio de Ciencias Morfológico Forenses y Medicina Molecular, Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Jalisco, Mexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | | | - Héctor Rangel-Villalobos
- Instituto de Investigación en Genética Molecular, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47820, Jalisco, Mexico
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico
| | - José Alonso Aguilar-Velázquez
- Laboratorio de Ciencias Morfológico Forenses y Medicina Molecular, Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
11
|
Kotková L, Drábek J. Age-related changes in sperm DNA methylation and their forensic and clinical implications. Epigenomics 2023; 15:1157-1173. [PMID: 38031735 DOI: 10.2217/epi-2023-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
As a link between a stable genome and a dynamic environment, epigenetics is a promising tool for mapping age-related changes in human DNA. Methylated cytosine changes at specific loci are generally less studied in sperm DNA than in somatic cell DNA. Age-related methylation changes can be connected to various reproductive health problems and multiple disorders in offspring. In addition, they can be helpful in forensic fields, where testing of specific loci in semen samples found at sexual assault crime scenes can predict a perpetrator's age and narrow down the police investigation. This review focuses on age-related methylation changes in sperm. It covers the biological role of methylation, methylation testing techniques and the implications of methylation changes in forensics and clinical practice.
Collapse
Affiliation(s)
- Lucie Kotková
- Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University Olomouc and University Hospital Olomouc, 77900, Czech Republic
| | - Jiří Drábek
- Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University Olomouc and University Hospital Olomouc, 77900, Czech Republic
| |
Collapse
|
12
|
Naue J. Getting the chronological age out of DNA: using insights of age-dependent DNA methylation for forensic DNA applications. Genes Genomics 2023; 45:1239-1261. [PMID: 37253906 PMCID: PMC10504122 DOI: 10.1007/s13258-023-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND DNA analysis for forensic investigations has a long tradition with important developments and optimizations since its first application. Traditionally, short tandem repeats analysis has been the most powerful method for the identification of individuals. However, in addition, epigenetic changes, i.e., DNA methylation, came into focus of forensic DNA research. Chronological age prediction is one promising application to allow for narrowing the pool of possible individuals who caused a trace, as well as to support the identification of unknown bodies and for age verification of living individuals. OBJECTIVE This review aims to provide an overview of the current knowledge, possibilities, and (current) limitations about DNA methylation-based chronological age prediction with emphasis on forensic application. METHODS The development, implementation and application of age prediction tools requires a deep understanding about the biological background, the analysis methods, the age-dependent DNA methylation markers, as well as the mathematical models for age prediction and their evaluation. Furthermore, additional influences can have an impact. Therefore, the literature was evaluated in respect to these diverse topics. CONCLUSION The numerous research efforts in recent years have led to a rapid change in our understanding of the application of DNA methylation for chronological age prediction, which is now on the way to implementation and validation. Knowledge of the various aspects leads to a better understanding and allows a more informed interpretation of DNAm quantification results, as well as the obtained results by the age prediction tools.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Refn MR, Kampmann ML, Morling N, Tfelt-Hansen J, Børsting C, Pereira V. Prediction of chronological age and its applications in forensic casework: methods, current practices, and future perspectives. Forensic Sci Res 2023; 8:85-97. [PMID: 37621446 PMCID: PMC10445583 DOI: 10.1093/fsr/owad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 08/26/2023] Open
Abstract
Estimating an individual's age can be relevant in several areas primarily related to the clinical and forensic fields. In the latter, estimation of an individual's chronological age from biological material left by the perpetrator at a crime scene may provide helpful information for police investigation. Estimation of age is also beneficial in immigration cases, where age can affect the person's protection status under the law, or in disaster victim identification to narrow the list of potential missing persons. In the last decade, research has focused on establishing new approaches for age prediction in the forensic field. From the first forensic age estimations based on morphological inspections of macroscopic changes in bone and teeth, the focus has shifted to molecular methods for age estimation. These methods allow the use of samples from human biological material that does not contain morphological age features and can, in theory, be investigated in traces containing only small amounts of biological material. Molecular methods involving DNA analyses are the primary choice and estimation of DNA methylation levels at specific sites in the genome is the most promising tool. This review aims to provide an overview of the status of forensic age prediction using molecular methods, with particular focus in DNA methylation. The frequent challenges that impact forensic age prediction model development will be addressed, together with the importance of validation efforts within the forensic community.
Collapse
Affiliation(s)
- Mie Rath Refn
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen , Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet 2023; 65:102870. [PMID: 37084623 DOI: 10.1016/j.fsigen.2023.102870] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland,; Institute of Forensic Research, Kraków, Poland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
15
|
Yang F, Qian J, Qu H, Ji Z, Li J, Hu W, Cheng F, Fang X, Yan J. DNA methylation-based age prediction with bloodstains using pyrosequencing and random forest regression. Electrophoresis 2023; 44:835-844. [PMID: 36739525 DOI: 10.1002/elps.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023]
Abstract
The use of DNA methylation to predict chronological age has shown promising potential for obtaining additional information in forensic investigations. To date, several studies have reported age prediction models based on DNA methylation in body fluids with high DNA content. However, it is often difficult to apply these existing methods in practice due to the low amount of DNA present in stains of body fluids that are part of a trace material. In this study, we present a sensitive and rapid test for age prediction with bloodstains based on pyrosequencing and random forest regression. This assay requires only 0.1 ng of genomic DNA and the entire procedure can be completed within 10 h, making it practical for forensic investigations that require a short turnaround time. We examined the methylation levels of 46 CpG sites from six genes using bloodstain samples from 128 males and 113 females aged 10-79 years. A random forest regression model was then used to construct an age prediction model for males and females separately. The final age prediction models were developed with seven CpG sites (three for males and four for females) based on the performance of the random forest regression. The mean absolute deviation was less than 3 years for each model. Our results demonstrate that DNA methylation-based age prediction using pyrosequencing and random forest regression has potential applications in forensics to accurately predict the biological age of a bloodstain donor.
Collapse
Affiliation(s)
- Fenglong Yang
- School of Forensic Medicine, Shanxi Medical University, Shanxi, P. R. China
| | - Jialin Qian
- Beijing Center for Physical and Chemical Analysis, Beijing, P. R. China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, P. R. China
| | - Zhimin Ji
- School of Forensic Medicine, Shanxi Medical University, Shanxi, P. R. China
| | - Junli Li
- School of Forensic Medicine, Shanxi Medical University, Shanxi, P. R. China
| | - Wenjing Hu
- School of Forensic Medicine, Shanxi Medical University, Shanxi, P. R. China
| | - Feng Cheng
- School of Forensic Medicine, Shanxi Medical University, Shanxi, P. R. China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, P. R. China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Shanxi, P. R. China
| |
Collapse
|
16
|
Ambroa-Conde A, Girón-Santamaría L, Mosquera-Miguel A, Phillips C, Casares de Cal M, Gómez-Tato A, Álvarez-Dios J, de la Puente M, Ruiz-Ramírez J, Lareu M, Freire-Aradas A. Epigenetic age estimation in saliva and in buccal cells. Forensic Sci Int Genet 2022; 61:102770. [DOI: 10.1016/j.fsigen.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022]
|
17
|
Lemesh VA, Kipen VN, Bahdanava MV, Burakova AA, Bulgak AG, Bayda AV, Bruskin SA, Zotova OV, Dobysh OI. Determination of Human Chronological Age from Biological Samples Based on the Analysis of Methylation of CpG Dinucleotides. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421120097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet 2021; 57:102656. [PMID: 34973557 DOI: 10.1016/j.fsigen.2021.102656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
DNA methylation has become one of the most useful biomarkers for age prediction and body fluid identification in the forensic field. Therefore, several assays have been developed to detect age-associated and body fluid-specific DNA methylation changes. Among the many methods developed, SNaPshot-based assays should be particularly useful in forensic laboratories, as they permit multiplex analysis and use the same capillary electrophoresis instrumentation as STR analysis. However, technical validation of any developed assays is crucial for their proper integration into routine forensic workflow. In the present collaborative exercise, two SNaPshot multiplex assays for age prediction and a SNaPshot multiplex for body fluid identification were tested in twelve laboratories. The experimental set-up of the exercise was designed to reflect the entire workflow of SNaPshot-based methylation analysis and involved four increasingly complex tasks designed to detect potential factors influencing methylation measurements. The results of body fluid identification from each laboratory provided sufficient information to determine appropriate age prediction methods in subsequent analysis. In age prediction, systematic measurement differences resulting from the type of genetic analyzer used were identified as the biggest cause of DNA methylation variation between laboratories. Also, the use of a buffer that ensures a high ratio of specific to non-specific primer binding resulted in changes in DNA methylation measurement, especially when using degenerate primers in the PCR reaction. In addition, high input volumes of bisulfite-converted DNA often caused PCR failure, presumably due to carry-over of PCR inhibitors from the bisulfite conversion reaction. The proficiency of the analysts and experimental conditions for efficient SNaPshot reactions were also important for consistent DNA methylation measurement. Several bisulfite conversion kits were used for this study, but differences resulting from the use of any specific kit were not clearly discerned. Even when different experimental settings were used in each laboratory, a positive outcome of the study was a mean absolute age prediction error amongst participant's data of only 2.7 years for semen, 5.0 years for blood and 3.8 years for saliva.
Collapse
|
19
|
Heidegger A, Pisarek A, de la Puente M, Niederstätter H, Pośpiech E, Woźniak A, Schury N, Unterländer M, Sidstedt M, Junker K, Ventayol Garcia M, Laurent FX, Ulus A, Vannier J, Bastisch I, Hedman J, Sijen T, Branicki W, Xavier C, Parson W. Development and inter-laboratory validation of the VISAGE enhanced tool for age estimation from semen using quantitative DNA methylation analysis. Forensic Sci Int Genet 2021; 56:102596. [PMID: 34763164 DOI: 10.1016/j.fsigen.2021.102596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
The analysis of DNA methylation has become an established method for chronological age estimation. This has triggered interest in the forensic community to develop new methods for age estimation from biological crime scene material. Various assays are available for age estimation from somatic tissues, the majority from blood. Age prediction from semen requires different DNA methylation markers and the only assays currently developed for forensic analysis are based on SNaPshot or pyrosequencing. Here, we describe a new assay using massively parallel sequencing to analyse 13 candidate CpG sites targeted in two multiplex PCRs. The assay has been validated by five consortium laboratories of the VISible Attributes through GEnomics (VISAGE) project within a collaborative exercise and was tested for reproducible quantification of DNA methylation levels and sensitivity with DNA methylation controls. Furthermore, DNA extracts and stains on Whatman FTA cards from two semen samples were used to evaluate concordance and mimic casework samples. Overall, the assay yielded high read depths (> 1000 reads) at all 13 marker positions. The methylation values obtained indicated robust quantification with an average standard deviation of 2.8% at the expected methylation level of 50% across the 13 markers and a good performance with 50 ng DNA input into bisulfite conversion. The absolute difference of quantifications from one participating laboratory to the mean quantifications of concordance and semen stains of remaining laboratories was approximately 1%. These results demonstrated the assay to be robust and suitable for age estimation from semen in forensic investigations. In addition to the 13-marker assay, a more streamlined protocol combining only five age markers in one multiplex PCR was developed. Preliminary results showed no substantial differences in DNA methylation quantification between the two assays, indicating its applicability with the VISAGE age model for semen developed with data from the complete 13-marker tool.
Collapse
Affiliation(s)
- A Heidegger
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pisarek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - M de la Puente
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - H Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - E Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Woźniak
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - N Schury
- Federal Criminal Police Office, Wiesbaden, Germany
| | | | - M Sidstedt
- National Forensic Centre (NFC), Swedish Police Authority, Linköping, Sweden
| | - K Junker
- National Forensic Centre (NFC), Swedish Police Authority, Linköping, Sweden
| | - M Ventayol Garcia
- Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
| | - F X Laurent
- Institut National de Police Scientifique, Laboratoire de Police Scientifique de Lyon, Ecully Cedex, France
| | - A Ulus
- Institut National de Police Scientifique, Laboratoire de Police Scientifique de Lyon, Ecully Cedex, France
| | - J Vannier
- Institut National de Police Scientifique, Laboratoire de Police Scientifique de Lyon, Ecully Cedex, France
| | - I Bastisch
- Federal Criminal Police Office, Wiesbaden, Germany
| | - J Hedman
- National Forensic Centre (NFC), Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - T Sijen
- Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands; University of Amsterdam, Swammerdam Institute of Life Sciences, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - W Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Central Forensic Laboratory of the Police, Warsaw, Poland
| | - C Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - W Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, State College, PA, USA.
| | | |
Collapse
|
20
|
Epigenetic age prediction in semen - marker selection and model development. Aging (Albany NY) 2021; 13:19145-19164. [PMID: 34375949 PMCID: PMC8386575 DOI: 10.18632/aging.203399] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.
Collapse
|
21
|
|
22
|
Li Z, Li J, Li Y, Liu N, Liu F, Ren J, Yun K, Yan J, Zhang G. Development of a multiplex methylation-sensitive restriction enzyme-based SNP typing system for deconvolution of semen-containing mixtures. Int J Legal Med 2021; 135:1281-1294. [PMID: 33813614 DOI: 10.1007/s00414-021-02552-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
The identification of mixed stains has always been a difficult problem in personal identification in the forensic field. In recent years, tissue-specific methylation sites have proven to be very stable biomarkers for distinguishing tissue origin. However, it is still challenging to perform tissue source identification and individual identification simultaneously. In this study, we developed a method that uses tissue-specific methylation markers combined with single-nucleotide polymorphism (SNP) markers to detect semen from mixed biofluids and to identify individuals simultaneously. Semen-specific CpG markers were chosen from the literature and further validated utilizing methylation-sensitive restriction endonuclease (MSRE) combined with PCR technology. The neighboring SNP markers were searched in the flanking sequence of the target CpG within 400 bp, and SNP typing was then carried out through a single-base extension reaction followed by capillary electrophoresis. Eventually, a method of MSRE combined with SNaPshot that could detect 12 compound CpG-SNP markers was developed. Using this system, 10 ng of total DNA and DNA mixture with semen content up to 25% could be typed successfully. Moreover, the cumulative discrimination power of the system in the northern Chinese Han population is 0.9998. This study provides a valuable strategy for forensic practice to perform tissue origin and individual identification from mixed stains simultaneously.
Collapse
Affiliation(s)
- Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Jintao Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Yidan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Na Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Jianbo Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030619, People's Republic of China.
| |
Collapse
|
23
|
Maulani C, Auerkari EI. Age estimation using DNA methylation technique in forensics: a systematic review. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2020. [DOI: 10.1186/s41935-020-00214-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractBackgroundIn addition to the DNA sequence, epigenetic markers have become substantial forensic tools during the last decade. Estimating the age of an individual from human biological remains may provide information for a forensic investigation. Age estimation in molecular strategies can be obtained by telomere length, mRNa mutation, or by sjTRECs but the accuracy is not sufficient in forensic practice because of high margin error.Main bodyOne solution to this problem is to use DNA methylation methods. DNA methylation markers for tissue identification at age-associated CpG sites have been suggested as the most informative biomarkers for estimating the age of an unknown donor. This review aims to give an overview of DNA methylation profiling for estimating the age in cases of forensic relevance and the important aspects in determining the mean absolute deviation (MAD) or mean absolute error (MAE) of the estimated age. Online database searching was performed through PubMed, Scopus, and Google Scholar with keywords selected for forensic age estimation. Thirty-two studies were included in the review, with variable DNA samples but blood commonly as a source. Pyrosequencing and EpiTYPER were methods mostly used in DNA analysis. The MAD in the estimates from DNA methylation was about 3 to 5 years, which was better than other methods such as those based on telomere length or signal-joint T-cell receptor excision circles. The ELOVL2 gene was a commonly used DNA methylation marker in age estimation.ConclusionDNA methylation is a favorable candidate for estimating the age at the time of death in forensic profiling, with an uncertainty mean absolute deviation of about 3 to 5 years in the predicted age. The sample type, platform techniques used, and methods to construct age predictive models were important in determining the accuracy in mean absolute deviation or mean absolute error. The DNA methylation outcome suggests good potential to support conventional STR profiling in forensic cases.
Collapse
|
24
|
Nwanaji-Enwerem JC, Jenkins TG, Colicino E, Cardenas A, Baccarelli AA, Boyer EW. Serum dioxin levels and sperm DNA methylation age: Findings in Vietnam war veterans exposed to Agent Orange. Reprod Toxicol 2020; 96:27-35. [PMID: 32522586 DOI: 10.1016/j.reprotox.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Exposure to dioxin, a known endocrine disruptor and carcinogen, is associated with poor reproductive outcomes. Yet, few studies have explored the role of DNA methylation in these relationships. Utilizing a publicly available dataset from 37 male Air Force Health Study participants exposed to dioxin-contaminated Agent Orange during the Vietnam war, we cross-sectionally examined the relationship of serum dioxin levels with a novel DNA methylation-based measure of sperm age (DNAm-agesperm). DNAm-agesperm was calculated using CpG sites on the Illumina HumanMethylation450 BeadChip. We estimated associations of dioxin levels with DNAm-agesperm using linear regression models adjusted for chronological age, body mass index, and smoking status. Chronological age was highly correlated with DNAmagesperm (r = 0.80). In fully-adjusted linear models, a one percent increase in serum dioxin levels was significantly associated with a 0.0126-year (i.e. 4.6-day) increase in DNAm-agesperm (95%CI: 0.003, 0.022, p = 0.01). Further analyses demonstrated significant negative associations of dioxin levels (β = -0.0005, 95%CI: -0.0010, 0.00004, P = 0.03) and DNAm-agesperm (β = -0.02, 95%CI: -0.04, -0.001, P = 0.03) with methylation levels of FOXK2 - a gene previously reported to be hypomethylated in infertile men. In sum, we demonstrate associations of dioxin with increased methylation aging of sperm. DNAm-agesperm may provide utility for understanding how dioxin levels impact sperm health and potentially male reproductive capacity in human population studies. Moreover, our pilot study contributes further evidence that some environmental toxicants are associated with methylation aging. Additional studies are necessary to confirm these findings, and better characterize dioxin and sperm methylation relationships with male reproductive health.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Belfer Center for Science and International Affairs, Harvard Kennedy School of Government, Department of Environmental Health, Harvard T.H. Chan School of Public Health, and MD/PhD Program, Harvard Medical School, Boston, MA, USA.
| | - Timothy G Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Edward W Boyer
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Lee HY, Hong SR, Lee JE, Hwang IK, Kim NY, Lee JM, Fleckhaus J, Jung SE, Lee YH. Epigenetic age signatures in bones. Forensic Sci Int Genet 2020; 46:102261. [DOI: 10.1016/j.fsigen.2020.102261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/28/2023]
|
26
|
Zha S, Wei X, Fang R, Wang Q, Lin H, Zhang K, Zhang H, Liu R, Li Z, Huang P, Wang Z. Estimation of the age of human semen stains by attenuated total reflection Fourier transform infrared spectroscopy: a preliminary study. Forensic Sci Res 2019; 5:119-125. [PMID: 32939428 PMCID: PMC7476623 DOI: 10.1080/20961790.2019.1642567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 01/28/2023] Open
Abstract
Semen stain is one of the most important biological evidence at sexual crime scenes. Age estimation of human semen stains plays an important role in forensic work, and it is rarely studied due to lack of well-established methods. In this study, the technique called attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) coupled with advanced chemometric methods was employed to determine the age of semen stains on three different substrates: glass slides, tissues and fabric made of regenerated cellulose fibres up to 6 d. Partial least squares regression (PLSR) was used in conjunction with spectral analysis for age estimation, and the results generated high R2 values (cross-validation: 0.81, external validation: 0.74) but a narrow margin of error for root mean square error (RMSE) (RMSE of cross-validation: 0.77 d, RMSE of prediction: 1.02 d). Additionally, our results indicated the robustness of PLSR model was not weaken by the influence of different substrates in this study. Our results indicate that ATR-FTIR, combined with chemometric methods, shows great potential as a convenient and efficient tool for age estimation of semen stains. Moreover, the method could be applied to routine forensic investigations in the future.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xin Wei
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ruoxi Fang
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Qi Wang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China
| | - Hancheng Lin
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Kai Zhang
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Haohui Zhang
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Ruina Liu
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zhouru Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ping Huang
- Department of Forensic Pathology, Academy of Forensic Science, Shanghai, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| |
Collapse
|
27
|
Li L, Song F, Lang M, Hou J, Wang Z, Prinz M, Hou Y. Methylation-Based Age Prediction Using Pyrosequencing Platform from Seminal Stains in Han Chinese Males. J Forensic Sci 2019; 65:610-619. [PMID: 31498434 DOI: 10.1111/1556-4029.14186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023]
Abstract
Various methods have been performed to predict an unknown individual's age from biological traces in forensic investigations. A considerably accurate age prediction for the semen donor can help narrow down the search in a sexual assault case. The aim of this study was to develop an assay for age prediction from seminal stains in Han Chinese males. We built a sperm-specific linear regression model using bisulfite pyrosequencing. Validations were conducted with a Mean Absolute Deviation from the chronological age (MAD) of 4.219 years in liquid semen, 4.158 years in fresh seminal stains, 4.393 years in aged seminal stains, and 3.880 years in mixed stains, respectively. Furthermore, our strategy enables accurate age prediction using a forensic casework sample. The strategy indicated that we produced an accurate and reliable age prediction tool for the semen donors in Han Chinese males for forensic purposes.
Collapse
Affiliation(s)
- Luyao Li
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Lang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Hou
- Institute for Genomic Medicine, University of California, La Jolla, San Diego, CA, 92093
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mechthild Prinz
- Department of Sciences, John Jay College of Criminal Justice, New York, NY, 10019
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
28
|
Sajedi H, Pardakhti N. Age Prediction Based on Brain MRI Image: A Survey. J Med Syst 2019; 43:279. [PMID: 31297614 DOI: 10.1007/s10916-019-1401-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Abstract
Human age prediction is an interesting and applicable issue in different fields. It can be based on various criteria such as face image, DNA methylation, chest plate radiographs, knee radiographs, dental images and etc. Most of the age prediction researches have mainly been based on images. Since the image processing and Machine Learning (ML) techniques have grown up, the investigations were led to use them in age prediction problem. The implementations would be used in different fields, especially in medical applications. Brain Age Estimation (BAE) has attracted more attention in recent years and it would be so helpful in early diagnosis of some neurodegenerative diseases such as Alzheimer, Parkinson, Huntington, etc. BAE is performed on Magnetic Resonance Imaging (MRI) images to compute the brain ages. Studies based on brain MRI shows that there is a relation between accelerated aging and accelerated brain atrophy. This refers to the effects of neurodegenerative diseases on brain structure while making the whole of it older. This paper reviews and summarizes the main approaches for age prediction based on brain MRI images including preprocessing methods, useful tools used in different research works and the estimation algorithms. We categorize the BAE methods based on two factors, first the way of processing MRI images, which includes pixel-based, surface-based, or voxel-based methods and second, the generation of ML algorithms that includes traditional or Deep Learning (DL) methods. The modern techniques as DL methods help MRI based age prediction to get results that are more accurate. In recent years, more precise and statistical ML approaches have been utilized with the help of related tools for simplifying computations and getting accurate results. Pros and cons of each research and the challenges in each work are expressed and some guidelines and deliberations for future research are suggested.
Collapse
Affiliation(s)
- Hedieh Sajedi
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran. .,School of Computer Science, Institute for Research in Fundamental Science (IPM), P.O. Box 19395-5746, Tehran, Iran.
| | - Nastaran Pardakhti
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico SC, Mariot RF, Lee SB, Duncan G. Forensic DNA Analysis. Anal Chem 2019; 91:673-688. [PMID: 30485738 DOI: 10.1021/acs.analchem.8b05318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bruce R McCord
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Quentin Gauthier
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sohee Cho
- Department of Forensic Medicine , Seoul National University , Seoul , 08826 , South Korea
| | - Meghan N Roig
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Georgiana C Gibson-Daw
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Brian Young
- Niche Vision, Inc. , Akron , Ohio 44311 , United States
| | - Fabiana Taglia
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Sara C Zapico
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Roberta Fogliatto Mariot
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| | - Steven B Lee
- Forensic Science Program, Justice Studies Department , San Jose State University , San Jose , California 95192 , United States
| | - George Duncan
- Department of Chemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
30
|
Hong SR, Shin KJ, Jung SE, Lee EH, Lee HY. Platform-independent models for age prediction using DNA methylation data. Forensic Sci Int Genet 2019; 38:39-47. [DOI: 10.1016/j.fsigen.2018.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/07/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
31
|
Guevara EE, Lawler RR. Epigenetic Clocks. Evol Anthropol 2018; 27:256-260. [PMID: 30383910 DOI: 10.1002/evan.21745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Recent research has revealed clock-like patterns of epigenetic change across the life span in humans. Models describing these epigenetic changes have been dubbed "epigenetic clocks," and they can not only predict chronological age but also reveal biological age, which measures physiological homeostasis and deterioration over the life span. Comparative studies of the epigenetic clocks of different primate species are likely to provide insights into the evolution of life history schedules, as well as shed light on the physiological and genetic bases of aging and aging-related diseases. Chronological age estimation using clock-based calculators may also offer biological anthropologists a useful tool for applying to forensic and demographic studies.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia.,Department of Anthropology, Yale University, New Haven, Connecticut
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|