1
|
Ożga K, Stepuch P, Maciejewski R, Sadok I. Promising Gastric Cancer Biomarkers-Focus on Tryptophan Metabolism via the Kynurenine Pathway. Int J Mol Sci 2025; 26:3706. [PMID: 40332338 DOI: 10.3390/ijms26083706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, gastric cancer treatment remains an enormous challenge and requires a multidisciplinary approach. Globally, the incidence and prevalence of gastric cancer vary, with the highest rates found in East Asia, Central Europe, and Eastern Europe. Early diagnosis is critical for successful surgical removal of gastric cancer, but the disease often develops asymptomatically. Therefore, many cases are diagnosed at an advanced stage, resulting in poor survival. Metastatic gastric cancer also has a poor prognosis. Therefore, it is urgent to identify reliable molecular disease markers and develop an effective medical treatment for advanced stages of the disease. This review summarizes potential prognostic or predictive markers of gastric cancer. Furthermore, the role of tryptophan metabolites from the kynurenine pathway as prognostic, predictive, and diagnostic factors of gastric cancer is discussed, as this metabolic pathway is associated with tumor immune resistance.
Collapse
Affiliation(s)
- Kinga Ożga
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Paweł Stepuch
- II Department of Oncological Surgery with Subdivision of Minimal Invasive Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090 Lublin, Poland
| | - Ryszard Maciejewski
- Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland
| | - Ilona Sadok
- Department of Biomedical and Analytical Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| |
Collapse
|
2
|
Yamamoto Y, Goto N, Kambara K, Fujigaki S, Fujigaki H, Takemura M, Nabeshima T, Tomita A, Saito K. Usefulness of the 3-hydroxykynurenine/kynurenic acid ratio as a diagnostic biomarker for diffuse larger B-cell lymphoma. Ann Clin Biochem 2025; 62:109-117. [PMID: 39439179 DOI: 10.1177/00045632241297873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
ObjectivesReports have shown that the kynurenine pathway, one of the pathways by which tryptophan is metabolized, is activated in patients with diffuse large B-cell lymphoma (DLBCL). Activation of the kynurenine pathway triggers the production of various metabolites, such as kynurenine (Kyn), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), kynurenic acid (KA), and anthranilic acid (AA), which contribute to immune tolerance. The current study aimed to investigate the changes in metabolites of kynurenine pathway in DLBCL patients and evaluate their performance predicting DLBCL.MethodsChanges in metabolites of kynurenine pathway were examined using high-performance liquid chromatography in 35 DLBCL patients (age 61.2 ± 13.5 years) and 44 healthy controls (age 58.5 ± 12.5 years).ResultsDLBCL patients had significantly higher levels of 3-HK, AA, and 3-HAA but lower levels of tryptophan (Trp) and KA compared to healthy controls. Given that the ratio of each metabolite represents the change in the Kyn pathway, the 3-HK/KA ratio was examined. Notably, DLBCL patients had a significantly higher 3-HK/KA ratio compared to healthy controls. In DLBCL, the area under the receiver operative characteristic (ROC) curve for 3-HK/KA (0.999) was higher than that for lactate dehydrogenase (0.885) and comparable to that for soluble interleukin-2 receptor (sIL-2R) (0.997). Based on ROC curve analysis, the 3-HK/KA ratio was found to be useful biomarker for the diagnosis of DLBCL.ConclusionOur results suggest that the 3-HK/KA ratio is a clinically useful biomarker of DLBCL. Moreover, its combination with existing markers, such as sIL-2R, can improve its effectiveness of diagnosing DLBCL.
Collapse
Affiliation(s)
- Yasuko Yamamoto
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Naoe Goto
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kengo Kambara
- Medical Systems Research & Development Center, Medical Systems Business Division, FUJIFILM Corporation, Amagasaki, Japan
| | - Suwako Fujigaki
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Hidetsugu Fujigaki
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Masao Takemura
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University, Toyoake, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan
- Laboratory of Health and Medical Science Innovation, Fujita Health University, Toyoake, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| |
Collapse
|
3
|
Zhou H, Xiang W, Zhou G, Rodrigues-Lima F, Guidez F, Wang L. Metabolic dysregulation in myelodysplastic neoplasm: impact on pathogenesis and potential therapeutic targets. Med Oncol 2024; 42:23. [PMID: 39644425 DOI: 10.1007/s12032-024-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in the research of the pathogenesis mechanisms of Myelodysplastic Neoplasm (MDS) in recent years, there are still many gaps to fill. The advancement of metabolomics studies has led to a research booming in clarifying the impact of metabolic abnormalities during the pathogenesis of MDS. The present review primarily focuses on the dysregulated metabolic pathways, exploring the influences on the pathogenesis of MDS and their roles during the course of the disease. Furthermore, we discuss the potential of relevant metabolic pathways as therapeutic targets, along with the latest metabolic-related treatment drugs and approaches.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle Et Adaptative, 75013, Paris, France
| | - Fabien Guidez
- Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, 75010, Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
4
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
5
|
Dual-target inhibitors of indoleamine 2, 3 dioxygenase 1 (Ido1): A promising direction in cancer immunotherapy. Eur J Med Chem 2022; 238:114524. [PMID: 35696861 DOI: 10.1016/j.ejmech.2022.114524] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that catalyzes the kynurenine (Kyn) pathway of tryptophan metabolism in the first step, and the kynurenine pathway plays a fundamental role in immunosuppression in the tumor microenvironment. Therefore, researchers are vigorously developing IDO1 inhibitors, hoping to apply them to cancer immunotherapy. Nowadays, there have been 11 kinds of IDO1 inhibitors entering clinical trials, among which many inhibitors have shown good tumor inhibitory effect in phase I/II clinical trials. But the phase III study of the most promising IDO1 inhibitor compound 29 (Epacadostat) failed in 2018, which may be caused by the compensation effect offered by tryptophan 2,3-dioxygenase (TDO), the mismatched drug combination strategies, or other reasons. Luckily, dual-target inhibitors show great potential and advantages in solving these problems. In recent years, many studies have linked IDO1 to popular targets and selected many IDO1 dual-target inhibitors through pharmacophore fusion strategy and library construction, which enhance the tumor inhibitory effect and reduce side effects. Currently, three kinds of IDO1/TDO dual-target inhibitors have entered clinical trials, and extensive studies have been developing on IDO1 dual-target inhibitors. In this review, we summarize the IDO1 dual-target inhibitors developed in recent years and focus on the structure optimization process, structure-activity relationship, and the efficacy of in vitro and in vivo experiments, shedding a light on the pivotal significance of IDO1 dual-target inhibitors in the treatment of cancer, providing inspiration for the development of new IDO1 dual-target inhibitors.
Collapse
|
6
|
Roussel X, Garnache Ottou F, Renosi F. Plasmacytoid Dendritic Cells, a Novel Target in Myeloid Neoplasms. Cancers (Basel) 2022; 14:cancers14143545. [PMID: 35884612 PMCID: PMC9317563 DOI: 10.3390/cancers14143545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the main type I interferon producing cells in humans and are able to modulate innate and adaptive immune responses. Tumor infiltration by plasmacytoid dendritic cells is already well described and is associated with poor outcomes in cancers due to the tolerogenic activity of pDC. In hematological diseases, Blastic Plasmacytoid Dendritic Cells Neoplasm (BPDCN), aggressive leukemia derived from pDCs, is well described, but little is known about tumor infiltration by mature pDC described in Myeloid Neoplasms (MN). Recently, mature pDC proliferation (MPDCP) has been described as a differential diagnosis of BPDCN associated with acute myeloid leukemia (pDC-AML), myelodysplastic syndrome (pDC-MDS) and chronic myelomonocytic leukemia (pDC-CMML). Tumor cells are myeloid blasts and/or mature myeloid cells from related myeloid disorders and pDC derived from a clonal proliferation. The poor prognosis associated with MPDCP requires a better understanding of pDC biology, MN oncogenesis and immune response. This review provides a comprehensive overview about the biological aspects of pDCs, the description of pDC proliferation in MN, and an insight into putative therapies in pDC-AML regarding personalized medicine.
Collapse
Affiliation(s)
- Xavier Roussel
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Department of Clinical Hematology, University Hospital of Besançon, 25000 Besançon, France
- Correspondence: (X.R.); (F.R.)
| | - Francine Garnache Ottou
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
- Correspondence: (X.R.); (F.R.)
| |
Collapse
|
7
|
Di Martino L, Tosello V, Peroni E, Piovan E. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. Int J Mol Sci 2021; 22:ijms22168738. [PMID: 34445444 PMCID: PMC8395761 DOI: 10.3390/ijms22168738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia. This review summarizes the latest findings regarding the most relevant metabolic pathways contributing to the continuous growth, redox homeostasis, and drug resistance of leukemia cells. We describe the main metabolic deregulations in acute leukemia and evidence vulnerabilities that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Edoardo Peroni
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
- Correspondence: ; Tel.: +39-049-8215895
| |
Collapse
|
8
|
Kynurenines as a Novel Target for the Treatment of Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14070606. [PMID: 34201791 PMCID: PMC8308824 DOI: 10.3390/ph14070606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Malignancies are unquestionably a significant public health problem. Their effective treatment is still a big challenge for modern medicine. Tumors have developed a wide range of mechanisms to evade an immune and therapeutic response. As a result, there is an unmet clinical need for research on solutions aimed at overcoming this problem. An accumulation of tryptophan metabolites belonging to the kynurenine pathway can enhance neoplastic progression because it causes the suppression of immune system response against cancer cells. They are also involved in the development of the mechanisms responsible for the resistance to antitumor therapy. Kynurenine belongs to the most potent immunosuppressive metabolites of this pathway and has a significant impact on the development of malignancies. This fact prompted researchers to assess whether targeting the enzymes responsible for its synthesis could be an effective therapeutic strategy for various cancers. To date, numerous studies, both preclinical and clinical, have been conducted on this topic, especially regarding the inhibition of indoleamine 2,3-dioxygenase activity and their results can be considered noteworthy. This review gathers and systematizes the knowledge about the role of the kynurenine pathway in neoplastic progression and the findings regarding the usefulness of modulating its activity in anticancer therapy.
Collapse
|
9
|
Fultang L, Gneo L, De Santo C, Mussai FJ. Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies. Front Oncol 2021; 11:674720. [PMID: 34094976 PMCID: PMC8174708 DOI: 10.3389/fonc.2021.674720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor cells require a higher supply of nutrients for growth and proliferation than normal cells. It is well established that metabolic reprograming in cancers for increased nutrient supply exposes a host of targetable vulnerabilities. In this article we review the documented changes in expression patterns of amino acid metabolic enzymes and transporters in myeloid malignancies and the growing list of small molecules and therapeutic strategies used to disrupt amino acid metabolic circuits within the cell. Pharmacological inhibition of amino acid metabolism is effective in inducing cell death in leukemic stem cells and primary blasts, as well as in reducing tumor burden in in vivo murine models of human disease. Thus targeting amino acid metabolism provides a host of potential translational opportunities for exploitation to improve the outcomes for patients with myeloid malignancies.
Collapse
Affiliation(s)
- Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Luciana Gneo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis J Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Jia Y, Guo J, Zhao Y, Zhang Z, Shi L, Fang Y, Wu D, Wu L, Chang C. AHR signaling pathway reshapes the metabolism of AML/MDS cells and potentially leads to cytarabine resistance. Acta Biochim Biophys Sin (Shanghai) 2021; 53:492-500. [PMID: 33709099 DOI: 10.1093/abbs/gmab017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests that aryl hydrocarbon receptor (AHR) promotes the initiation, invasion, progression, and metastasis of cancer cells. However, its effects in patients with myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) remain undefined. In this study, we aimed to investigate the effects of AHR activation on malignant cells in patients with MDS/AML. We found that AHR was expressed aberrantly in patients with MDS/AML. Further studies demonstrated that inhibiting AHR decreased the mitochondrial dehydrogenase content and the mitochondrial membrane potential (MMP) in MDS/AML cells. Activating AHR with L-kynurenine (Kyn) increased AHR expression, which was accompanied by an increase in mitochondrial dehydrogenase content and MMP in MDS/AML cells. Moreover, the expression level of mitochondria-associated mitochondrial transcription factor A was increased after activating AHR with L-Kyn when compared with that in the control group but decreased after inhibiting the AHR signal. Activating AHR in MDS/AML cells enhanced the resistance to cytarabine. These findings indicated that activating the AHR signaling pathway reshaped the metabolism in MDS/AML cells, thus contributing to the resistance to cytarabine.
Collapse
Affiliation(s)
- Yan Jia
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Ying Fang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
11
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020; 9:1777625. [PMID: 32934882 PMCID: PMC7466863 DOI: 10.1080/2162402x.2020.1777625] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first, rate-limiting step of the so-called “kynurenine pathway”, which converts the essential amino acid L-tryptophan (Trp) into the immunosuppressive metabolite L-kynurenine (Kyn). While expressed constitutively by some tissues, IDO1 can also be induced in specific subsets of antigen-presenting cells that ultimately favor the establishment of immune tolerance to tumor antigens. At least in part, the immunomodulatory functions of IDO1 can be explained by depletion of Trp and accumulation of Kyn and its derivatives. In animal tumor models, genetic or pharmacological IDO1 inhibition can cause the (re)activation of anticancer immune responses. Similarly, neoplasms expressing high levels of IDO1 may elude anticancer immunosurveillance. Therefore, IDO1 inhibitors represent promising therapeutic candidates for cancer therapy, and some of them have already entered clinical evaluation. Here, we summarize preclinical and clinical studies testing IDO1-targeting interventions for oncologic indications.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
12
|
Leisch M, Greil R, Pleyer L. IDO in MDS/AML disease progression and its role in resistance to azacitidine: a potential new drug target? Br J Haematol 2020; 190:314-317. [PMID: 32419137 PMCID: PMC7496607 DOI: 10.1111/bjh.16710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory of Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.,Paracelsus Medical University, Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory of Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.,Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Lisa Pleyer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory of Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.,Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
13
|
Sibon D, Coman T, Rossignol J, Lamarque M, Kosmider O, Bayard E, Fouquet G, Rignault R, Topçu S, Bonneau P, Bernex F, Dussiot M, Deroy K, Laurent L, Callebert J, Launay JM, Georgin-Lavialle S, Courtois G, Maroteaux L, Vaillancourt C, Fontenay M, Hermine O, Côté F. Enhanced Renewal of Erythroid Progenitors in Myelodysplastic Anemia by Peripheral Serotonin. Cell Rep 2020; 26:3246-3256.e4. [PMID: 30893598 DOI: 10.1016/j.celrep.2019.02.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022] Open
Abstract
Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia. We identify, both in human and murine erythroid progenitors, a functional cell-autonomous serotonergic network with pro-survival and proliferative functions. In vivo studies demonstrate that pharmacological increase of serotonin levels using fluoxetine, a common antidepressant, has the potential to become an important therapeutic strategy in low-risk MDS anemia refractory to erythropoietin.
Collapse
Affiliation(s)
- David Sibon
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Tereza Coman
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Département d'Hématologie, Gustave Roussy Cancer Campus Grand Paris, 94800 Villejuif, France
| | - Julien Rossignol
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Département d'Hématologie, Gustave Roussy Cancer Campus Grand Paris, 94800 Villejuif, France
| | - Mathilde Lamarque
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivier Kosmider
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, APHP, Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Elisa Bayard
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Guillemette Fouquet
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Rachel Rignault
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Selin Topçu
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pierre Bonneau
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, Montpellier 34298, France; INSERM, U1194, Network of Experimental Histology, BioCampus, CNRS, UMS3426, Montpellier 34094, France
| | - Michael Dussiot
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Kathy Deroy
- INRS-Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Montreal, QC H7V 1B7, Canada
| | - Laetitia Laurent
- INRS-Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Montreal, QC H7V 1B7, Canada
| | - Jacques Callebert
- Service de Biochimie, INSERM U942, Hôpital Lariboisière, 75010 Paris, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM U942, Hôpital Lariboisière, 75010 Paris, France
| | - Sophie Georgin-Lavialle
- Département de Médecine Interne, Hôpital Tenon, Université Pierre et Marie Curie, AP-HP, 4 rue de la Chine, 75020 Paris, France
| | - Geneviève Courtois
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Luc Maroteaux
- INSERM UMR-S1270, Sorbonne Universités, Université Pierre et Marie Curie, Institut du Fer à Moulin, 75005 Paris, France
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Montreal, QC H7V 1B7, Canada
| | - Michaela Fontenay
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, APHP, Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Olivier Hermine
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Department of Hematology, Hôpital Necker AP-HP, 75015 Paris, France
| | - Francine Côté
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France.
| |
Collapse
|
14
|
Müller-Thomas C, Heider M, Piontek G, Schlensog M, Bassermann F, Kirchner T, Germing U, Götze KS, Rudelius M. Prognostic value of indoleamine 2,3 dioxygenase in patients with higher-risk myelodysplastic syndromes treated with azacytidine. Br J Haematol 2020; 190:361-370. [PMID: 32350858 DOI: 10.1111/bjh.16652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Hypomethylating agents (HMAs) are widely used in patients with higher-risk myelodysplastic syndromes (MDS) not eligible for stem cell transplantation; however, the response rate is <50%. Reliable predictors of response are still missing, and it is a major challenge to develop new treatment strategies. One current approach is the combination of azacytidine (AZA) with checkpoint inhibitors; however, the potential benefit of targeting the immunomodulator indoleamine-2,3-dioxygenase (IDO-1) has not yet been evaluated. We observed moderate to strong IDO-1 expression in 37% of patients with high-risk MDS. IDO-1 positivity was predictive of treatment failure and shorter overall survival. Moreover, IDO-1 positivity correlated inversely with the number of infiltrating CD8+ T cells, and IDO-1+ patients failed to show an increase in CD8+ T cells under AZA treatment. In vitro experiments confirmed tryptophan catabolism and depletion of CD8+ T cells in IDO-1+ MDS, suggesting that IDO-1 expression induces an immunosuppressive microenvironment in MDS, thereby leading to treatment failure under AZA treatment. In conclusion, IDO-1 is expressed in more than one-third of patients with higher-risk MDS, and is predictive of treatment failure and shorter overall survival. Therefore, IDO-1 is emerging as a promising predictor and therapeutic target, especially for combination therapies with HMAs or checkpoint inhibitors.
Collapse
Affiliation(s)
- Catharina Müller-Thomas
- Department of Medicine I, Hematology and Oncology, München Klinik Schwabing, Munich, Germany.,Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany
| | - Michael Heider
- Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Schlensog
- Institute of Pathology, Heinrich-Heine University, Duesseldorf, Germany
| | - Florian Bassermann
- Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Duesseldorf, Germany
| | - Katharina S Götze
- Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Walczak K, Wnorowski A, Turski WA, Plech T. Kynurenic acid and cancer: facts and controversies. Cell Mol Life Sci 2020; 77:1531-1550. [PMID: 31659416 PMCID: PMC7162828 DOI: 10.1007/s00018-019-03332-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Kynurenic acid (KYNA) is an endogenous tryptophan metabolite exerting neuroprotective and anticonvulsant properties in the brain. However, its importance on the periphery is still not fully elucidated. KYNA is produced endogenously in various types of peripheral cells, tissues and by gastrointestinal microbiota. Furthermore, it was found in several products of daily human diet and its absorption in the digestive tract was evidenced. More recent studies were focused on the potential role of KYNA in carcinogenesis and cancer therapy; however, the results were ambiguous and the biological activity of KYNA in these processes has not been unequivocally established. This review aims to summarize the current views on the relationship between KYNA and cancer. The differences in KYNA concentration between physiological conditions and cancer, as well as KYNA production by both normal and cancer cells, will be discussed. The review also describes the effect of KYNA on cancer cell proliferation and the known potential molecular mechanisms of this activity.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| |
Collapse
|
16
|
Angeli A, Ferraroni M, Nocentini A, Selleri S, Gratteri P, Supuran CT, Carta F. Polypharmacology of epacadostat: a potent and selective inhibitor of the tumor associated carbonic anhydrases IX and XII. Chem Commun (Camb) 2019; 55:5720-5723. [PMID: 31038135 DOI: 10.1039/c8cc09568j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epacadostat (EPA), a selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor, has been investigated in vitro as a human (h) Carbonic Anhydrase Inhibitor (CAI). The kinetic data clearly show, for the first time, EPA to be a highly effective and selective inhibitor for the tumor-associated isoforms hCA IX/XII. We report the high resolution X-ray crystal structure of the EPA-hCA II adduct, and assessed its binding mode to CA IX/XII by means of computational techniques. EPA may exert antitumor effects also due to the potent inhibition of the tumor-associated CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Farmaceutica e Nutraceutica, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, Kalergis AM. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol 2019; 106:933-942. [PMID: 31091352 PMCID: PMC7166882 DOI: 10.1002/jlb.4ru0219-051rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
IDO is an enzyme that participates in the degradation of tryptophan (Trp), which is an essential amino acid necessary for vital cellular processes. The degradation of Trp and the metabolites generated by the enzymatic activity of IDO can have immunomodulating effects, notably over T cells, which are particularly sensitive to the absence of Trp and leads to the inhibition of T cell activation, cell death, and the suppression of T cell effector functions. Noteworthy, T cells participate in the cellular immune response against the human respiratory syncytial virus (hRSV) and are essential for viral clearance, as well as the total recovery of the host. Furthermore, inadequate or non‐optimal polarization of T cells is often seen during the acute phase of the disease caused by this pathogen. Here, we discuss the capacity of hRSV to exploit the immunosuppressive features of IDO to reduce T cell function, thus acquiring relevant aspects during the biology of the virus. Additionally, we review studies on the influence of IDO over T cell activation and its relationship with hRSV infection.
Collapse
Affiliation(s)
- Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Serotonin, hematopoiesis and stem cells. Pharmacol Res 2019; 140:67-74. [DOI: 10.1016/j.phrs.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 02/08/2023]
|
19
|
Dhanak D, Edwards JP, Nguyen A, Tummino PJ. Small-Molecule Targets in Immuno-Oncology. Cell Chem Biol 2017; 24:1148-1160. [PMID: 28938090 DOI: 10.1016/j.chembiol.2017.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023]
Abstract
Advances in understanding the role and molecular mechanisms underlying immune surveillance and control of (pre)malignancies is revolutionizing clinical practice in the treatment of cancer. Presently, multiple biologic drugs targeting the immune checkpoint proteins PD(L)1 or CTLA4 have been approved and/or are in advanced stages of clinical development for many cancers. In addition, combination therapy with these agents and other immunomodulators is being intensively explored with the aim of improving primary response rates or prolonging overall survival. The effectiveness of cancer immunotherapy with biologics is spurring research in alternate approaches including small-molecule-mediated targeting of intracellular pathways modulating the innate and adaptive immune response. This focus of this review is on some of the key intracellular pathways where the development of a small-molecule therapeutic is attractive, tractable, and potentially synergistic with extracellular biologic-mediated immune checkpoint blockade.
Collapse
Affiliation(s)
- Dashyant Dhanak
- Discovery Sciences, Janssen Research & Development, 1400 McKean Road, P O Box 776, Spring House, PA 19477, USA.
| | - James P Edwards
- Discovery Sciences, Janssen Research & Development, 1400 McKean Road, P O Box 776, Spring House, PA 19477, USA
| | - Ancho Nguyen
- Immuno Oncology Discovery, Janssen Research & Development, 1400 McKean Road, P O Box 776, Spring House, PA 19477, USA
| | - Peter J Tummino
- Discovery Sciences, Janssen Research & Development, 1400 McKean Road, P O Box 776, Spring House, PA 19477, USA
| |
Collapse
|
20
|
Mesenchymal Stem Cells in Myeloid Malignancies: A Focus on Immune Escaping and Therapeutic Implications. Stem Cells Int 2017; 2017:6720594. [PMID: 28947904 PMCID: PMC5602646 DOI: 10.1155/2017/6720594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
The importance of the bone marrow microenvironment forming the so-called niche in physiologic hemopoiesis is largely known, and recent evidences support the presence of stromal alterations from the molecular to the cytoarchitectural level in hematologic malignancies. Various alterations in cell adhesion, metabolism, cytokine signaling, autophagy, and methylation patterns of tumor-derived mesenchymal stem cells have been demonstrated, contributing to the genesis of a leukemic permissive niche. This niche allows both the ineffective haematopoiesis typical of myelodysplastic syndromes and the differentiation arrest, proliferation advantage, and clone selection which is the hallmark of acute myeloid leukemia. Furthermore, the immune system, both adaptive and innate, encompassing mesenchymal-derived cells, has been shown to take part to the leukemic niche. Here, we critically review the state of art about mesenchymal stem cell role in myelodysplastic syndromes and acute myeloid leukemia, focusing on immune escaping mechanisms as a target for available and future anticancer therapies.
Collapse
|
21
|
Ait-Belkacem R, Bol V, Hamm G, Schramme F, Van Den Eynde B, Poncelet L, Pamelard F, Stauber J, Gomes B. Microenvironment Tumor Metabolic Interactions Highlighted by qMSI: Application to the Tryptophan-Kynurenine Pathway in Immuno-Oncology. SLAS DISCOVERY 2017; 22:1182-1192. [PMID: 28557618 DOI: 10.1177/2472555217712659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhibition of NK and effector T-cell functions and activation of regulatory cell populations are the main immunosuppressive effects of indoleamine-2,3-dioxygenase1 (IDO1). By converting tryptophan (Trp) into kynurenine (Kyn), IDO1 is involved in the immune response homeostasis, and its dysregulated expression is described in immune-related pathologies, as tumors that hijack it to evade immune destruction. Thereby, IDO1 inhibitors are being developed to stimulate antitumor immune responses. Existing and standard quantitation methods of IDO1 substrate and metabolite(s) are based on the total level of Trp and its metabolites determined by liquid chromatography tandem mass spectrometry analysis in human plasma, cerebrospinal fluid, and brain. Here, we describe the detection, localization, and absolute quantitation of Trp and Kyn by quantitative mass spectrometry imaging (qMSI) in transfected murine tumor models expressing various levels of IDO1. Myeloid, glycolysis metabolic signatures, and correlation between IDO1 expression and Trp to Kyn conversion are also shown. High-definition IDO1 and GCN2 immunostainings overlaid with Kyn molecular images underline the tumor metabolism and heterogeneity. The development of immunotherapies such as IDO1 inhibitors requires a deep understanding of the immune system, the interplay of cancer cells, and biomarker characterization. Our data underline that qMSI allows the study of the spatial distribution and quantitation of endogenous immune metabolites for biology and pharmacology studies.
Collapse
Affiliation(s)
| | - Vanesa Bol
- 2 iTeos Therapeutics SA, Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur J Cancer 2017; 76:167-182. [PMID: 28324751 DOI: 10.1016/j.ejca.2017.01.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO, also referred to as IDO1) has been demonstrated to be a normal endogenous mechanism of acquired peripheral immune tolerance in vivo. In the field of oncology, IDO expression and/or activity has been observed in several cancer types and has usually been associated with negative prognostic factors and worse outcome measures. This manuscript reviews current available data on the role of IDO in cancer and the current results obtained with IDO inhibition, both in animal models and in phase 1 and 2 clinical trials in humans. Preliminary results with IDO inhibitors, usually combined with other anti-cancer drugs, seem encouraging. Further studies are needed to clarify the conditions in which IDO inhibitors can be of value as an anti-cancer strategy. In addition, further research should address whether the expression of IDO in tissue or blood can be a marker to select patients who can benefit most from IDO inhibition.
Collapse
Affiliation(s)
- Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Belgium; Dermatology Research Unit, Ghent, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium; Cancer Research Institute Ghent (CRIG), Belgium.
| | - Ines Chevolet
- Department of Dermatology, Ghent University Hospital, Belgium; Dermatology Research Unit, Ghent, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium
| | - Vibeke Kruse
- Department of Medical Oncology, Ghent University Hospital, Belgium; Immuno-Oncology Network Ghent (ION Ghent), Belgium
| |
Collapse
|
23
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
24
|
Vick E, Mahadevan D. Programming the immune checkpoint to treat hematologic malignancies. Expert Opin Investig Drugs 2016; 25:755-70. [PMID: 27070269 DOI: 10.1080/13543784.2016.1175433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Hematologic malignancies manipulate the immune suppressive pathways involving CTLA-4, PD-1, and others to promote immune tolerance of cancer. New monoclonal antibodies targeting immune checkpoints are showing meaningful responses in the treatment of relapsed and refractory Hodgkin lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia. The basis for success of anti-PD-1 therapy appears to be expression of PD-L1 on tumor cells and cells of the tumor microenvironment (TME). While adverse events associated with immune checkpoint inhibitors are capable of generating auto-immune phenomena, in general these therapies are well tolerated. AREAS COVERED In this review, the authors discuss the development of immune checkpoint inhibitors and activators which hold promise as useful therapies in malignancies of hematologic origin, since many exploit endogenous pathways to induce tolerance. By programming the immune response to attack hematologic malignancies, unique regimens can be developed to optimally treat patients with curative potential. EXPERT OPINION The utilization of immune checkpoint targeting agents to boost the innate and acquired immune systems to eradicate human malignancies represents a unique opportunity to develop novel therapies with increased clinical efficacy. Side effects of these therapies come with the price of auto-immune phenomena that require appropriate management.
Collapse
Affiliation(s)
- Eric Vick
- a Department of Hematology and Oncology , University of Tennessee Health Science Center/West Cancer Center , Memphis , TN , USA
| | - Daruka Mahadevan
- b Department of Hematology and Oncology , University of Arizona Cancer Center , Tucson , AZ , USA
| |
Collapse
|
25
|
Chevolet I, Speeckaert R, Schreuer M, Neyns B, Krysko O, Bachert C, Hennart B, Allorge D, van Geel N, Van Gele M, Brochez L. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma. Oncoimmunology 2015; 4:e982382. [PMID: 25949897 DOI: 10.4161/2162402x.2014.982382] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022] Open
Abstract
In melanoma, both the induction of immunosuppression by tumor cells and the inflammatory antitumor response can induce an upregulation of counter-regulatory mechanisms such as indoleamine 2,3-dioxygenase (IDO), programmed death-ligand 1 (PD-L1) and CTLA-4+ regulatory T-cells (Tregs) in the tumor microenvironment. Even though these immunosuppressive mediators are targets for immunotherapy, research investigating their expression in the peripheral blood is lacking. We therefore, performed flow cytometry on PBMCs of stage I-IV melanoma patients. IDO expression was detected in plasmacytoid dendritic cells (pDC) and monocytic myeloid-derived suppressor cells (mMDSC), and increased in advanced disease stage (p = 0.027). Tryptophan breakdown confirmed the functional activity of IDO and was linked with increased PD-L1+ cytotoxic T-cells (p = 0.009), relative lymphopenia (p = 0.036), and a higher mDC/pDC ratio (p = 0.002). High levels of circulating PD-L1+ cytotoxic T-cells were associated with increased CTLA-4 expression by Tregs (p = 0.005) and MDSC levels (p = 0.033). This illustrates that counter-regulatory immune mechanisms in melanoma should be considered as one interrelated signaling network. Moreover, both increased PD-L1+ T-cells and CTLA-4 expression in Tregs conferred a negative prognosis, indicating their in vivo relevance. Remarkably, circulating CTLA-4, IDO, and pDC levels were altered according to prior invasion of the sentinel lymph node and IDO expression in the sentinel was associated with more IDO+ PBMCs. We conclude that the expression of IDO, PD-L1, and CTLA-4 in the peripheral blood of melanoma patients is strongly interconnected, associated with advanced disease and negative outcome, independent of disease stage. Combination treatments targeting several of these markers are therefore likely to exert a synergistic response.
Collapse
Key Words
- AJCC
- American Joint Committee on Cancer system
- CC, correlation coefficientCTLA-4
- Cytotoxic T Lymphocyte-Associated Antigen 4
- DC, dendritic cells
- HR, hazard ratio
- IDO, indoleamine 2, 3-dioxygenase
- IFNγ, interferon-gamma
- IQR, interquartile range
- Kyn, kynurenine
- MDSC, myeloid-derived suppressor cells
- MFI, mean fluorescence intensity
- OS, overall survival
- PBMC, peripheral blood mononuclear cells
- PD-1, programmed cell death protein 1
- PD-L1, Programmed-Death Ligand 1
- Treg, regulatory T-cell
- Tryp, tryptophan
- UPLC, ultra-performance liquid chromatography
- cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
- indoleamine 2-3-dioxygenase (IDO)
- mDC, myeloid DC
- mMDSC, monocytic MDSC
- melanoma
- negative feedback mechanism
- pDC, plasmacytoid DC
- pmnMDSC, polymorphonuclear MDSC
- prognosis
- programmed-death ligand 1 (PD-L1)
- regulatory T-cells
Collapse
Affiliation(s)
- I Chevolet
- Department of Dermatology; Ghent University Hospital Ghent, Belgium
| | - R Speeckaert
- Department of Dermatology; Ghent University Hospital Ghent, Belgium
| | - M Schreuer
- Department of Medical Oncology ; UZ-Brussel ; Brussels, Belgium ; Department of Medical Oncology; Ghent University Hospital ; Ghent, Belgium
| | - B Neyns
- Department of Medical Oncology ; UZ-Brussel ; Brussels, Belgium
| | - O Krysko
- Upper Airways Research Laboratory; Ghent University Hospital ; Ghent, Belgium
| | - C Bachert
- Upper Airways Research Laboratory; Ghent University Hospital ; Ghent, Belgium
| | - B Hennart
- Laboratoire de Toxicologie; CHU Lille ; Lille, France
| | - D Allorge
- Laboratoire de Toxicologie; CHU Lille ; Lille, France
| | - N van Geel
- Department of Dermatology; Ghent University Hospital Ghent, Belgium
| | - M Van Gele
- Department of Dermatology; Ghent University Hospital Ghent, Belgium
| | - L Brochez
- Department of Dermatology; Ghent University Hospital Ghent, Belgium
| |
Collapse
|
26
|
Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 2015; 29:1458-69. [PMID: 25761935 DOI: 10.1038/leu.2015.69] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 12/18/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal hematologic malignancies that are characterized by defective bone marrow (BM) hematopoiesis and by the occurrence of intramedullary apoptosis. During the past decade, the identification of key genetic and epigenetic alterations in patients has improved our understanding of the pathophysiology of this disease. However, the specific molecular mechanisms leading to the pathogenesis of MDS have largely remained obscure. Recently, essential evidence supporting the direct role of innate immune abnormalities in MDS has been obtained, including the identification of multiple key regulators that are overexpressed or constitutively activated in BM hematopoietic stem and progenitor cells. Mounting experimental results indicate that the dysregulation of these molecules leads to abnormal hematopoiesis, unbalanced cell death and proliferation in patients' BM, and has an important role in the pathogenesis of MDS. Furthermore, there is compelling evidence that the deregulation of innate immune and inflammatory signaling also affects other cells from the immune system and the BM microenvironment, which establish aberrant associations with hematopoietic precursors and contribute to the MDS phenotype. Therefore, the deregulation of innate immune and inflammatory signaling should be considered as one of the driving forces in the pathogenesis of MDS. In this article, we review and update the advances in this field, summarizing the results from the most recent studies and discussing their clinical implications.
Collapse
|
27
|
Kesikli SA, Guler N. Chemotherapeutic Agents in Cancer Treatment and Tryptophan Metabolism. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2015:291-333. [DOI: 10.1007/978-3-319-15630-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994. [PMID: 25941578 DOI: 10.4161/21624011.2014.957994] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022] Open
Abstract
Indoleamine 2,3-dioxigenase 1 (IDO1) is the main enzyme that catalyzes the first, rate-limiting step of the so-called "kynurenine pathway", i.e., the metabolic cascade that converts the essential amino acid L-tryptophan (Trp) into L-kynurenine (Kyn). IDO1, which is expressed constitutively by some tissues and in an inducible manner by specific subsets of antigen-presenting cells, has been shown to play a role in the establishment and maintenance of peripheral tolerance. At least in part, this reflects the capacity of IDO1 to restrict the microenvironmental availability of Trp and to favor the accumulation of Kyn and some of its derivatives. Also, several neoplastic lesions express IDO1, providing them with a means to evade anticancer immunosurveillance. This consideration has driven the development of several IDO1 inhibitors, some of which (including 1-methyltryptophan) have nowadays entered clinical evaluation. In animal tumor models, the inhibition of IDO1 by chemical or genetic interventions is indeed associated with the (re)activation of therapeutically relevant anticancer immune responses. This said, several immunotherapeutic regimens exert robust clinical activity in spite of their ability to promote the expression of IDO1. Moreover, 1-methyltryptophan has recently been shown to exert IDO1-independent immunostimulatory effects. Here, we summarize the preclinical and clinical studies testing the antineoplastic activity of IDO1-targeting interventions.
Collapse
Key Words
- 1-methyl-D-tryptophan
- AHR, aryl hydrocarbon receptor
- BIN1, bridging integrator 1
- CTLA4, cytotoxic T lymphocyte associated protein 4
- DC, dendritic cell
- FDA, Food and Drug Administration
- GCN2, general control non-derepressible 2
- HCC, hepatocellular carcinoma
- IDO, indoleamine 2,3-dioxigenase
- IFNγ, interferon γ
- INCB024360
- Kyn, L-kynurenine
- NK, natural killer
- NLG919
- ODN, oligodeoxynucleotide
- TDO2, tryptophan 2,3-dioxigenase
- TLR, Toll-like receptor
- Treg, regulatory T cell
- Trp, L-tryptophan
- indoximod
- interferon γ
- peptide-based anticancer vaccines
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris-Sud/Paris XI; Orsay , Paris, France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Catherine Sautès-Fridman
- INSERM U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM U970 ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France
| | | | - Michael Platten
- Department of Neurooncology; University Hospital Heidelberg and National Center for Tumor Diseases ; Heidelberg, Germany ; German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
29
|
Dolušić E, Frédérick R. Indoleamine 2,3-dioxygenase inhibitors: a patent review (2008 – 2012). Expert Opin Ther Pat 2013; 23:1367-81. [DOI: 10.1517/13543776.2013.827662] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|