1
|
Svirčev M, Popsavin M, Levovnik B, Djokić S, Kesić J, Kovačević I, Benedeković G, Srećo Zelenović B, Popsavin V, Kojić V. Synthesis and antiproliferative activity of thiazole bioisosteres of goniofufurone and 7-epi-goniofufurone. Bioorg Med Chem Lett 2025; 123:130218. [PMID: 40204111 DOI: 10.1016/j.bmcl.2025.130218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/13/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Several new goniofufurone (1) and 7-epi-goniofufurone (2) mimics in which the benzene ring has been replaced with a thiazole residue have been designed, synthesized and evaluated for their antiproliferative activity against a panel of human tumour cell lines. The key steps of the synthesis represent the initial condensation of suitably protected furanose urononitriles with cysteine ethyl ester hydrochloride, followed by the subsequent oxidation of resulting C-4' epimeric thiazolines with BrCCl3 and DBU, to build up the thiazole ring. Biological studies have shown that the HeLa cell line is most sensitive to the action of synthesized analogues with IC50 values in the range of 0.01-7.67 μM. The most active compound in this cell culture was 7-epi-goniofufurone mimic 28, with a thiazole-carboxamide function at C-7 and a benzyloxy group at the C-5 position. Compound 28 exhibited 89-fold higher antiproliferative potency in this cell line than lead 2 and was 7-fold more active than the commercial antitumour agent doxorubicin. A SAR study identified structural features responsible for the antiproliferative activity of synthesized analogues. The analogues 3-28 are completely inactive toward the normal MRC-5 cell line. Their selectivity indexes (SI) range from 4.1 to 17,470.7.
Collapse
Affiliation(s)
- Miloš Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Mirjana Popsavin
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Bojan Levovnik
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sanja Djokić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jelena Kesić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Kovačević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Goran Benedeković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Bojana Srećo Zelenović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Velimir Popsavin
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia.
| | - Vesna Kojić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
2
|
Deng FB, Jia HW, Hu DX, Li ZL, Xiu XM, Zhao XQ, Liu Y, Yang HL, Cheng M. Design, synthesis and antitumor activity evaluation of novel IMPDH II and HDAC1 dual inhibitor. RSC Med Chem 2025:d5md00007f. [PMID: 40406543 PMCID: PMC12094184 DOI: 10.1039/d5md00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/17/2025] [Indexed: 05/26/2025] Open
Abstract
The development of multi-target inhibitors has garnered considerable attention in the field of cancer therapy. We have designed and synthesized a total of 80 derivatives, categorized into A, B, and C series. Among these compounds, C12 (hIMPDH II, IC50 = 84.69 ± 0.83 nM; HDAC1, IC50 = 81.75 ± 0.82 nM) and C18 (hIMPDH II, IC50 = 820.50 ± 1.41 nM; HDAC1, IC50 = 131.90 ± 1.02 nM) exhibited promising inhibitory activity against hIMPDH II and HDAC1. Compared to the IMPDH-positive compound MPA (IC50 = 403.23 ± 2.92 nM) and the HDAC-positive compound SAHA (IC50 = 1165.72 ± 1.22 nM), compound C12 (IC50 value of 305.31 ± 0.67 nM) demonstrated superior anti-proliferative activity against K-562 cells in vitro. Compound C12 exhibited good liver microsomal stability with a moderate half-life (T 1/2). Furthermore, compound C12 exhibited acceptable in vivo pharmacokinetics of properties. In conclusion, compound C12 represents a potential new dual inhibitor targeting both hIMPDH II and HDAC1.
Collapse
Affiliation(s)
- Fang-Bo Deng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Hong-Wei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - De-Xiang Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Zhen-Li Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Xiao-Meng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Xue-Qi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Hua-Li Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University Shenyang 110016 PR China
| |
Collapse
|
3
|
Silalai P, Teeyakasem P, Pruksakorn D, Saeeng R. Design and Synthesis of Mycophenolic Acid Analogues for Osteosarcoma Cancer Treatment. ACS BIO & MED CHEM AU 2025; 5:106-118. [PMID: 39990949 PMCID: PMC11843339 DOI: 10.1021/acsbiomedchemau.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 02/25/2025]
Abstract
Mycophenolic acid (MPA), a natural compound, was modified to new MPA analogues via the classical method of silylation and esterification. Their cytotoxicity was evaluated in vitro on four osteosarcoma cancer cell lines (MNNG/HOS, U2OS, 143B, and SaOS-2) and human normal cells (hFOB 1.19). The most potent silicon-containing compound 2d (R1 = TPS, R2 = H) exhibited good cytotoxic activity against all osteosarcoma cancer cell lines with IC50 values ranging from 0.64 to 2.27 μM and showing low cytotoxicity against normal cells. Further investigations revealed that compound 2d (R1 = TPS, R2 = H) displayed significant inhibition of IMPDH2 with K i app 1.8 μM. Furthermore, molecular modeling studies were performed to investigate the binding affinity of 2d (R1 = TPS, R2 = H) which can effectively bind to critical amino acids of three proteins (vascular endothelial growth factor receptor 2; VEGFR-2, cyclin-dependent kinase 2; CDK2, inosine-5'-monophosphate dehydrogenase; IMPDH) involved in cancer therapy. This finding suggests that triphenylsilyl-MPA (TPS-MPA) analogue could serve as a promising starting point for developing new anticancer drugs for osteosarcoma.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department
of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- The
Research Unit in Synthetic Compounds and Synthetic Analogues from
Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal
Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center
of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal
Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center
of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Orthopedics, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Rungnapha Saeeng
- Department
of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- The
Research Unit in Synthetic Compounds and Synthetic Analogues from
Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood 2023; 141:1119-1135. [PMID: 36548959 PMCID: PMC10375271 DOI: 10.1182/blood.2022018092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic rewiring and cellular reprogramming are trademarks of neoplastic initiation and progression in acute myeloid leukemia (AML). Metabolic alteration in leukemic cells is often genotype specific, with associated changes in epigenetic and functional factors resulting in the downstream upregulation or facilitation of oncogenic pathways. Targeting abnormal or disease-sustaining metabolic activities in AML provides a wide range of therapeutic opportunities, ideally with enhanced therapeutic windows and robust clinical efficacy. This review highlights the dysregulation of amino acid, nucleotide, lipid, and carbohydrate metabolism in AML; explores the role of key vitamins and enzymes that regulate these processes; and provides an overview of metabolism-directed therapies currently in use or development.
Collapse
Affiliation(s)
| | - Scott E. Millman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lingbo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
6
|
Jia HW, Yang HL, Xiong ZL, Deng MH, Wang T, Liu Y, Cheng M. Design, synthesis and antitumor activity evaluation of novel indole acrylamide derivatives as IMPDH inhibitors. Bioorg Chem 2022; 129:106213. [DOI: 10.1016/j.bioorg.2022.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
7
|
Mehta RS, Saliba RM, Hayase E, Jenq RR, Abraham S, Rashid A, Rondon G, Al-Atrash G, Bashir Q, Hosing CM, Kebriaei P, Khouri I, Marin D, Nieto Y, Olson A, Oran B, Popat UR, Qazilbash MH, Ramdial J, Srour S, Champlin RE, Rezvani K, Shpall EJ, Alousi AM. Mycophenolate Mofetil: A Friend or a Foe with PTCy and Tacrolimus Prophylaxis in HLA-Matched donors? Transplant Cell Ther 2022; 28:500.e1-500.e10. [PMID: 35662592 DOI: 10.1016/j.jtct.2022.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Adapted from the haploidentical literature, post-transplantation cyclophosphamide (PTCy) is increasingly being used with HLA-matched donors, generally with a calcineurin inhibitor, such as tacrolimus (Tac) with or without mycophenolate mofetil (MMF). Owing to its immunosuppressive, potentially antitumor, and antimicrobial properties, MMF is an attractive drug; however, it remains unclear how much benefit is gained when used with PTCy/Tac. To assess that, we compared PTCy/Tac (n=242) to PTCy/Tac/MMF (n= 144) in recipients of HLA-matched donors. In multivariate analysis, the PTCy/Tac/MMF group had a significantly higher risk of grade II-IV acute graft-versus-host disease (GVHD; hazard ratio (HR) 2.1, 95% confidence interval (CI) 1.6-2.8, p<0.001), and steroid-refractory/dependent acute GVHD (HR 4.8, 95% CI 2.4-9.6, p<0.001), yet a significantly lower risk of relapse (HR 0.5, 95% CI, 0.3-0.9, p=0.009) and better progression-free survival (PFS; HR 0.7, 95% CI 0.5-0.9, p=0.04). There was no difference in the risk of grade III-IV acute GVHD, chronic GVHD, non-relapse mortality, or overall survival. MMF was associated with prolonged neutrophil engraftment by 2 days, and a higher risk of bacterial infections. In an exploratory stool microbiome analysis (n=16), we noted a higher relative abundance of β-glucuronidase-producing bacteria in the MMF group, which may have a role in the pathogenesis of MMF-related GVHD. Our data suggest that the addition of MMF to PTCy/Tac for HLA-matched donor HCT does not provide any advantage for GVHD prevention. Further studies are needed to decipher this mechanism, and understand its role with PTCy-based prophylaxis.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert R Jenq
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan Abraham
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qaiser Bashir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chitra M Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Issa Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Uday R Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Muzaffar H Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Jadhav PM, Kantevari S, Tekale AB, Bhosale SV, Pawar RP, Tekale SU. A review on biological and medicinal significance of thiazoles. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1945601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Atam B. Tekale
- Department of Chemistry, Shri Shivaji College, Parbhani, India
| | | | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad, India
| | | |
Collapse
|
9
|
Cucchi D, Gibson A, Martin SA. The emerging relationship between metabolism and DNA repair. Cell Cycle 2021; 20:943-959. [PMID: 33874857 PMCID: PMC8172156 DOI: 10.1080/15384101.2021.1912889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022] Open
Abstract
The DNA damage response (DDR) consists of multiple specialized pathways that recognize different insults sustained by DNA and repairs them where possible to avoid the accumulation of mutations. While loss of activity of genes in the DDR has been extensively associated with cancer predisposition and progression, in recent years it has become evident that there is a relationship between the DDR and cellular metabolism. The activity of the metabolic pathways can influence the DDR by regulating the availability of substrates required for the repair process and the function of its players. Additionally, proteins of the DDR can regulate the metabolic flux through the major pathways such as glycolysis, tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) and the production of reactive oxygen species (ROS). This newly discovered connection bears great importance in the biology of cancer and represents a new therapeutic opportunity. Here we describe the nature of the relationship between DDR and metabolism and its potential application in the treatment of cancer. Keywords: DNA repair, metabolism, mitochondria.
Collapse
Affiliation(s)
- Danilo Cucchi
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Amy Gibson
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sarah a Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Targeting NAD-dependent dehydrogenases in drug discovery against infectious diseases and cancer. Biochem Soc Trans 2021; 48:693-707. [PMID: 32311017 DOI: 10.1042/bst20191261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Dehydrogenases are oxidoreductase enzymes that play a variety of fundamental functions in the living organisms and have primary roles in pathogen survival and infection processes as well as in cancer development. We review here a sub-set of NAD-dependent dehydrogenases involved in human diseases and the recent advancements in drug development targeting pathogen-associated NAD-dependent dehydrogenases. We focus also on the molecular aspects of the inhibition process listing the structures of the most relevant molecules targeting this enzyme family. Our aim is to review the most impacting findings regarding the discovery of novel inhibitory compounds targeting the selected NAD-dependent dehydrogenases involved in cancer and infectious diseases.
Collapse
|
11
|
Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: A Century-Long Story. Cancers (Basel) 2019; 11:cancers11091346. [PMID: 31514446 PMCID: PMC6770829 DOI: 10.3390/cancers11091346] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/15/2023] Open
Abstract
The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis and fundamental for energy metabolism. Although de novo purine nucleotide biosynthesis is increased in highly proliferating cells, such as malignant tumors, it is not clear if this is merely a secondary manifestation of increased cell proliferation. Suggestive of a direct causative effect includes evidence that, in some cancer types, the rate-limiting enzyme in de novo GTP biosynthesis, inosine monophosphate dehydrogenase (IMPDH), is upregulated and that the IMPDH inhibitor, mycophenolic acid (MPA), possesses anti-tumor activity. However, historically, enthusiasm for employing IMPDH inhibitors in cancer treatment has been mitigated by their adverse effects at high treatment doses and variable response. Recent advances in our understanding of the mechanistic role of IMPDH in tumorigenesis and cancer progression, as well as the development of IMPDH inhibitors with selective actions on GTP synthesis, have prompted a reappraisal of targeting this enzyme for anti-cancer treatment. In this review, we summarize the history of IMPDH inhibitors, the development of new inhibitors as anti-cancer drugs, and future directions and strategies to overcome existing challenges.
Collapse
|
12
|
Matsumoto T, Jimi S, Migita K, Terada K, Mori M, Takamatsu Y, Suzumiya J, Hara S. FF-10501 induces caspase-8-mediated apoptotic and endoplasmic reticulum stress-mediated necrotic cell death in hematological malignant cells. Int J Hematol 2019; 110:606-617. [PMID: 31407254 DOI: 10.1007/s12185-019-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
FF-10501 is a novel inhibitor of inosine monophosphate dehydrogenase (IMPDH). Clinical trials of FF-10501 for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are currently being conducted in the United States. Although it has been shown that FF-10501 induces apoptosis in hematological malignant cells, the intracellular mechanisms of this effect have not been characterized. We conducted an in vitro study to elucidate the mechanisms of FF-10501-induced cell death using 12 hematological malignant cell lines derived from myeloid and lymphoid malignancies. FF-10501 suppressed the growth of each cell line in a dose-dependent manner. However, the clinically relevant dose (40 μM) of FF-10501 induced cell death in three cell lines (MOLM-13, OCI-AML3, and MOLT-3). Investigation of the cell death mechanism suggested that FF-10501 induces both apoptotic and necrotic cell death. FF-10501-induced apoptosis was mediated by caspase-8 activation followed by activation of the mitochondrial pathway in MOLM-13 and MOLT-3 cells. FF-10501 induced necrotic cell death via endoplasmic reticulum stress in OCI-AML3 cells. The present study is the first to identify intracellular pathways involved in FF-10501-induced cell death.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan.
| | - Shiro Jimi
- Central Laboratory of Pathology and Morphology, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology, and Infectious Diseases, Department of Medicine, Fukuoka University, Fukuoka, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Shimane, Japan
| | - Shuuji Hara
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jounan, Fukuoka, 814-0180, Japan
| |
Collapse
|
13
|
One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017; 8:23955-23977. [PMID: 28177894 PMCID: PMC5410357 DOI: 10.18632/oncotarget.15053] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.
Collapse
|
14
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|
15
|
Zhang Q, Zhou X, Wu R, Mosley A, Zeng SX, Xing Z, Lu H. The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress. eLife 2014; 3. [PMID: 25347121 PMCID: PMC4209374 DOI: 10.7554/elife.03077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
The 'ribosomal stress (RS)-p53 pathway' is triggered by any stressor or genetic alteration that disrupts ribosomal biogenesis, and mediated by several ribosomal proteins (RPs), such as RPL11 and RPL5, which inhibit MDM2 and activate p53. Inosine monophosphate (IMP) dehydrogenase 2 (IMPDH2) is a rate-limiting enzyme in de novo guanine nucleotide biosynthesis and crucial for maintaining cellular guanine deoxy- and ribonucleotide pools needed for DNA and RNA synthesis. It is highly expressed in many malignancies. We previously showed that inhibition of IMPDH2 leads to p53 activation by causing RS. Surprisingly, our current study reveals that Inauzhin (INZ), a novel non-genotoxic p53 activator by inhibiting SIRT1, can also inhibit cellular IMPDH2 activity, and reduce the levels of cellular GTP and GTP-binding nucleostemin that is essential for rRNA processing. Consequently, INZ induces RS and the RPL11/RPL5-MDM2 interaction, activating p53. These results support the new notion that INZ suppresses cancer cell growth by dually targeting SIRT1 and IMPDH2.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - RuiZhi Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
16
|
A Review of the Potential Utility of Mycophenolate Mofetil as a Cancer Therapeutic. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/423401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor cells adapt to their high metabolic state by increasing energy production. To this end, current efforts in molecular cancer therapeutics have been focused on signaling pathways that modulate cellular metabolism. However, targeting such signaling pathways is challenging due to heterogeneity of tumors and recurrent oncogenic mutations. A critical need remains to develop antitumor drugs that target tumor specific pathways. Here, we discuss an energy metabolic pathway that is preferentially activated in several cancers as a potential target for molecular cancer therapy. In vitro studies have revealed that many cancer cells synthesize guanosine triphosphate (GTP), via the de novo purine nucleotide synthesis pathway by upregulating the rate limiting enzyme of this pathway, inosine monophosphate dehydrogenase (IMPDH). Non-proliferating cells use an alternative purine nucleotide synthesis pathway, the salvage pathway, to synthesize GTP. These observations pose IMPDH as a potential target to suppress tumor cell growth. The IMPDH inhibitor, mycophenolate mofetil (MMF), is an FDA-approved immunosuppressive drug. Accumulating evidence shows that, in addition to its immunosuppressive effects, MMF also has antitumor effects via IMPDH inhibition in vitro and in vivo. Here, we review the literature on IMPDH as related to tumorigenesis and the use of MMF as a potential antitumor drug.
Collapse
|
17
|
Bairagya HR, Mishra DK, Mukhopadhyay BP, Sekar K. Conserved water-mediated recognition and dynamics of NAD+ (carboxamide group) to hIMPDH enzyme: water mimic approach toward the design of isoform-selective inhibitor. J Biomol Struct Dyn 2013; 32:1248-62. [PMID: 23829371 DOI: 10.1080/07391102.2013.812982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in GMP biosynthesis pathway. Type I hIMPDH is expressed at lower levels in all cells, whereas type II is especially observed in acute myelogenous leukemia, chronic myelogenous leukemia cancer cells, and 10 ns simulation of the IMP-NAD(+) complex structures (PDB ID. 1B3O and 1JCN) have revealed the presence of a few conserved hydrophilic centers near carboxamide group of NAD(+). Three conserved water molecules (W1, W, and W1') in di-nucleotide binding pocket of enzyme have played a significant role in the recognition of carboxamide group (of NAD(+)) to D274 and H93 residues. Based on H-bonding interaction of conserved hydrophilic (water molecular) centers within IMP-NAD(+)-enzyme complexes and their recognition to NAD(+), some covalent modification at carboxamide group of di-nucleotide (NAD(+)) has been made by substituting the -CONH2group by -CONHNH2 (carboxyl hydrazide group) using water mimic inhibitor design protocol. The modeled structure of modified ligand may, though, be useful for the development of antileukemic agent or it could be act as better inhibitor for hIMPDH-II.
Collapse
Affiliation(s)
- Hridoy R Bairagya
- a Department of Chemistry , National Institute of Technology , Durgapur , West Bengal , 713209 , India
| | | | | | | |
Collapse
|
18
|
Bairagya HR, Mukhopadhyay BP. An insight to the dynamics of conserved water-mediated salt bridge interaction and interdomain recognition in hIMPDH isoforms. J Biomol Struct Dyn 2013; 31:788-808. [DOI: 10.1080/07391102.2012.712458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Hamilton JM, Harding MW, Genna T, Bol DK. A Phase I Dose-Ranging Study of the Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability of AVN944, an IMPDH Inhibitor, in Healthy Male Volunteers. J Clin Pharmacol 2013; 49:30-8. [DOI: 10.1177/0091270008325149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Hsieh YC, Tedeschi P, Adebisi Lawal R, Banerjee D, Scotto K, Kerrigan JE, Lee KC, Johnson-Farley N, Bertino JR, Abali EE. Enhanced degradation of dihydrofolate reductase through inhibition of NAD kinase by nicotinamide analogs. Mol Pharmacol 2013; 83:339-53. [PMID: 23197646 PMCID: PMC3558814 DOI: 10.1124/mol.112.080218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/08/2012] [Indexed: 11/22/2022] Open
Abstract
Dihydrofolate reductase (DHFR), because of its essential role in DNA synthesis, has been targeted for the treatment of a wide variety of human diseases, including cancer, autoimmune diseases, and infectious diseases. Methotrexate (MTX), a tight binding inhibitor of DHFR, is one of the most widely used drugs in cancer treatment and is especially effective in the treatment of acute lymphocytic leukemia, non-Hodgkin's lymphoma, and osteosarcoma. Limitations to its use in cancer include natural resistance and acquired resistance due to decreased cellular uptake and decreased retention due to impaired polyglutamylate formation and toxicity at higher doses. Here, we describe a novel mechanism to induce DHFR degradation through cofactor depletion in neoplastic cells by inhibition of NAD kinase, the only enzyme responsible for generating NADP, which is rapidly converted to NADPH by dehydrogenases/reductases. We identified an inhibitor of NAD kinase, thionicotinamide adenine dinucleotide phosphate (NADPS), which led to accelerated degradation of DHFR and to inhibition of cancer cell growth. Of importance, combination treatment of NADPS with MTX displayed significant synergy in a metastatic colon cancer cell line and was effective in a MTX-transport resistant leukemic cell line. We suggest that NAD kinase is a valid target for further inhibitor development for cancer treatment.
Collapse
Affiliation(s)
- Yi-Ching Hsieh
- Departments of Pharmacology and Medicine, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Popsavin M, Spaić S, Svirčev M, Kojić V, Bogdanović G, Popsavin V. Synthesis and in vitro antitumour screening of 2-(β-d-xylofuranosyl)thiazole-4-carboxamide and two novel tiazofurin analogues with substituted tetrahydrofurodioxol moiety as a sugar mimic. Bioorg Med Chem Lett 2012; 22:6700-4. [DOI: 10.1016/j.bmcl.2012.08.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 11/27/2022]
|
22
|
Driowya M, Puissant A, Robert G, Auberger P, Benhida R, Bougrin K. Ultrasound-assisted one-pot synthesis of anti-CML nucleosides featuring 1,2,3-triazole nucleobase under iron-copper catalysis. ULTRASONICS SONOCHEMISTRY 2012; 19:1132-1138. [PMID: 22595539 DOI: 10.1016/j.ultsonch.2012.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 05/31/2023]
Abstract
A simple and efficient synthesis of modified 1,2,3-triazole nucleosides was developed. The strategy involved sequential one-pot acetylation-azidation-cycloaddition procedure and was found to be highly effective under a cooperative effect of ultrasound activation and iron/copper catalysis. The reactions were carried out under both conventional and ultrasonic irradiation conditions. In general, improvement in rates and yields were observed when reactions were carried out under sonication compared with conventional conditions. This one-pot procedure provides several advantages such as operational simplicity, high yield, safety and environment friendly protocol. The resulting substituted nucleosides were evaluated for their anticancer activity against K562 chronic myelogenous leukemia (CML) cell line.
Collapse
Affiliation(s)
- Mohsine Driowya
- Institut de Chimie de Nice UMR CNRS 7272, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
23
|
Popsavin M, Svirčev M, Torović L, Bogdanović G, Kojić V, Jakimov D, Spaić S, Aleksić L, Popsavin V. Antitumour tiazofurin analogues embedded with an amide moiety at the C-2′ position. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.06.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Borden KLB, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma 2011; 51:1805-15. [PMID: 20629523 DOI: 10.3109/10428194.2010.496506] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribavirin was discovered nearly 40 years ago as a broad-spectrum antiviral drug. Recent data suggest that ribavirin may also be an effective cancer therapy. In this case, ribavirin targets an oncogene, the eukaryotic translation initiation factor eIF4E, elevated in approximately 30% of cancers including many leukemias and lymphomas. Specifically, ribavirin impedes eIF4E mediated oncogenic transformation by acting as an inhibitor of eIF4E. In a phase II clinical trial, ribavirin treatment led to substantial clinical benefit in patients with poor-prognosis acute myeloid leukemia (AML). Here molecular targeting of eIF4E correlated with clinical response. Ribavirin also targets a key enzyme in the guanosine biosynthetic pathway, inosine monophosphate dehydrogenase (IMPDH), and also modulates immunity. Parallels with known antiviral mechanisms could be informative; however, after 40 years, these are not entirely clear. The antiviral effects of ribavirin appear cell-type specific. This variation likely arises for many reasons, including cell specific variations in ribavirin metabolism as well as virus specific factors. Thus, it seems that the mechanisms for ribavirin action in cancer therapy may also vary in terms of the cancer/tissue under study. Here we review the anticancer activities of ribavirin and discuss the possible utility of incorporating ribavirin into diverse cancer therapeutic regimens.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada.
| | | |
Collapse
|
25
|
Popsavin M, Spaić S, Svirčev M, Kojić V, Bogdanović G, Pejanović V, Popsavin V. Synthesis of highly cytotoxic tiazofurin mimics bearing a 2,3-anhydro function in the furanose ring. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Tan K, Culjkovic B, Amri A, Borden KL. Ribavirin targets eIF4E dependent Akt survival signaling. Biochem Biophys Res Commun 2008; 375:341-5. [PMID: 18706892 PMCID: PMC2573464 DOI: 10.1016/j.bbrc.2008.07.163] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is dysregulated in many cancers. eIF4E, through its mRNA export and translation functions, combinatorially modulates the expression of genes involved in Akt dependent survival signaling. For these activities, eIF4E must bind the 7-methyl guanosine (m(7)G) cap moiety on the 5'-end of mRNAs. We demonstrate that a physical mimic of the m(7)G cap, ribavirin, inhibits eIF4E dependent Akt survival signaling. Specifically, ribavirin impairs eIF4E mediated Akt activation via inhibiting the production of an upstream activator of Akt, NBS1. Consequently, ribavirin impairs eIF4E dependent apoptotic rescue. A ribavirin analog with distinct physico-chemical properties, tiazofurin, does not impair eIF4E activity indicating that only analogs that mimic the m(7)G cap will inhibit eIF4E function. Ribavirin represents a first-in-class strategy to inhibit eIF4E dependent cancers, through competition for m(7)G cap binding. Thus, ribavirin coordinately impairs eIF4E dependent pathways and thereby, potently inhibits its biological effects.
Collapse
Affiliation(s)
| | | | - Abdellatif Amri
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H4M 1J6, Canada
| | - Katherine L.B. Borden
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H4M 1J6, Canada
| |
Collapse
|
27
|
|
28
|
Popsavin M, Spaić S, Svircev M, Kojić V, Bogdanović G, Popsavin V. Synthesis and antitumour activity of new tiazofurin analogues bearing a 2,3-anhydro functionality in the furanose ring. Bioorg Med Chem Lett 2007; 17:4123-7. [PMID: 17543526 DOI: 10.1016/j.bmcl.2007.05.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 12/01/2022]
Abstract
This paper describes a divergent de novo synthesis of 2-(2,3-anhydro-beta-dribofuranosyl)thiazole-4-carboxamide (2',3'-anhydro-tiazofurin) and the corresponding alpha- and beta-homo-C-nucleosides, as well as evaluation of their antitumour activities in vitro.
Collapse
Affiliation(s)
- Mirjana Popsavin
- Department of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia.
| | | | | | | | | | | |
Collapse
|
29
|
Popsavin M, Spaić S, Svircev M, Kojić V, Bogdanović G, Popsavin V. 2-(3-Amino-3-deoxy-β-d-xylofuranosyl)thiazole-4-carboxamide: A new tiazofurin analogue with potent antitumour activity. Bioorg Med Chem Lett 2006; 16:5317-20. [PMID: 16908146 DOI: 10.1016/j.bmcl.2006.07.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
A new tiazofurin analogue, 2-(3-amino-3-deoxy-beta-d-xylofuranosyl)thiazole-4-carboxamide (3), was synthesized starting from d-glucose and evaluated for its in vitro antiproliferative activity against a panel of human tumour cell lines. Compound 3 exhibited the most powerful cytotoxicity against K562 cells, being approximately 100-fold more potent than tiazofurin. This analogue was also active against Jurkat, HT-29 and HeLa malignant cells, with respective IC(50) values being ca. 2-, 27- and 17-fold lower than those observed for tiazofurin. Remarkably, compound 3 did not exhibit any significant cytotoxicity towards normal foetal lung MRC-5 cell line.
Collapse
Affiliation(s)
- Mirjana Popsavin
- Department of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia.
| | | | | | | | | | | |
Collapse
|
30
|
Oláh E, Kökény S, Papp J, Bozsik A, Keszei M. Modulation of cancer pathways by inhibitors of guanylate metabolism. ACTA ACUST UNITED AC 2006; 46:176-90. [PMID: 16857242 DOI: 10.1016/j.advenzreg.2006.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Edith Oláh
- Department of Molecular Genetics, National Institute of Oncology, Ráth György utca 7, Budapest 1122, Hungary.
| | | | | | | | | |
Collapse
|
31
|
Pejanović V, Piperski V, Ugljesić-Kilibarda D, Tasić J, Dacević M, Medić-Mijacević L, Gunić E, Popsavin M, Popsavin V. Synthesis and biological activity of some new 5′-O-acyl tiazofurin derivatives. Eur J Med Chem 2006; 41:503-12. [PMID: 16519966 DOI: 10.1016/j.ejmech.2006.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/2006] [Accepted: 01/17/2006] [Indexed: 11/22/2022]
Abstract
Three new 5'-O-acyl tiazofurin derivatives 2-4 were synthesized and evaluated for their antiproliferative activity against different tumour cell lines as well as for their ability to induce apoptosis in C6 cells in vitro. Apart of the antitumour assays, the cell membrane permeation of 2-4 and their intracellular metabolism in C6 cells in vitro was also studied in order to evaluate their potential as possible tiazofurin bioisosteres or prodrugs.
Collapse
Affiliation(s)
- Vjera Pejanović
- Department of Chemistry, Faculty of Sciences, University of Novi Sad, Serbia & Montenegro.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Popsavin M, Torović L, Svircev M, Kojić V, Bogdanović G, Popsavin V. Synthesis and antiproliferative activity of two new tiazofurin analogues with 2'-amido functionalities. Bioorg Med Chem Lett 2006; 16:2773-6. [PMID: 16495053 DOI: 10.1016/j.bmcl.2006.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/30/2022]
Abstract
Two novel tiazofurin analogues 2 and 3 were synthesized starting from d-glucose. The key step of the synthesis was the efficient one-step hydrogen sulfide-mediated conversion of 2-azido-3-O-acyl-ribofuranosyl cyanides to the corresponding 2-amido thiocarboxamides. Compounds 2 and 3 were evaluated for their in vitro antiproliferative activity against certain human tumour cell lines. Remarkably, compound 2 was found to be 570-fold more potent than tiazofurin against MCF-7 cells, while compound 3 showed the most powerful cytotoxicity against HT-29 cancer cells, being almost 100-fold more active than tiazofurin.
Collapse
Affiliation(s)
- Mirjana Popsavin
- Department of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
33
|
Gu JJ, Santiago L, Mitchell BS. Synergy between imatinib and mycophenolic acid in inducing apoptosis in cell lines expressing Bcr-Abl. Blood 2004; 105:3270-7. [PMID: 15604220 DOI: 10.1182/blood-2004-10-3864] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bcr-Abl tyrosine kinase activity initiates a number of intracellular signaling cascades that result in leukemogenesis. Imatinib mesylate, a specific Bcr-Abl tyrosine kinase inhibitor, has been highly successful in the treatment of chronic myelogenous leukemia (CML). However, the emergence of imatinib resistance and the incomplete molecular response of a significant number of patients receiving this therapy have led to a search for combinations of drugs that will enhance the efficacy of imatinib. We have demonstrated that mycophenolic acid (MPA), a specific inosine monophosphate dehydrogenase (IMPDH) inhibitor that results in depletion of intracellular guanine nucleotides, is synergistic with imatinib in inducing apoptosis in Bcr-Abl-expressing cell lines. Studies of signaling pathways downstream of Bcr-Abl demonstrated that the addition of MPA to imatinib reduced the phosphorylation of both Stat5 and Lyn, a Src kinase family member. The phosphorylation of S6 ribosomal protein was also greatly reduced. These results demonstrate that inhibitors of guanine nucleotide biosynthesis may synergize with imatinib in reducing the levels of minimal residual disease in CML and lay the foundation for clinical trials in which IMPDH inhibitors are added to imatinib in patients who have suboptimal molecular responses to single agent therapy or who have progressive disease.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|