1
|
Shao J, Wang W, Li S, Yin G, Han L, Wang X, Cai M, Yang T, Wang Y, Qu W, Jiao Y, Wang P, Xu H, Zhu X, Ying S, Xu S, Sheng Q, Fang J, Jiang T, Wei C, Shen Y, Shen Y. Nuclear Overexpression of SAMHD1 Induces M Phase Stalling in Hepatoma Cells and Suppresses HCC Progression by Interacting with the Cohesin Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411988. [PMID: 39679869 PMCID: PMC11809348 DOI: 10.1002/advs.202411988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression. We constructed liver tissue microarrays using tumor and paired paratumor tissue specimens from 187 patients with primary HCC. Our findings indicate that nuclear SAMHD1 protein levels are increased in tumors compared to paratumor tissues. Moreover, nuclear SAMHD1 levels decline in advanced tumor stages, with higher SAMHD1 nuclear staining correlating with favorable prognostic outcomes. Hepatocyte-specific SAMHD1 knockout mice, generated by crossing SAMHD1fl/fl mice with Alb-cre mice, showed accelerated tumor progression in a diethylnitrosamine (DEN)-induced HCC model. In hepatoma cell lines, nuclear overexpression of SAMHD1 inhibited cell proliferation by stalling mitosis, independent of its deoxynucleotide triphosphohydrolase (dNTPase) function. Mechanistically, SAMHD1 interacts with the cohesin complex in nucleus, enhancing sister chromatid cohesion during cell division, which delays metaphase progression. Our findings suggest that nuclear SAMHD1 plays a critical role in slowing HCC progression by regulating mitosis, highlighting its potential as a therapeutic target by manipulating cohesin dynamics.
Collapse
Affiliation(s)
- Juntang Shao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wei Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| | - Shiyu Li
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Guangfa Yin
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Lili Han
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xinyu Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Meng Cai
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tao Yang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Ying Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wenyan Qu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yanhong Jiao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Peng Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Hanyang Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xu Zhu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Songcheng Ying
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Sa Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Qiang Sheng
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Jian Fang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tongcui Jiang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Chuansheng Wei
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yujun Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| |
Collapse
|
2
|
He X, Zhang Q, Wang Y, Sun J, Zhang Y, Zhang C. Non-coding RNAs in the spotlight of the pathogenesis, diagnosis, and therapy of cutaneous T cell lymphoma. Cell Death Discov 2024; 10:400. [PMID: 39256366 PMCID: PMC11387814 DOI: 10.1038/s41420-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a group of primary and secondary cutaneous malignancies characterized by aberrant T-cells in the skin. Diagnosing CTCL in its early stage can be difficult because of CTCL's ability to mimic benign cutaneous inflammatory skin diseases. CTCL has multiple subtypes with different disease progression and diagnostic parameters despite similar clinical manifestations. The accurate diagnosis and prognosis of a varied range of diseases require the detection of molecular entities to capture the complete footprint of disease physiology. Non-coding RNAs (ncRNAs) have recently been discovered as major regulators of CTCL gene expression. They can affect tumor cell growth, migration, programmed cell death (PCD), and immunoregulation through interactions with the tumor microenvironment (TME), which in turn affect CTCL progression. This review summarizes recent advances in how ncRNAs regulate CTCL cell activity, especially their role in PCD. It also discusses the potential use of ncRNAs as diagnostic and prognostic biomarkers for different subtypes of CTCL. Furthermore, prospective targets and therapeutic approaches influenced by ncRNAs are presented. A better appreciation of the intricate epigenetic landscape of CTCL is expected to facilitate the creation of innovative targeted therapies for the condition.
Collapse
Affiliation(s)
- Xiao He
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Qian Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Ying Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Patil K, Sher G, Kuttikrishnan S, Moton S, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. The cross-talk between miRNAs and JAK/STAT pathway in cutaneous T cell lymphoma: Emphasis on therapeutic opportunities. Semin Cell Dev Biol 2024; 154:239-249. [PMID: 36216715 DOI: 10.1016/j.semcdb.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 02/25/2023]
Abstract
Mycosis Fungoides (MF) and Sézary Syndrome (SS) belong to a wide spectrum of T cell lymphoproliferative disorders collectively termed cutaneous T cell lymphomas (CTCL). CTCLs represent an archetype of heterogeneous and dynamically variable lymphoproliferative neoplasms typified by distinct clinical, histological, immunophenotypic, and genetic features. Owing to its complex dynamics, the pathogenesis of CTCL remains elusive. However, in recent years, progress in CTCL classification combined with next-generation sequencing analyses has broadened the genetic and epigenetic spectrum of clearly defined CTCL entities such as MF and SS. Several large-scale genome studies have identified the polygenic nature of CTCL and unveiled an idiosyncratic mutational landscape involving genetic aberrations, epigenetic alterations, cell cycle dysregulation, apoptosis, and the constitutive activation of T cell/NF-κB/JAK-STAT signaling pathways. In this review, we summarize the evolving insights on how the intrinsic epigenetic events driven by dysregulated miRNAs, including the oncogenic and tumor-suppressive miRNAs, influence the pathogenesis of MF and SS. We also focus on the interplay between the JAK/STAT pathway and miRNAs in CTCL as well as the significance of the miRNA/STAT axis as a relevant pathogenetic mechanism underlying CTCL initiation and progression. Based on these biologic insights, the current status and recent progress on novel therapies with a strong biological rationale, including miRNA-targeted molecules and JAK/STAT-targeted therapy for CTCL management, are discussed.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Safwan Moton
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33200, USA
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine-New York 10065, New York, USA.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
4
|
Tsai KD, Lee YC, Chen BY, Wu LS, Liang SY, Liu MY, Hung YW, Hsu HL, Chen PQ, Shieh JC, Lee YJ, Lin TH. Recombinant Klotho attenuates IFNγ receptor signaling and SAMHD1 expression through blocking NF-κB translocation in glomerular mesangial cells. Int J Med Sci 2023; 20:810-817. [PMID: 37213666 PMCID: PMC10198147 DOI: 10.7150/ijms.78279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/30/2023] [Indexed: 05/23/2023] Open
Abstract
Interferon gamma (IFNγ) is a cytokine implicated in the pathogenesis of autoimmune diseases. SAM and HD domain-containing protein 1 (SAMHD1) is an IFNγ-inducible protein that modulates cellular dNTP levels. Mutations in the human SAMHD1 gene cause Aicardi-Goutières (AG) syndrome, an autoimmune disease sharing similar clinical features with systemic lupus erythematosus (SLE). Klotho is an anti-inflammatory protein which suppresses aging through multiple mechanisms. Implication of Klotho in autoimmune response is identified in rheumatologic diseases such as SLE. Little information exists regarding the effect of Klotho in lupus nephritis, one of the prevalent symptoms of SLE. The present study verified the effect of IFNγ on SAMHD1 and Klotho expression in MES-13 glomerular mesangial cells, a special cell type in glomerulus that is critically involved in lupus nephritis. IFNγ upregulated SAMHD1 expression in MES-13 cells through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) and the nuclear factor kappa B (NFκB) signaling pathways. IFNγ decreased Klotho protein expression in MES-13 cells. Treatment of MES-13 cells with recombinant Klotho protein inhibited SAMHD1 expression by blocking IFNγ-induced NFκB nuclear translocation, but showed no effect on JAK-STAT1 signaling. Collectively, our findings support the protective role of Klotho in attenuating lupus nephritis through the inhibition of IFNγ-induced SAMHD1 expression and IFNγ downstream signaling in MES-13 cells.
Collapse
Affiliation(s)
- Kuen-Daw Tsai
- Department of Internal Medicine, China Medical University Beigang Hospital, 123 Sinde Road, Beigang Township, Yunlin County, 65152, Taiwan, ROC
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bo-Yu Chen
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Li-Syuan Wu
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Shan-Yuan Liang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Ming-Yuan Liu
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Yu-Wen Hung
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Hui-Ling Hsu
- Department of Respiratory Therapy, China Medical University Beigang Hospital, 123 Sinde Road, Beigang Township, Yunlin County, 65152, Taiwan, ROC
| | - Pei-Qi Chen
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Jia-Ching Shieh
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
| | - Yi-Ju Lee
- Institute of Medicine, Chung Shan Medical University, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
- ✉ Corresponding authors: (T.-H.L.); (Y.-J.L.); Tel.: +886-4-24730022 (ext.11805) (T.-H.L.); +886-4-24730022 (ext. 12008) (Y.-J.L.)
| | - Ting-Hui Lin
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, 110 Jianguo North Road, Section 1, Taichung 40203, Taiwan, ROC
- ✉ Corresponding authors: (T.-H.L.); (Y.-J.L.); Tel.: +886-4-24730022 (ext.11805) (T.-H.L.); +886-4-24730022 (ext. 12008) (Y.-J.L.)
| |
Collapse
|
5
|
Chen Z, Jiang Z, Meng L, Wang Y, Lin M, Wei Z, Han W, Ying S, Xu A. SAMHD1, positively regulated by KLF4, suppresses the proliferation of gastric cancer cells through MAPK p38 signaling pathway. Cell Cycle 2022; 21:2065-2078. [PMID: 35670736 PMCID: PMC9467599 DOI: 10.1080/15384101.2022.2085356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
SAMHD1 was reported to be related with the development of tumors, while its function in gastric cancer (GC) has not been elucidated yet. Here, we investigated the role and mechanism of SAMHD1 in regulating the proliferation of GC, as well as the mechanism of its expression regulation. Our results revealed that SAMHD1 was downregulated in GC tissues and cell lines, which was correlated with tumor size, depth of invasion and TNM stage. Overexpression of SAMHD1 inhibited the proliferation, clone formation, DNA synthesis and cell cycle progression, while knockdown of SAMHD1 promoted the proliferation of GC cells in vitro and vivo. Meanwhile, SAMHD1 inhibited the activation of MAPK p38 signaling pathway. Moreover, SB203580, as a MAPK p38 inhibitor, could reverse the proliferation and activation of MAPK p38 signaling pathway caused by knockdown of SAMHD1 in GC cells. Additionally, transcription factor Krüppel-like factor 4 (KLF4) bound to the core promoter of SAMHD1, increasing its transcriptional expression in GC cells. In conclusion, SAMHD1 suppressed the proliferation of GC through negatively regulating the activation of MAPK p38 signaling pathway and was upregulated by KLF4 in GC cells.
Collapse
Affiliation(s)
- Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhe Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lei Meng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ye Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Minggui Lin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhijian Wei
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenxiu Han
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Aman Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Targeting SAMHD1: to overcome multiple anti-cancer drugs resistance in hematological malignancies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Schott K, Majer C, Bulashevska A, Childs L, Schmidt MHH, Rajalingam K, Munder M, König R. SAMHD1 in cancer: curse or cure? J Mol Med (Berl) 2021; 100:351-372. [PMID: 34480199 PMCID: PMC8843919 DOI: 10.1007/s00109-021-02131-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1), originally described as the major cellular deoxyribonucleoside triphosphate triphosphohydrolase (dNTPase) balancing the intracellular deoxynucleotide (dNTP) pool, has come recently into focus of cancer research. As outlined in this review, SAMHD1 has been reported to be mutated in a variety of cancer types and the expression of SAMHD1 is dysregulated in many cancers. Therefore, SAMHD1 is regarded as a tumor suppressor in certain tumors. Moreover, it has been proposed that SAMHD1 might fulfill the requirements of a driver gene in tumor development or might promote a so-called mutator phenotype. Besides its role as a dNTPase, several novel cellular functions of SAMHD1 have come to light only recently, including a role as negative regulator of innate immune responses and as facilitator of DNA end resection during DNA replication and repair. Therefore, SAMHD1 can be placed at the crossroads of various cellular processes. The present review summarizes the negative role of SAMHD1 in chemotherapy sensitivity, highlights reported SAMHD1 mutations found in various cancer types, and aims to discuss functional consequences as well as underlying mechanisms of SAMHD1 dysregulation potentially involved in cancer development.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Alla Bulashevska
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Liam Childs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
| |
Collapse
|
8
|
Lai P, Wang Y. Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol Med 2021; 18:34-51. [PMID: 33628583 PMCID: PMC7877166 DOI: 10.20892/j.issn.2095-3941.2020.0216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of skin-homing non-Hodgkin lymphomas. There are limited options for effective treatment of patients with advanced-stage CTCL, leading to a poor survival rate. Epigenetics plays a pivotal role in regulating gene expression without altering the DNA sequence. Epigenetic alterations are involved in virtually all key cancer-associated pathways and are fundamental to the genesis of cancer. In recent years, the epigenetic hallmarks of CTCL have been gradually elucidated and their potential values in the diagnosis, prognosis, and therapeutic intervention have been clarified. In this review, we summarize the current knowledge of the best-studied epigenetic modifications in CTCL, including DNA methylation, histone modifications, microRNAs, and chromatin remodelers. These epigenetic regulators are essential in the development of CTCL and provide new insights into the clinical treatments of this refractory disease.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
9
|
Xagoraris I, Vassilakopoulos TP, Drakos E, Angelopoulou MK, Panitsas F, Herold N, Medeiros LJ, Giakoumis X, Pangalis GA, Rassidakis GZ. Expression of the novel tumour suppressor sterile alpha motif and HD domain-containing protein 1 is an independent adverse prognostic factor in classical Hodgkin lymphoma. Br J Haematol 2021; 193:488-496. [PMID: 33528031 DOI: 10.1111/bjh.17352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The expression patterns and prognostic significance of sterile alpha motif and HD domain-containing protein 1 (SAMHD1) protein in the neoplastic Hodgkin and Reed Sternberg (HRS) cells of Hodgkin lymphoma (HL) were investigated in a cohort of 154 patients with HL treated with standard regimens. SAMHD1 expression was assessed by immunohistochemistry using diagnostic lymph node biopsies obtained prior to treatment. Using an arbitrary 20% cut-off, SAMHD1 was positive in HRS cells of 48/154 (31·2%) patients. SAMHD1 expression was not associated with clinicopathologic parameters, such as age, gender, stage or histologic subtype. In 125 patients with a median follow-up of 90 months (7-401 months), SAMHD1 expression in HRS cells significantly correlated with inferior freedom from progression (FFP) (P = 0·025), disease-specific survival (DSS) (P = 0·013) and overall survival (OS) (P = 0·01). Importantly, in multivariate models together with disease stage, histology subtype and type of treatment as covariates, SAMHD1 expression retained an independent significant association with unfavourable FFP (P = 0·005) as well as DSS (P = 0·022) and OS (P = 0·018). These findings uncover the significance of a novel, adverse prognostic factor in HL that may have therapeutic implications since SAMHD1 inhibitors are now available for clinical use.
Collapse
Affiliation(s)
- Ioanna Xagoraris
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete Medical School, Heraklion Crete, Greece
| | - Maria K Angelopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Fotios Panitsas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Theme Paediatrics, Paediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xanthoula Giakoumis
- Department of Haematology, Athens Medical Center, Psychikon Branch, Athens, Greece
| | - Gerassimos A Pangalis
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece.,Department of Haematology, Athens Medical Center, Psychikon Branch, Athens, Greece
| | - George Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|
11
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|
12
|
Zhang Z, Zheng L, Yu Y, Wu J, Yang F, Xu Y, Guo Q, Wu X, Cao S, Cao L, Song X. Involvement of SAMHD1 in dNTP homeostasis and the maintenance of genomic integrity and oncotherapy (Review). Int J Oncol 2020; 56:879-888. [PMID: 32319570 DOI: 10.3892/ijo.2020.4988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Sterile alpha motif and histidine/aspartic acid domain‑containing protein 1 (SAMHD1), the only deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, plays a crucial role in regulating the dynamic balance and ratio of cellular dNTP pools. Furthermore, SAMHD1 has been reported to be involved in the pathological process of several diseases. Homozygous SAMHD1 mutations have been identified in immune system disorders, such as autoimmune disease Aicardi‑Goutières syndrome (AGS), whose primary pathogenesis is associated with the abnormal accumulation and disproportion of dNTPs. SAMHD1 is also considered to be an intrinsic virus‑restriction factor by suppressing the viral infection process, including reverse transcription, replication, packaging and transmission. In addition, SAMHD1 has been shown to promote genome integrity during homologous recombination following DNA damage, thus being considered a promising candidate for oncotherapy applications. The present review summarizes the molecular mechanisms of SAMHD1 regarding the regulation of dNTP homeostasis and DNA damage response. Additionally, its potential effects on tumorigenesis and oncotherapy are reported.
Collapse
Affiliation(s)
- Zhou Zhang
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lixia Zheng
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yang Yu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinying Wu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Fan Yang
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yingxi Xu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xuan Wu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Sunrun Cao
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
13
|
Xu Y, Wang H, Gao W. MiRNA-610 acts as a tumour suppressor to depress the cisplatin resistance in hepatocellular carcinoma through targeted silencing of hepatoma-derived growth factor. Arch Med Sci 2020; 16:1394-1401. [PMID: 33224339 PMCID: PMC7667417 DOI: 10.5114/aoms.2019.87938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/22/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Hepatic malignancy is one of the most common malignant neoplasms around the globe, and hepatocellular carcinoma (HCC) is the most common type. In this study, the roles and mechanisms of MiRNA-610 in the chemo resistance of HCC will be discussed. MATERIAL AND METHODS The expression of MiRNA-610 and hepatoma-derived growth factor (HDGF) in HCC tissues and cell line was detected by quantitative real-time PCR. The proliferation and chemo resistance were analysed by MTT assay. Flow cytometry was used to examine the apoptosis rate. Luciferase reporter assay was used to verify the correlation between MiRNA-610 and HDGF. HDGF protein expression was detected by Western blot. RESULTS Our study confirmed the low-expression of MiRNA-610 in HCC tissues and cell line. Its low expression was related to high T stages and poor differentiation of HCC, and was a prognostic factor for HCC. MiRNA-610 upregulation inhibited cell proliferation and induced apoptosis of HepG2 cells. MiRNA-610 enhancement decreased the half maximal inhibitory concentration for cisplatin (DDP) and depressed the DDP resistance in HepG2 cells. The specific correlation between MiRNA-610 and HDGF was tested by luciferase reporter assay and western blot. The transfection with HDGF expression vector up-regulated the expression of HDGF protein silenced by MiRNA-610 enhancement. HDGF overexpression was found to reverse partly the regulatory roles of MiRNA-610 on malignancy and DDP resistance. CONCLUSIONS MiRNA-610 not only played a tumour suppressor role in HCC but also affected chemo resistance to DDP. This role is mainly mediated through targeted silencing of the HDGF gene, which may offer a new potential therapeutic target and improve the clinical therapeutic effect for HCC.
Collapse
Affiliation(s)
- Yongqing Xu
- Department of The Twelfth General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Helin Wang
- Department of The Twelfth General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weike Gao
- Department of The Twelfth General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Jiang H, Li C, Liu Z. Expression and Relationship of SAMHD1 with Other Apoptotic and Autophagic Genes in Acute Myeloid Leukemia Patients. Acta Haematol 2019; 143:51-59. [PMID: 31434075 DOI: 10.1159/000500822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND SAM domain- and HD domain-containing protein 1 (SAMHD1) is a cellular enzyme which is responsible for blocking replication in viruses and participates in the progression of many cancers. OBJECTIVE The aim of this study was to correlate the expression level of SAMHD1 with other apoptotic and autophagic genes in acute myeloid leukemia (AML) patients. METHODS In the present study, mRNA levels of SAMHD1 with other apoptotic and autophagic-related genes were evaluated in patients who were newly diagnosed with AML. RESULTS SAMHD1, Bcl-xl, Bax, Bak, XIAP, and cIAP1 were downregulated in the AML group compared to the non-AML group (p < 0.05). SAMHD1 expression did not correlate with the other genes, while most apoptotic genes were positively correlated with each other. SAMHD1 expression was not associated with the blood routine or blast percentage of the AML patients, while Bax, Bak, cIAP2, and LC3 were significantly correlated with white blood cells. No statistically significant differences were found between the studied genes and prognosis stratifications, but Bcl-xl, Bak, cIAP1, and Mcl-1, LC3 were expressed at lower levels in the unfavorable AML group compared to the controls. CONCLUSION SAMHD1 and Bcl-xl, Bax, Bak, XIAP, and cIAP1 were downregulated in AML patients, while there were no significant differences in the clinical characteristics and prognosis with reference to SAMHD1 expression.
Collapse
Affiliation(s)
- Huinan Jiang
- Hematology Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chuan Li
- Hematology Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhuogang Liu
- Hematology Department, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
15
|
BCL6 Inhibitor-Mediated Downregulation of Phosphorylated SAMHD1 and T Cell Activation Are Associated with Decreased HIV Infection and Reactivation. J Virol 2019; 93:JVI.01073-18. [PMID: 30355686 DOI: 10.1128/jvi.01073-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Clearance of HIV-infected germinal center (GC) CD4+ follicular helper T cells (Tfh) after combination antiretroviral therapy (ART) is essential to an HIV cure. Blocking B cell lymphoma 6 (BCL6; the master transcription factor for Tfh cells) represses HIV infection of tonsillar CD4+ Tfh ex vivo, reduces GC formation, and limits immune activation in vivo We assessed the anti-HIV activity of a novel BCL6 inhibitor, FX1, in Tfh/non-Tfh CD4+ T cells and its impact on T cell activation and SAMHD1 phosphorylation (Thr592). FX1 repressed HIV-1 infection of peripheral CD4+ T cells and tonsillar Tfh/non-Tfh CD4+ T cells (P < 0.05) and total elongated and multispliced HIV-1 RNA production during the first round of viral life cycle (P < 0.01). Using purified circulating CD4+ T cells from uninfected donors, we demonstrate that FX1 treatment resulted in downregulation pSAMHD1 expression (P < 0.05) and T cell activation (HLA-DR, CD25, and Ki67; P < 0.01) ex vivo corresponding with inhibition of HIV-1 and HIV-2 replication. Ex vivo HIV-1 reactivation using purified peripheral CD4+ T cells from HIV-infected ART-suppressed donors was also blocked by FX1 treatment (P < 0.01). Our results indicate that BCL6 function contributes to Tfh/non-Tfh CD4+ T cell activation and cellular susceptibility to HIV infection. BCL6 inhibition represents a novel therapeutic strategy to potentiate HIV suppression in Tfh/non-Tfh CD4+ T cells without reactivation of latent virus.IMPORTANCE The expansion and accumulation of HIV-infected BCL6+ Tfh CD4+ T cells are thought to contribute to the persistence of viral reservoirs in infected subjects undergoing ART. Two mechanisms have been raised for the preferential retention of HIV within Tfh CD4+ T cells: (i) antiretroviral drugs have limited tissue distribution, resulting in insufficient tissue concentration and lower efficacy in controlling HIV replication in lymphoid tissues, and (ii) cytotoxic CD8+ T cells within lymphoid tissues express low levels of chemokine receptor (CXCR5), thus limiting their ability to enter the GCs to control/eliminate HIV-infected Tfh cells. Our results indicate that the BCL6 inhibitor FX1 can not only repress HIV infection of tonsillar Tfh ex vivo but also suppress HIV infection and reactivation in primary, non-Tfh CD4+ T cells. Our study provides a rationale for targeting BCL6 protein to extend ART-mediated reduction of persistent HIV and/or support strategies toward HIV remission beyond ART cessation.
Collapse
|
16
|
Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients. Med Microbiol Immunol 2018; 208:679-691. [PMID: 30564919 DOI: 10.1007/s00430-018-0574-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/24/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the contribution of SAMHD1 to HIV-1 infection in vivo and its relationship with IFN response, the expression of SAMHD1 and IFN-related pathways was evaluated in HIV-1-infected patients. METHODS Peripheral blood mononuclear cells (PBMC) from 388 HIV-1-infected patients, both therapy naïve (n = 92) and long-term HAART treated (n = 296), and from 100 gender and age-matched healthy individuals were examined. CD4+ T cells, CD14+ monocytes and gut biopsies were also analyzed in HIV-1-infected subjects on suppressive antiretroviral therapy. Gene expression levels of SAMDH1, ISGs (MxA, MxB, HERC5, IRF7) and IRF3 were evaluated by real-time RT-PCR assays. RESULTS SAMHD1 levels in HIV-1-positive patients were significantly increased compared to those in healthy donors. SAMHD1 expression was enhanced in treated patients compared to naïve patients (p < 0.0001) and healthy donors (p = 0.0038). Virologically suppressed treated patients exhibited higher SAMHD1 levels than healthy donors (p = 0.0008), viraemic patients (p = 0.0001) and naïve patients (p < 0.0001). SAMHD1 levels were also increased in CD4+ T cells compared to those in CD14+ monocytes and in PBMC compared to those of GALT. Moreover, SAMHD1 was expressed more strongly than ISGs in HIV-1-infected patients and positive correlations were found between SAMHD1, ISGs and IRF3 levels. CONCLUSIONS SAMHD1 is more strongly expressed than the classical IFN-related genes, increased during antiretroviral therapy and correlated with ISGs and IRF3 in HIV-1-infected patients.
Collapse
|
17
|
Kodigepalli KM, Li M, Bonifati S, Panfil AR, Green PL, Liu SL, Wu L. SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice. Cell Cycle 2018; 17:2564-2576. [PMID: 30474474 DOI: 10.1080/15384101.2018.1550955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) and functions as a negative regulator in the efficacy of cytarabine treatment of acute myeloid leukemia (AML). We have reported that SAMHD1 knockout (KO) increased the activity of phosphoinositide 3-kinase (PI3K) in AML-derived THP-1 cells and attenuated their ability to form subcutaneous tumors in xenografted immunodeficient mice. However, the functional significance of SAMHD1 in controlling AML leukemogenesis remains unclear. Previous studies show that in vitro transformation of Madin-Darby canine kidney (MDCK) epithelial cells by the Jaagsiekte sheep retrovirus (JSRV) envelope protein requires activation of the PI3K/Akt oncogenic signaling pathway. Using this cell transformation model, we demonstrated that ectopic expression of wild-type human SAMHD1 or a dNTPase-defective SAMHD1 mutant (HD/AA) significantly inhibited MDCK cell transformation, but did not affect cell proliferation. To visualize and quantify THP-1 cell growth and metastasis in xenografted immunodeficient mice, we generated luciferase-expressing stable SAMHD1 KO THP-1 cells and control THP-1 cells, which were injected intravenously into immunodeficient mice. Bioluminescence imaging and quantification analysis of xenografted mice revealed that SAMHD1 KO cell-derived tumors had similar growth and metastatic potential compared with control cells at 35 days post-injection. However, mice xenografted with SAMHD1 KO cells showed greater survival compared with mice injected with control cells. Our data suggest that exogenous SAMHD1 expression suppresses in vitro cell transformation independently of its dNTPase activity, and that endogenous SAMHD1 affects AML tumorigenicity and disease progression in vivo.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Minghua Li
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Serena Bonifati
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Amanda R Panfil
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Patrick L Green
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,b Department of Cancer Biology and Genetics , The Ohio State University , Columbus , OH , USA.,c Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA
| | - Shan-Lu Liu
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,d Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,c Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA.,d Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
18
|
Lin Z, Li D, Cheng W, Wu J, Wang K, Hu Y. MicroRNA-181 Functions as an Antioncogene and Mediates NF-κB Pathway by Targeting RTKN2 in Ovarian Cancers. Reprod Sci 2018; 26:1071-1081. [PMID: 30309296 DOI: 10.1177/1933719118805865] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNA (miR)-181 has been reported to participate in carcinogenesis and tumor progression in several malignant cancers, but its expression and biological functions in ovarian cancer have remained largely unclarified. Here, we first measured miR-181 expression in clinical ovarian cancers and found the expression levels of miR-181 were significantly lower in ovarian cancer tissues than that in adjacent tissues. Next, we screened and identified a direct miR-181 target, Rhotekin2 (RTKN2). A correlation between miR-181 and RTKN2 expression was also confirmed in clinical samples of ovarian cancers. Upregulation of miR-181 would specifically and markedly suppress RTKN2 expression. The miR-181-overexpressing subclones showed significant cell growth inhibition by cell apoptosis induction and significant impairment of cell invasiveness in SKOV3 and HO8910 ovarian cancer cells. To identify the mechanisms, we investigated the NF-κB pathway and found that nuclear factor-kappa B (NF-κB), B-cell lymphoma-2 (Bcl-2), and vascular endothelial growth factor (VEGF) were suppressed, whereas IκBα was promoted in miR-181-overexpressing cells. These findings indicate that miR-181 functions as a tumor suppressor and plays a substantial role in inhibiting the tumorigenesis and reversing the metastasis of ovarian cancer through RTKN2-NF-κB signaling pathway in vitro. Taken together, we believe that miR-181 may be a promising therapeutic target for treating malignant ovarian cancers.
Collapse
Affiliation(s)
- Zilin Lin
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Dehao Li
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Wenjia Cheng
- 2 Surgery of Nanlou Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Jiajia Wu
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Kun Wang
- 1 Medical Department, General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Hu
- 3 Department of Oncology, General Hospital of the People's Liberation Army, Beijing, China
| |
Collapse
|
19
|
Kodigepalli KM, Bonifati S, Tirumuru N, Wu L. SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis. Cell Cycle 2018; 17:1124-1137. [PMID: 29911928 DOI: 10.1080/15384101.2018.1480218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase that acts as a negative regulator in the efficacy of cytarabine treatment against acute myeloid leukemia (AML). However, the role of SAMHD1 in AML development and progression remains unknown. We have reported that SAMHD1 knockout (KO) in the AML-derived THP-1 cells results in enhanced proliferation and reduced apoptosis, but the underlying mechanisms are unclear. Here we show that SAMHD1 KO in THP-1 cells increased PI3K activity and reduced expression of the tumor suppressor PTEN. Pharmacological inhibition of PI3K activity reduced cell proliferation specifically in SAMHD1 KO cells, suggesting that SAMHD1 KO-induced cell proliferation is mediated via enhanced PI3K signaling. However, PI3K inhibition did not significantly affect SAMHD1 KO-reduced apoptosis, implicating the involvement of additional mechanisms. SAMHD1 KO also led to enhanced phosphorylation of p27 at residue T157 and its mis-localization to the cytoplasm. Inhibition of PI3K activity reversed these effects, indicating that SAMHD1 KO-induced changes in p27 phosphorylation and localization is mediated via PI3K-Akt signaling. While SAMHD1 KO significantly enhanced THP-1 cell migration in vitro, SAMHD1 KO attenuated the ability of THP-1 cells to form subcutaneous tumors in xenografted immunodeficient mice. This effect correlated with significantly increased expression of tumor necrosis factor α (TNF-α) in tumors, which may suggest that TNF-α-mediated inflammation could account for the decreased tumorigenicity in vivo. Our findings implicate that SAMHD1 can regulate AML cell proliferation via modulation of the PI3K-Akt-p27 signaling axis, and that SAMHD1 may affect tumorigenicity by downregulating inflammation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,b Center for Cardiovascular Research , Nationwide Children's Hospital Research Institute , Columbus , OH , USA
| | - Serena Bonifati
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Nagaraja Tirumuru
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,c Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA.,d Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
20
|
A Cyclin-Binding Motif in Human SAMHD1 Is Required for Its HIV-1 Restriction, dNTPase Activity, Tetramer Formation, and Efficient Phosphorylation. J Virol 2018; 92:JVI.01787-17. [PMID: 29321329 DOI: 10.1128/jvi.01787-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) regulates intracellular deoxynucleoside triphosphate (dNTP) levels and functions as a retroviral restriction factor through its dNTP triphosphohydrolase (dNTPase) activity. Human SAMHD1 interacts with cell cycle regulatory proteins cyclin A2, cyclin-dependent kinase 1 (CDK1), and CDK2. This interaction mediates phosphorylation of SAMHD1 at threonine 592 (T592), which negatively regulates HIV-1 restriction. We previously reported that the interaction is mediated, at least in part, through a cyclin-binding motif (RXL, amino acids [aa] 451 to 453). To understand the role of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of RXL mutants and the effect on HIV-1 restriction. We found that the RXL mutation (R451A and L453A, termed RL/AA) disrupted SAMHD1 tetramer formation and abolished its dNTPase activity in vitro and in cells. Compared to wild-type (WT) SAMHD1, the RL/AA mutant failed to restrict HIV-1 infection and had reduced binding to cyclin A2. WT SAMHD1 and RL/AA mutant proteins were degraded by Vpx from HIV-2 but were not spontaneously ubiquitinated in the absence of Vpx. Analysis of proteasomal and autophagy degradation revealed that WT and RL/AA SAMHD1 protein levels were enhanced only when both pathways of degradation were simultaneously inhibited. Our results demonstrate that the RXL motif of human SAMHD1 is required for its HIV-1 restriction, tetramer formation, dNTPase activity, and efficient phosphorylation at T592. These findings identify a new functional domain of SAMHD1 important for its structural integrity, enzyme activity, phosphorylation, and HIV-1 restriction.IMPORTANCE SAMHD1 is the first mammalian dNTPase identified as a restriction factor that inhibits HIV-1 replication by decreasing the intracellular dNTP pool in nondividing cells, although the critical mechanisms regulating SAMHD1 function remain unclear. We previously reported that mutations of a cyclin-binding RXL motif in human SAMHD1 significantly affect protein expression levels, half-life, nuclear localization, and phosphorylation, suggesting an important role of this motif in modulating SAMHD1 functions in cells. To further understand the significance and mechanisms of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of the RXL motif mutation and its effect on HIV-1 restriction. Our results indicate that the RXL motif is critical for tetramer formation, dNTPase activity, and HIV-1 restriction. These findings help us understand SAMHD1 interactions with other host proteins and the mechanisms regulating SAMHD1 structure and functions in cells.
Collapse
|