1
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Han X, Zhang Y, Zhang F, Li X, Meng Y, Huo J, Chen M, Liu F, Wang W, Wang N. Network pharmacology and phytochemical composition combined with validation in vivo and in vitro reveal the mechanism of platycodonis radix ameliorating PM2.5-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118829. [PMID: 39278295 DOI: 10.1016/j.jep.2024.118829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodonis radix (PR), the root of Platycodon grandiflorus (Jacq.) A. DC., is a traditional Chinese medicine recognized for its dual role as both a medicinal and dietary substance, exhibiting significant anti-inflammatory properties. It is frequently utilized in the treatment of lung diseases. However, the molecular mechanisms by which PR exerts its effects in the treatment of acute lung injury (ALI) remain unclear. AIM OF THE STUDY This study presents a novel strategy that integrates network pharmacology, molecular docking, untargeted metabolomics analysis and experimental validation to investigate the molecular mechanisms through which PR treats ALI. MATERIALS AND METHOD Initially, the bioactive components of PR, along with its targets and pathways in the treatment of ALI, were identified using network pharmacology. Following this, preliminary validation was conducted through molecular docking. The active ingredients in the aqueous extract of PR were characterized using HPLC-MS. Finally, in vivo and in vitro experiments were performed to further validate the findings from the network pharmacology. RESULTS A total of 14 bioactive components and 156 effective targets were identified using the TCMSP, DisGeNET, Genecard, OMIM databases and Venny 2.1.0. Protein-protein interaction (PPI) analysis revealed 22 core targets including TP53, AKT1, STAT3 and JUN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these targets primarily participate in the regulation of cellular apoptosis, lung cancer and inflammatory pathways. Molecular docking demonstrated that four bioactive components exhibited strong affinities with their respective docking targets. LC-MS analysis confirmed that the aqueous extract of PR contained 87 components, including two active ingredients identified through network pharmacology and molecular docking. Preliminary validation was conducted in mice with ALI induced by acute PM2.5 exposure, revealing that the aqueous extract of PR reduced inflammatory factor levels in bronchoalveolar lavage fluid, enhanced antioxidant capacity in lung tissue, and decreased lung cell apoptosis in PM2.5-exposed mice. Notably, PR alleviated PM2.5-induced ALI through the STAT3, JUN, and AKT1 signaling pathways. Similarly, the results of in vitro intervention experiments further confirmed that the aqueous extract of PR protected pulmonary epithelial cells against PM2.5 exposure through activating AKT1 sinalling pathway, and inhibiting STAT3 and JUN signalling pathways. CONCLUSION This study identifies the active components of PR and elucidates the molecular mechanisms by which PR alleviates ALI, specifically by inhibiting the phosphorylation levels of STAT3 and c-JUN, or by activating the phosphorylation level of AKT1. These results provide a foundational basis for the application of PR in the treatment or prevention of lung injuries induced by particulate matter.
Collapse
Affiliation(s)
- Xianlei Han
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fan Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanli Meng
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan, 2501011, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan, 2501011, China
| | - Weiming Wang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Zou M, Lei C, Huang D, Liu L, Han Y. Application of plant-derived products as adjuvants for immune activation and vaccine development. Vaccine 2024; 42:126115. [PMID: 38987109 DOI: 10.1016/j.vaccine.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.
Collapse
Affiliation(s)
- Manshu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Chang Lei
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Dan Huang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Lan Liu
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Hunan Province, Changsha 410007, China.
| |
Collapse
|
4
|
Rod-in W, Kim M, Jang AY, Nam YS, Yoo TY, Park WJ. Immunostimulatory Activity of a Mixture of Platycodon grandiflorum, Pyrus serotine, Chaenomeles sinensis, and Raphanus sativus in RAW264.7 Macrophages. Int J Mol Sci 2024; 25:10660. [PMID: 39408990 PMCID: PMC11476558 DOI: 10.3390/ijms251910660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, a mixture of Platycodon grandiflorum, Pyrus serotina, Chaenomeles sinensis, and Raphanus sativus (PPCRE) was investigated for their immuno-enhancing effects, as well as the molecular mechanism of PPCRE in RAW264.7 cells. PPCRE dramatically increased nitric oxide (NO) and prostaglandin E2 (PGE2) generation depending on the concentration while exhibiting no cytotoxicity. PPCRE markedly upregulated the mRNA and protein expression of immune-related cytotoxic factors such as cyclooxygenase (COX)-1, COX-2, and inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), as well as the mRNA level of IL-4. PPCRE increased the mitogen-activated protein kinase (MAPK) signaling pathway by upregulating the phosphorylation of extracellular signal-regulated kinase (ERK), stress-activated protein kinase/Jun N-terminal-kinase (SAPK/JNK), and p38. Furthermore, PPCRE considerably activated the nuclear factor kappa B (NF-κB) signaling pathway by increasing phosphorylation of NF-κB-p65. PPCRE-stimulated RAW264.7 cells increased macrophage phagocytic capacity. In conclusion, our study found that PPCRE improved immune function by modulating inflammatory mediators and regulating the MAPK and NF-κB pathway of signaling in macrophages.
Collapse
Affiliation(s)
- Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (W.R.-i.); (A.-y.J.)
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Minji Kim
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - A-yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (W.R.-i.); (A.-y.J.)
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Yu Suk Nam
- NAAAMYUUU FNC Co., Ltd., 20, Juheung, Seocho, Seoul 06540, Republic of Korea;
| | - Tae Young Yoo
- FD FARM Co., Ltd., Icheon 17300, Gyeonggi, Republic of Korea;
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (W.R.-i.); (A.-y.J.)
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- KBIoRANCh Co., Ltd., Gangneung 25457, Gangwon, Republic of Korea
| |
Collapse
|
5
|
Zhang W, Iqbal J, Hou Z, Fan Y, Dong J, Liu C, Yang T, Che D, Zhang J, Xin D. Genome-Wide Identification of the CYP716 Gene Family in Platycodon grandiflorus (Jacq.) A. DC. and Its Role in the Regulation of Triterpenoid Saponin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1946. [PMID: 39065473 PMCID: PMC11281222 DOI: 10.3390/plants13141946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
The main type of saponins occurring in the root of Platycodon grandiflorus (Jacq.) A. DC. are oleanolic acid glycosides. The CYP716 gene family plays a major role in catalyzing the conversion of β-amyrin into oleanolic acid. However, studies on the CYP716 genes in P. grandiflorus are limited, and its evolutionary history remains poorly understood. In this study, 22 PgCYP716 genes were identified, distributed among seven subfamilies. Cis-acting elements of the PgCYP716 promoters were mainly involved in plant hormone regulation and responses to abiotic stresses. PgCYP716A264, PgCYP716A391, PgCYP716A291, and PgCYP716BWv3 genes were upregulated in the root and during saponin accumulation, as shown by RNA-seq analysis, suggesting that these four genes play an important role in saponin synthesis. The results of subcellular localization indicated that these four genes encoded membrane proteins. Furthermore, the catalytic activity of these four genes was proved in the yeast, which catalyzed the conversion of β-amyrin into oleanolic acid. We found that the content of β-amyrin, platycodin D, platycoside E, platycodin D3, and total saponins increased significantly when either of the four genes was over expressed in the transgenic hair root. In addition, the expression of PgSS, PgGPPS2, PgHMGS, and PgSE was also upregulated while these four genes were overexpressed. These data support that these four PgCYP716 enzymes oxidize β-amyrin to produce oleanolic acid, ultimately promoting saponin accumulation by activating the expression of upstream pathway genes. Our results enhanced the understanding of the functional variation among the PgCYP716 gene family involved in triterpenoid biosynthesis and provided a theoretical foundation for improving saponin content and enriching the saponin biosynthetic pathway in P. grandiflorus.
Collapse
Affiliation(s)
- Wuhua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Javed Iqbal
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Zhihui Hou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Yingdong Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jie Dong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Chengzhi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (J.I.); (Z.H.); (Y.F.); (J.D.); (C.L.); (T.Y.); (D.C.)
- Key Laboratory of Cold Region Landscape Plants and Applications, Harbin 150030, China
| | - Dawei Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Zhang Y, Sun M, He Y, Gao W, Wang Y, Yang B, Sun Y, Kuang H. Polysaccharides from Platycodon grandiflorum: A review of their extraction, structures, modifications, and bioactivities. Int J Biol Macromol 2024; 271:132617. [PMID: 38795891 DOI: 10.1016/j.ijbiomac.2024.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Platycodon grandiflorum (P. grandiflorum) has long been used as a food and traditional herbal medicine. As a food, P. grandiflorum is often transformed into pickles for consumption, and as a traditional Chinese medicine, P. grandiflorum clears the lung, nourishes the pharynx, dispels phlegm, and discharges pus. Polysaccharides are among the main active components of P. grandiflorum. Recent literature has described the preparation, identification, and pharmacological activity of these polysaccharides. Studies have shown that these polysaccharides exhibit a variety of significant biological effects in vitro and in vivo, such as immune stimulation and antioxidant, anti-liver injury, anti-apoptosis and antitumour effects. However, there is no systematic summary of the related research articles on P. grandiflorum polysaccharide, which undoubtedly brings some difficulties to the future research. The purpose of this review is to comprehensively describe research progress on the extraction, purification, structural characterization, modification, and biological activity of P. grandiflorum polysaccharides. The shortcomings of recent research are summarized, further research on their biological activity is proposed to provide new reference value for the application of P. grandiflorum polysaccharides in drugs and health products in the future.
Collapse
Affiliation(s)
- Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
7
|
Wijesekara T, Luo J, Xu B. Critical review on anti-inflammation effects of saponins and their molecular mechanisms. Phytother Res 2024; 38:2007-2022. [PMID: 38372176 DOI: 10.1002/ptr.8164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Han SH, Lee JH, Woo JS, Jung GH, Jung SH, Han EJ, Park YS, Kim BS, Kim SK, Park BK, Jung JY. Platycodin D induces apoptosis via regulating MAPK pathway and promotes autophagy in colon cancer cell. Biomed Pharmacother 2024; 172:116216. [PMID: 38295755 DOI: 10.1016/j.biopha.2024.116216] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Platycodin D (PD) is the main component of triterpene saponins found in Platycodi radix. In this study, we observed a decrease in cell viability, an increase in apoptotic bodies, and an increase in the rate of apoptosis. Also, we observed an increase in cleaved PARP and Bax, a decrease in Bcl-2, and p-ERK, and an increase in p-p38 and p-JNK. Furthermore, a change in cell viability and the expression of p-p38, Bax, and Bcl-2 using the p38 inhibitor revealed a decrease in p-p38 and Bax and an increase in Bcl-2 in the inhibitor treatment group. In addition, we observed an increase in vacuole formation through morphological changes and an increase in acidic vesicular organelles (AVOs). We also observed an increase in the expression of beclin 1, LC 3-I, and -II. There was no significant decrease in cell viability in the group treated with 3-MA, but a decrease in cell viability was noted in the group treated with HCQ. HCQ treatment resulted in an increase in Bax and a decrease in Bcl-2. These findings reveal that in HT-29 colon cancer cells, PD induces apoptosis through the MAPK pathway, thereby exerting anticancer effects. Moreover, autophagy caused by PD inhibits apoptosis by protecting the cells.
Collapse
Affiliation(s)
- So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Gi-Hwan Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Young-Seok Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Byeong-Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Byung-Kwon Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan, Republic of Korea.
| |
Collapse
|
9
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Liu Y, Tian S, Yi B, Feng Z, Chu T, Liu J, Zhang C, Zhang S, Wang Y. Platycodin D sensitizes KRAS-mutant colorectal cancer cells to cetuximab by inhibiting the PI3K/Akt signaling pathway. Front Oncol 2022; 12:1046143. [PMID: 36387129 PMCID: PMC9646952 DOI: 10.3389/fonc.2022.1046143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
Cetuximab is a monoclonal antibody against epidermal growth factor receptor that blocks downstream signaling pathways of receptor tyrosine kinases, including Ras/Raf/MAPK and PI3K/Akt, thereby inhibiting tumor cell proliferation and inducing cancer cell apoptosis. Owing to KRAS mutations, the effectiveness of cetuximab is usually limited by intrinsic drug resistance. Continuous activation of the PI3K/Akt signaling pathway is another reason for cetuximab resistance. Platycodin-D, a bioactive compound isolated from the Chinese herb Platycodon grandiflorum, regulates Akt in different trends based on tissue types. To investigate whether platycodin-D can sensitize KRAS-mutant colorectal cancer cells to cetuximab by inhibiting the PI3K/Akt signaling pathway, HCT116 and LoVo cells were treated with cetuximab and platycodin-D. LY294002 and SC79 were used to regulate Akt to further evaluate whether platycodin-D sensitizes cells to cetuximab by inhibiting Akt. Our results confirmed that platycodin-D increased the cytotoxic effects of cetuximab, including inhibition of growth, migration, and invasion, via downregulation of PI3K and Akt phosphorylation in HCT116 and LoVo cells both in vitro and in vivo. Given these data, platycodin-D may sensitize KRAS-mutant colorectal cancer cells to cetuximab via inhibition of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shifeng Tian
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
11
|
Do KM, Shin MK, Kodama T, Win NN, Prema P, Nguyen HM, Hayakawa Y, Morita H. Flavanols and Flavanes from Crinum asiaticum and Their Effects on LPS Signaling Pathway Through the Inhibition of NF-κB Activation. PLANTA MEDICA 2022; 88:913-920. [PMID: 34474490 DOI: 10.1055/a-1585-5877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three new flavanols, (2R,3S)-7-methoxy-flavan-3-ol (1: ), (2R,3S)-7-hydroxy-flavan-3-ol (2: ), and (2R,3S)-2'-hydroxy-7-methoxy-flavan-3-ol (3: ), together with two known flavans (4: and 5: ), were isolated from the chloroform extract of Crinum asiaticum. Their structures were elucidated by various spectroscopic methods, including 1D and 2D NMR, HR-ESI-MS, and CD data. The isolated compounds 1: and 3: -5: showed inhibitory activity toward LPS-induced nitric oxide (NO) production. Further investigation of the NF-κB pathway mechanisms indicated that 1: and 3: -5: inhibited the LPS-induced IL-6 production and p65 subunit phosphorylation of NF-κB in RAW264.7 cells, with an effective dose of 10 µM.
Collapse
Affiliation(s)
- Kiep Minh Do
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Min-Kyoung Shin
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Nwet Nwet Win
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Prema Prema
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Department of Chemistry, University of Yangon, Yangon, Myanmar
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Srivastava U, Nataraj BH, Kumari M, Kadyan S, Puniya AK, Behare PV, Nagpal R. Antioxidant and immunomodulatory potency of Lacticaseibacillus rhamnosus NCDC24 fermented milk-derived peptides: A computationally guided in-vitro and ex-vivo investigation. Peptides 2022; 155:170843. [PMID: 35878657 DOI: 10.1016/j.peptides.2022.170843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Infections of microbial and non-microbial origins have been associated with significant immunological manifestations, thereby underscoring the need for a thorough understanding and investigation of novel immunomodulatory and antioxidant molecules that could prevent these incidences. To this end, we herein aim to identify fermented milk peptides with antioxidant and immunomodulatory properties that could be exploited for specific future applications. Our computational prediction models indicate that these peptides are non-toxic and possess considerable hydrophobicity (19.82-38.96 %) and functionality. Further analyses reveal that two of the four peptides, i.e., Pep 1 (AGWNIPM) and Pep 4 (YLGYLEQLLR), possess higher in-vitro antioxidant activity. The immunomodulatory potential of these two peptides (Pep 1 and Pep 4) is further demonstrated by using a combination of molecular simulation trajectory and ex-vivo approaches. Both peptides demonstrate ability to control the production of pro- inflammatory (TNF-α, IL-1, and IL-6) and anti-inflammatory (IL-10) cytokines as well as nitric oxide release in LPS-stimulated murine peritoneal macrophages. Similarly, peptide interferences also lead to significant (P < 0.05) improvement in macrophage phagocytic capacity. Taken together, these findings highlight the antioxidant and immunomodulatory properties of fermented milk peptides (Pep 1 and Pep 4) within the cellular environment and should facilitate prospective studies exploring such bioactive peptides and related functional molecules mediating the benefits of fermented milk products on human health.
Collapse
Affiliation(s)
- Umang Srivastava
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Basavaprabhu H Nataraj
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Manorama Kumari
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Saurabh Kadyan
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Anil K Puniya
- Anaerobic Microbiology Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | - Pradip V Behare
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
13
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
14
|
Pham TNA, Kim HL, Lee DR, Choi BK, Yang SH. Anti-inflammatory Effects of Scrophularia buergeriana Extract Mixture Fermented with Lactic Acid Bacteria. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Shen J, Zhu Y, Zhou B, Kong L, Jin Y, Zhang D, Cao Z, Ji J, Li J. In vitro and in vivo evaluation of a water-in-oil microemulsion of platycodin D. Arch Pharm (Weinheim) 2021; 354:e2000497. [PMID: 33844326 DOI: 10.1002/ardp.202000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
Platycodin D (PD) is the active metabolite of Platycodon grandiflorum. The main purpose of this study was to develop and evaluate a water-in-oil (W/O) microemulsion formulation of PD (PD-ME). The PD-ME was successfully prepared by the water titration method at K m = 2, to draw the pseudoternary phase diagrams. Physical characterization including the particle size, pH, refractive index, average viscosity, and polydispersity index (PDI) was performed. The in vivo characteristics were evaluated by intestinal permeability and pharmacokinetic studies. The optimized microemulsion formulation consisted of 100 mg/ml PD aqueous solution, soybean phospholipids, ethanol, and oleic acid (27:39:19:15, w/w). The average viscosity, pH, droplet size, PDI, and zeta potential of the PD-ME were 78.65 ± 0.13 cPa•s, 5.70 ± 0.05, 30.46 ± 0.20 nm, 0.33 ± 0.00, and -3.13 mV, respectively. The drug concentration of the PD-ME was 26.3 ± 0.6 mg/ml. The PD-ME showed significantly higher apparent permeability coefficients than PD (p < .01). The pharmacokinetic studies showed that the PD-ME had significantly higher values of T 1/2 (2.26-fold), AUC0-24h (area under the curve; 1.65-fold), and MRT0-24h (1.58-fold) than PD (p < .01). It can be seen that W/O ME presents a strategy with great promise for enhancing the intestinal permeability and better oral absorption of drugs with high polarity and poor permeability.
Collapse
Affiliation(s)
- Jinyang Shen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, Jiangsu, China
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Yuexia Zhu
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Bingxue Zhou
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Li Kong
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Ye Jin
- Department of Pharmacy, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| | - Di Zhang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Zhiling Cao
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jing Ji
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jiaojiao Li
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| |
Collapse
|
16
|
Li W, Yang HJ. Phenolic Constituents from Platycodon grandiflorum Root and Their Anti-Inflammatory Activity. Molecules 2021; 26:4530. [PMID: 34361683 PMCID: PMC8348564 DOI: 10.3390/molecules26154530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Six lignols (1-6), including two new compounds (+)-(7R,8R)-palmitoyl alatusol D (1) and (+)-(7R,8R)-linoleyl alatusol D (2), along with four phenolics (7-10), a neolignan (11), three alkyl aryl ether-type lignans (12-14), two furofuran-type lignans (15-16), three benzofuran-type lignans (17-19), a tetrahydrofuran-type lignan (20), and a dibenzylbutane-type lignan (21) were isolated from the ethyl acetate-soluble fraction of the methanol extract of Platycodon grandiflorum (Jacq.) A. DC. root. The chemical structures of the obtained compounds were elucidated via high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy analyses. The obtained spectroscopic data agreed well with literature. Among the isolated compounds, eighteen (1-7 and 11-21) were isolated from P. grandiflorum and the Campanulaceae family for the first time. This is the first report on lignol and lignan components of P. grandiflorum. The anti-inflammatory effects of the isolated compounds were examined in terms of their ability to inhibit the production of pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in lipopolysaccharide-stimulated murine RAW264.7 macrophage cells. Nine compounds (4-6, 12, and 15-19) exhibited inhibitory effects on IL-12 p40 production, eleven compounds (1-6, 12, 15-17, and 19) exhibited inhibitory activity on IL-6 production, and eleven compounds (1-6 and 15-19) exhibited inhibitory effects against TNF-α. These results warrant further investigation into the potential anti-inflammatory activity and general benefits of the phenolic constituents of P. grandiflorum root.
Collapse
Affiliation(s)
- Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea;
| | | |
Collapse
|
17
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
18
|
Kim YK, Sathasivam R, Kim YB, Kim JK, Park SU. Transcriptomic Analysis, Cloning, Characterization, and Expression Analysis of Triterpene Biosynthetic Genes and Triterpene Accumulation in the Hairy Roots of Platycodon grandiflorum Exposed to Methyl Jasmonate. ACS OMEGA 2021; 6:12820-12830. [PMID: 34056433 PMCID: PMC8154235 DOI: 10.1021/acsomega.1c01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 05/17/2023]
Abstract
Platycodon grandiflorum is a perennial plant that has been used for medicinal purposes. Specifically, it is widely used in Northern China and Korea for the treatment of various diseases. Terpenoids belong to a group called secondary metabolites and have attracted a wide range of interest. Here, we determined the expressed sequence tag (EST) library of the methyl jasmonate (MeJA)-treated hairy root of P. grandiflorum. In total, 5760 ESTs were obtained, but after deleting the vector sequences and removing poor-quality sequences, a total of 2536 ESTs were attained. Of these, 811 contigs and 1725 singletons were annotated. The data were further analyzed with a focus on the gene families of the terpenoid biosynthetic pathway (TBP). We identified and characterized four TBP genes; among these were three full-length cDNAs encoding PgHMGS, PgMK, and PgMVD, whereas PgHMGR had a partial sequence based on the EST library database. Phylogenetic analysis and a pairwise identity matrix showed that these identified genes were closely related to those of other higher plants. Moreover, the tertiary structure and multiple alignment analysis showed that several distinct conserved motifs were present. Quantitative reverse transcription-polymerase chain reaction results revealed that TBP genes were constitutively expressed in all organs of P. grandiflorum, while the expression of transcript levels of these genes varied distinctly among the organs. Additionally, the total amount of platycosides was highly detected in the root, accumulating in concentrations 7.8 and 2.6 times higher than in the hairy root and stem, respectively, and 1.4 times higher than in the leaf and flower. The highest amount of total phytosterols was found to accumulate in the leaves at 9.3, 9.1, 1.8, and 1.6 times higher than that of the stem, root, hairy root, and flower, respectively. After the hairy root was exposed to the MeJA treatment, the transcript levels of PgHMGS, PgHMGR, PgMK, and PgMVD had significantly increased. The highest level of transcript accumulation occurred at 3 h after initial exposure for most of the genes. Meanwhile, triterpene saponin accumulation increased with the increase in the time of exposure, and at 48 h after initial exposure, the total saponin content was the highest recorded.
Collapse
Affiliation(s)
- Yong-Kyoung Kim
- Division
of Safety Analysis, Experiment and Research Institute, National Agricultural Products Quality Management
Service, Gimcheon 39660, Republic of Korea
| | - Ramaraj Sathasivam
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Yeon Bok Kim
- Department
of Medicinal and Industrial Crops, Korea
National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- . Phone: +82-32-835-8241. Fax: +82-32-835-0763
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- . Phone: +82-42-821-5730. Fax: +82-42-822-2631
| |
Collapse
|
19
|
Su X, Liu Y, Han L, Wang Z, Cao M, Wu L, Jiang W, Meng F, Guo X, Yu N, Gui S, Xing S, Peng D. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Sci Rep 2021; 11:9810. [PMID: 33963244 PMCID: PMC8105318 DOI: 10.1038/s41598-021-89294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lu Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
20
|
Nhan NT, Nguyen PH, Tran MH, Nguyen PDN, Tran DT, To DC. Anti-inflammatory xanthone derivatives from Garcinia delpyana. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:414-422. [PMID: 32432493 DOI: 10.1080/10286020.2020.1767079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Two new xanthones delpyxanthone A (1) and delpyxanthone B (3), together with four known ones, gerontoxanthone I (2), α-mangostin (4), cowanin (5) and cowanol (6) were isolated from the stem bark of Garcinia delpyana. The chemical structures of 1-6 were established mainly using nuclear magnetic resonance (NMR) and mass spectrometry (MS). The anti-inflammatory activity of the isolated compounds was evaluated against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells in vitro. Compounds 1-4 showed significant inhibitory activity against the LPS-induced NO production in RAW264.7 cells with IC50 values ranging from 14.5 to 28.2 μM, but the others were inactive. The results suggested that G. delpyana and its constituents might be potential anti-inflammatory agents on RAW 264.7 cells.[Formula: see text].
Collapse
Affiliation(s)
- Ngu-Truong Nhan
- Faculty of Natural Science and Technology, Tay Nguyen University, 567 Le Duan, Ea Tam, Buon Ma Thuot City 630000, Vietnam
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay district, Hanoi 122100, Vietnam
| | - Manh-Hung Tran
- Biomedical Sciences Department, VNUK Institute for Research and Executive Education, The University of Danang, 158A Le Loi street, Hai Chau district, Da Nang 551000, Vietnam
| | - Phuong-Dai-Nguyen Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, 567 Le Duan, Ea Tam, Buon Ma Thuot City 630000, Vietnam
| | - Dang-Thach Tran
- Industrial University of Vinh, 26 Nguyen Thai Hoc, Doi Cung, Vinh city, Nghe An, Vietnam
| | - Dao-Cuong To
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 12116, Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, 167 Hoang Ngan, Cau Giay district, Hanoi 11313, Vietnam
| |
Collapse
|
21
|
Arita R, Ono R, Saito N, Takayama S, Namiki T, Ito T, Ishii T. Kakkonto, shosaikoto,
Platycodon grandiflorum
root, and gypsum (a Japanese original combination drug known as saikatsugekito): Pharmacological review of its activity against viral infections and respiratory inflammatory conditions and a discussion of its applications to
COVID
‐19. TRADITIONAL & KAMPO MEDICINE 2020. [PMCID: PMC7675610 DOI: 10.1002/tkm2.1258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aim Traditional Japanese (Kampo) medicine has been used to treat viral infectious diseases. In particular, saikatsugekito (a combination drug of kakkonto, shosaikoto, Platicodon glandiflorum root, and gypsum) has been reported to be useful during the past influenza pandemic. The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has spread worldwide, causing the novel coronavirus disease (COVID‐19) to emerge as a pandemic. In this article, we conducted a literature review on the pharmacological activities of the components present in saikatsugekito against viral infection and respiratory inflammation. Methods We searched PubMed and the Cochrane Library for English articles, as well as Ichushi and J‐stage for Japanese articles. Articles published until January 1, 2000 were retrieved using the keywords ‘kakkonto’, ‘shosaikoto’, ‘Platycodon’, and ‘gypsum’. We then extracted articles on basic research investigating viral infections, inflammation, cytokine, the immune response, and lung tissue damage. Results We extracted 28 eligible articles. Kampo medicines have antiviral activities by interfering with the attachment, internalization, replication, progeny virion release, and cell‐to‐cell spreading of single‐strand RNA viruses. They also enhance the immunomodulating activities of the host, including cytokine production, regulation of multiple immune cells, and protection from lung tissue injury. Furthermore, Kampo medicine has been found to regulate body temperature and airway mucin release. Conclusion The results demonstrated that Kampo medicine has therapeutic activities against single‐strand RNA virus infections and respiratory inflammation, and may also have activities against SARS‐CoV‐2. Further research is required to investigate the activity of Kampo medicines, such as saikatsugekito, against SARS‐CoV‐2.
Collapse
Affiliation(s)
- Ryutaro Arita
- Department of Kampo Medicine Tohoku University Hospital Sendai Japan
- Department of Education and Support for Regional Medicine Tohoku University Hospital Sendai Japan
| | - Rie Ono
- Department of Kampo Medicine Tohoku University Hospital Sendai Japan
- Department of Education and Support for Regional Medicine Tohoku University Hospital Sendai Japan
| | - Natsumi Saito
- Department of Kampo Medicine Tohoku University Hospital Sendai Japan
- Department of Education and Support for Regional Medicine Tohoku University Hospital Sendai Japan
| | - Shin Takayama
- Department of Kampo Medicine Tohoku University Hospital Sendai Japan
- Department of Education and Support for Regional Medicine Tohoku University Hospital Sendai Japan
- Department of Kampo and Integrative Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Takao Namiki
- Department of Japanese‐Oriental (Kampo) Medicine Graduate School of Medicine, Chiba University Chiba Japan
| | | | - Tadashi Ishii
- Department of Kampo Medicine Tohoku University Hospital Sendai Japan
- Department of Education and Support for Regional Medicine Tohoku University Hospital Sendai Japan
- Department of Kampo and Integrative Medicine Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
22
|
Farooq S, Mazhar A, Ihsan-Ul-Haq, Ullah N. One-pot multicomponent synthesis of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives and their biological evaluation as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Choi J, Jung YY, Ha IJ, Baek SH, Zhang Z, Kim SY, Hong Y, Kim S, Yeum HW, Jeon SR, Park K, Nam D. In Vitro Anti-Inflammatory and Skin Moisturizing Propertiesof Pilea martini(Levl.) Hand.-Mazz. Extracts. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20967866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The in vitro anti-inflammatory and skin moisturizing activities of Pilea martini (Levl.) Hand.-Mazz. were investigated on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and human immortalized keratinocytes. Chromatographic analysis was performed to identify the chemical composition of the extracts. Pilea martini extracts significantly suppressed LPS-induced nitric oxide, prostaglandin E2, interleukin 6, and tumor necrosis factor α production in dose-dependent manners. In addition, the extracts inhibited LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 proteins and their mRNA expression through causing a downregulation of nuclear factor-κB, activator protein 1, and mitogen-activated protein kinase signaling cascades. The extracts increased the production of hyaluronic acid levels and enhanced the expression levels of both filaggrin and serine palmitoyltransferase regulation. Liquid chromatography-mass spectroscopy analysis showed that the extracts contained 6 different compounds (malic acid, tryptophan, chlorogenic acid, caffeic acid, p-coumaric acid, and isoquercetin) that may contribute to their bioactivities. Taken together, Pilea martini extract showed remarkable promise as an anti-inflammatory and moisturizing agent.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Zhiyun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yejin Hong
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sungyoon Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Won Yeum
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sae-Rom Jeon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungbok Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Dongwoo Nam
- Department of Acupuncture and Moxibustion, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Moniruzzaman M, Mukherjee M, Das D, Chakraborty SB. Effectiveness of melatonin to restore fish brain activity in face of permethrin induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115230. [PMID: 32707355 DOI: 10.1016/j.envpol.2020.115230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Present study demonstrates permethrin induced oxidative damage in fish brain and explores effectiveness of melatonin to ameliorate brain function. Adult female Notopterus notopterus were exposed to nominal permethrin concentrations at 1/20th (0.34 μg/l) and 1/10th (0.68 μg/l) of LC50 for 15 days. The measured permethrin concentrations using gas chromatography (GC-ECD) were 0.28 μg/l and 0.57 μg/l, respectively. Some fish were sacrificed to collect brain tissue after 15 days of exposure. Remaining fish from both groups were administered exogenous melatonin (50 μg/kg, 100 μg/kg body weight) for 7 days and brain tissues were collected. Brain enzymes, ntioxidant factors, HSP70, HSP90, nuclear factor-kappa binding (NFkB), melatonin receptor (MT1R) proteins were measured. Permethrin treatment significantly (P < 0.05) decreased the levels of glutathione and brain enzymes. Malondialdehyde (MDA), xanthine oxidase (XO), HSPs increased at each concentration of permethrin. However, superoxide dismutase, glutathione s-transferase levels increased at low permethrin concentration followed by sharp decrease at higher concentration. Expression of NFkB and MT1R increased significantly (P < 0.05). Melatonin administration reinstated activity of brain enzymes, reduced MDA, XO levels and modulated HSPs. Melatonin also increased expression of NFkB and MT1R. Exogenous melatonin improves oxidative status in permethrin stressed fish brain. Melatonin modulates expression of HSPs that enables brain to become stress tolerant and survive by initiating NFkB translocation. Melatonin could act through melatonin receptor protein to induce synthesis of antioxidant proteins. Therefore the study successfully evaluates the potential of melatonin application for better culture and management of fish against pesticide toxicity.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Mainak Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Debjit Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India.
| |
Collapse
|
25
|
The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats. Molecules 2020; 25:molecules25215020. [PMID: 33138217 PMCID: PMC7662589 DOI: 10.3390/molecules25215020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to assess the activity of extracts from Platycodon grandiflorum A. DC (PG) in a model of chronic bronchitis in rats. The research was carried out on three water extracts: E1 – from roots of field cultivated PG; E2 – from biotransformed roots of PG; E3 – from callus of PG. The extracts differed in saponins and inulin levels—the highest was measured in E3 and the lowest in E1. Identification of secondary metabolites was performed using two complementary LC-MS systems. Chronic bronchitis was induced by sodium metabisulfite (a source of SO2). Animals were treated with extracts for three weeks (100 mg/kg, intragastrically) and endothelial growth factor (VEGF), transforming growth factors (TGF-β1, -β2, -β3), and mucin 5AC (MUC5AC) levels were determined in bronchoalveolar lavage fluid, whereas C reactive protein (CRP) level was measured in serum. Moreover, mRNA expression were assessed in bronchi and lungs. In SO2-exposed rats, an elevation of the CRP, TGF-β1, TGF-β2, VEGF, and mucin was found, but the extracts’ administration mostly reversed this phenomenon, leading to control values. The results showed a strong anti-inflammatory effect of the extracts from PG.
Collapse
|
26
|
Zhang X, Zhai T, Hei Z, Zhou D, Jin L, Han C, Wang J. Effects of Platycodin D on apoptosis, migration, invasion and cell cycle arrest of gallbladder cancer cells. Oncol Lett 2020; 20:311. [PMID: 33093920 PMCID: PMC7573877 DOI: 10.3892/ol.2020.12174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Platycodin D (PD) is a triterpenoid saponin that exists in the roots of Platycodonis. It exhibits evident growth inhibitory effects and potent cytotoxicity against multiple types of cancer. Gallbladder cancer (GBC) is the most common malignant disease of the biliary tract system. Patients with GBC usually have limited available treatment strategies and a poor prognosis. The present study investigated the antitumor effects of PD on human GBC cells in vitro and its underlying molecular mechanisms of action. The results indicated that PD, as assessed using MTT and colony forming assays, induced evident growth inhibition. Flow cytometry indicated that PD robustly induced apoptosis and blocked GBC cells at the G2/M phase. Cell migration and invasion assays demonstrated that PD effectively inhibited the migratory and invasive abilities of GBC cell lines. Western blotting indicated that PD may initiate mitochondrial destruction in GBC cells through the JNK signaling pathway, thereby inducing apoptosis. The present results indicated that PD may exhibit antitumor effects by inducing apoptosis; inhibiting migration and invasion; and affecting the cell cycle in GBC cells. Therefore, PD has the potential to become a novel antitumor drug for GBC therapy.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Tianyu Zhai
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong university School of Medicine, Shanghai 200092, P.R. China
| | - Zhenyu Hei
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Di Zhou
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Longyang Jin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Chao Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Jiandong Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
27
|
Kim SR, Park EJ, Dusabimana T, Je J, Jeong K, Yun SP, Kim HJ, Cho KM, Kim H, Park SW. Platycodon grandiflorus Fermented Extracts Attenuate Endotoxin-Induced Acute Liver Injury in Mice. Nutrients 2020; 12:nu12092802. [PMID: 32933130 PMCID: PMC7551015 DOI: 10.3390/nu12092802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Endotoxin-induced acute liver injury is mediated by an excessive inflammatory response, hepatocellular oxidative stress, and apoptosis. Traditional medicinal plants have been used to treat various disorders. Platycodon grandifloras (PG) has been shown to be beneficial in relieving cough and asthma and to have anti-tumor, anti-inflammatory, anti-diabetic activities. The pharmacological action of PG is mainly due to saponins, flavonoids, phenolic, and other compounds. However, raw PG exhibits some side effects at high doses. Here, we extracted raw PG with varying fermentation methods and examined its anti-inflammatory effect and associated signaling kinases in Raw264.7 cells. Then, we investigated the effect of fermented black PG (FBPG) on endotoxin-induced liver injury. Mice were administered FBPG orally at 1 h before the lipopolysaccharide and D-galactosamine (LPS/GalN) injection and sacrificed after 5 h. Black PG (BPG) and FBPG showed a significant reduction in pro-inflammatory cytokines and extracellular nitric oxide (NO); p-38 and ERK signaling was involved in reducing inducible NO synthase in Raw264.7 cells. Consistently, FBPG attenuates LPS/GalN-induced liver injury; plasma ALT and AST, hepatic necrosis, pro-inflammatory cytokines, apoptosis, and lipid peroxidation were all reduced. In conclusion, PG extracts, particularly FBPG, play anti-inflammatory, antioxidant, and anti-apoptotic roles, alleviating endotoxin-induced acute liver injury. Processing raw PG into FBPG extract may be clinically useful by improving the pharmacologically active ingredients and reducing the required dosage.
Collapse
Affiliation(s)
- So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Kye Man Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
28
|
Hu JN, Leng J, Shen Q, Liu Y, Li XD, Wang SH, Li HP, Wang Z, Wang YP, Li W. Platycodin D suppresses cisplatin-induced cytotoxicity by suppressing ROS-mediated oxidative damage, apoptosis, and inflammation in HEK-293 cells. J Biochem Mol Toxicol 2020; 35:e22624. [PMID: 32881195 DOI: 10.1002/jbt.22624] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin-induced human embryonic kidney 293 (HEK-293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose-dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase-3,-9, and decreased protein levels of Bcl-2, Bcl-XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF-κB-mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shi-Han Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
29
|
Farooq S, Mazhar A, Ghouri A, Ihsan-Ul-Haq, Ullah N. One-Pot Multicomponent Synthesis and Bioevaluation of Tetrahydroquinoline Derivatives as Potential Antioxidants, α-Amylase Enzyme Inhibitors, Anti-Cancerous and Anti-Inflammatory Agents. Molecules 2020; 25:E2710. [PMID: 32545290 PMCID: PMC7321408 DOI: 10.3390/molecules25112710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022] Open
Abstract
Mankind has always suffered from multiple diseases. Therefore, there has been a rigorous need in the field of medicinal chemistry for the design and discovery of new and potent molecular entities. In this work, thirteen tetrahydroquinoline derivatives were synthesized and evaluated biologically for their antioxidant, α-amylase enzyme inhibitory, anti-proliferative and anti-inflammatory activities. SF8 showed the lowest IC50 of 29.19 ± 0.25 µg/mL by scavenging DPPH free radicals. SF5 showed significant antioxidant activity in total antioxidant capacity (TAC) and total reducing power (TRP) assays. SF5 and SF9 showed the maximum inhibition of α-amylase enzyme i.e., 97.47% and 89.93%, respectively, at 200 µg/mL concentration. Five compounds were shortlisted to determine their anti-proliferative potential against Hep-2C cells. The study was conducted for 24, 48 and 72 h. SF8 showed significant results, having an IC50 value of 11.9 ± 1.04 µM at 72 h when compared with standard cisplatin (IC50 value of 14.6 ± 1.01 µM). An in vitro nitric oxide (NO) assay was performed to select compounds for in vivo anti-inflammatory activity evaluation. SF13 scavenged the NO level to a maximum of 85% at 50 µM concentration, followed by SF1 and SF2. Based on the NO scavenging assay results, in vivo anti-inflammatory studies were also performed and the results showed significant activity compared to the standard, acetylsalicylic acid (ASA).
Collapse
Affiliation(s)
| | | | | | | | - Naseem Ullah
- Department of Pharmacy, Faculty of Biological Science, Quaid-I-Azam University, Islamabad 45320, Pakistan; (S.F.); (A.M.); (A.G.); (I.-U.-H.)
| |
Collapse
|
30
|
Bioactive platycodins from Platycodonis Radix: Phytochemistry, pharmacological activities, toxicology and pharmacokinetics. Food Chem 2020; 327:127029. [PMID: 32450486 DOI: 10.1016/j.foodchem.2020.127029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/28/2022]
Abstract
Platycodonis Radix, the root of Platycodon grandiflorum (Jacq.) A. DC., is a well-known edible herbal medicine. It is a common vegetable used for the preparation of side dish, kimchi, dessert, and tea. Besides, it has been used to treat respiratory disease including cough, excessive phlegm, and sore throat for a long history. In the past decades, the bioactive components and the pharmacological activities of Platycodonis Radix have been widely investigated. Thereinto, platycodins, the oleanane-type triterpenoid saponins were demonstrated to be the main bioactive components in Platycodonis Radix, and more than 70 platycodins have been identified up to date. This paper mainly reviewed the phytochemistry, pharmacological activities (apophlegmatic, anti-tussive, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, immunomodulatory, cardiovascular protective, and hepatoprotective activities, etc.), toxicology and pharmacokinetics of platycodins isolated from Platycodonis Radix, aiming to promote further investigation on therapeutic potential of these platycodins.
Collapse
|
31
|
Cho BO, Choi J, Kang HJ, Che DN, Shin JY, Kim JS, Kim SJ, Jang SI. Anti-obesity effects of a mixed extract containing Platycodon grandiflorum, Apium graveolens and green tea in high-fat-diet-induced obese mice. Exp Ther Med 2020; 19:2783-2791. [PMID: 32256761 DOI: 10.3892/etm.2020.8493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The anti-obesity effect of a combination of extracts made of Platycodon grandiflorum (PGE), Apium graveolens (AGE) and green tea (GTE) extracts was investigated in a high-fat diet-induced obese C57BL/6N mouse model. Body weight, epididymal adipose tissue weight, liver weight, adipocytes size and serum lipid profile, insulin, leptin and glucose levels were investigated. Additionally, hepatic steatosis, injury and oxidative burden were evaluated in the present study. The current study demonstrated that the PGE, AGE, and GTE (PAG) mixture were most effective in preventing obesity and its associated complications compared with the single extracts used alone. This was evidenced by the PAG's prevention of weight gain, reduction of adipocyte size, beneficial effects in serum lipid profile, levels of insulin, leptin and glucose, and the prevention of liver injury by reducing fat accumulation in the liver, decreased GOT and GPT enzymes and the upregulation of liver antioxidant enzymes. These results suggested that PAG may provide insights into functional food ingredients for use in the prevention of obesity.
Collapse
Affiliation(s)
- Byoung Ok Cho
- Research Institute, Ato Q&A Co. Ltd., Jeonju, Jeonbuk 54840, Republic of Korea.,Department of Health Management, Jeonju University, Jeonju, Jeonbuk 55069, P.R. China
| | - Jiwon Choi
- Department of Radiological Sciences, Jeonju University, Jeonju, Jeonbuk 55069, Republic of Korea
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co. Ltd., Jeonju, Jeonbuk 54840, Republic of Korea
| | - Denis Nchang Che
- Department of Health Management, Jeonju University, Jeonju, Jeonbuk 55069, P.R. China.,Department of Food Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 54896, P.R. China
| | - Jae Young Shin
- Research Institute, Ato Q&A Co. Ltd., Jeonju, Jeonbuk 54840, Republic of Korea.,Department of Agro-Bio and Food Industry, Jeonju University, Jeonju, Jeonbuk 55069, P.R. China
| | - Ji-Su Kim
- Department of Health Management, Jeonju University, Jeonju, Jeonbuk 55069, P.R. China.,Department of Agro-Bio and Food Industry, Jeonju University, Jeonju, Jeonbuk 55069, P.R. China
| | - Sang Jun Kim
- Functional Food (Drug) R&D Team, Jeonju AgroBio-Materials Institute, Jeonju, Jeonbuk 54810, Republic of Korea
| | - Seon Il Jang
- Research Institute, Ato Q&A Co. Ltd., Jeonju, Jeonbuk 54840, Republic of Korea.,Department of Health Management, Jeonju University, Jeonju, Jeonbuk 55069, P.R. China
| |
Collapse
|
32
|
Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, Pereira DT, Alencar ÉN, Tsapis N, Egito EST. Use of Natural Products in Asthma Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1021258. [PMID: 32104188 PMCID: PMC7040422 DOI: 10.1155/2020/1021258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
Asthma, a disease classified as a chronic inflammatory disorder induced by airway inflammation, is triggered by a genetic predisposition or antigen sensitization. Drugs currently used as therapies present disadvantages such as high cost and side effects, which compromise the treatment compliance. Alternatively, traditional medicine has reported the use of natural products as alternative or complementary treatment. The aim of this review was to summarize the knowledge reported in the literature about the use of natural products for asthma treatment. The search strategy included scientific studies published between January 2006 and December 2017, using the keywords "asthma," "treatment," and "natural products." The inclusion criteria were as follows: (i) studies that aimed at elucidating the antiasthmatic activity of natural-based compounds or extracts using laboratory experiments (in vitro and/or in vivo); and (ii) studies that suggested the use of natural products in asthma treatment by elucidation of its chemical composition. Studies that (i) did not report experimental data and (ii) manuscripts in languages other than English were excluded. Based on the findings from the literature search, aspects related to asthma physiopathology, epidemiology, and conventional treatment were discussed. Then, several studies reporting the effectiveness of natural products in the asthma treatment were presented, highlighting plants as the main source. Moreover, natural products from animals and microorganisms were also discussed and their high potential in the antiasthmatic therapy was emphasized. This review highlighted the importance of natural products as an alternative and/or complementary treatment source for asthma treatment, since they present reduced side effects and comparable effectiveness as the drugs currently used on treatment protocols.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Susiane S. Moreira-Oliveira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, LaSid, UFRN, Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Eryvaldo Sócrates T. Egito
- Graduate Program in Health Sciences, Dispersed System Laboratory (LaSid), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, LaSid, UFRN, Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
| |
Collapse
|
33
|
Anti-Inflammatory Compounds from Vietnamese Piper bavinum. J CHEM-NY 2020. [DOI: 10.1155/2020/1038636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study reports the anti-inflammatory activity-guided fractionation of the aerial part of Piper bavinum C. CD. (Piperaceae) that led to the isolation of eight secondary metabolites (1–8). The chemical structures of 1–8 were established mainly by NMR and mass spectra. Compound 5 was isolated from P. bavinum for the first time. All the isolated compounds were evaluated against LPS-induced NO production in macrophage RAW 264.7 cells in vitro. Among them, compound 4 showed the most potent inhibitory activity against the LPS-induced NO production with an IC50 value of 5.2 μM followed by compound 5 that inhibited NO production with an IC50 value of 13.5 μM. In the protein levels, compound 4 suppressed LPS-induced COX-2 and iNOS expressions in a dose-dependent manner. The results suggested that P. bavinum and its constituents might exert anti-inflammatory effects.
Collapse
|
34
|
Kim TY, Yoon E, Lee D, Imm JY. Antioxidant and anti-inflammatory activities of Platycodon grandiflorum seeds extract. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1770336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tae Yeong Kim
- Department of Foods and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Eseo Yoon
- Department of Foods and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Dabeen Lee
- Research Group of Food Processing, Korea Food Research Institute, Jeollabuk-do, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Kim M, Hwang I, Kim S, Choi A. Chemical characterization of balloon flower ( Platycodon grandiflorum) sprout extracts and their regulation of inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Food Sci Nutr 2020; 8:246-256. [PMID: 31993150 PMCID: PMC6977515 DOI: 10.1002/fsn3.1297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
The balloon flower (BF) is a potent natural source of phytochemical compounds and is associated with our health. The sprouting process is accompanied by significant changes in phytochemical compounds in comparison with their original plants. Even though many studies are conducted with BF, there are not yet reports of BF sprouts. In the present study, we determined the chemical composition and biological activity of BF sprouts that had been cultivated for 50 days. Kaempferol-3-O-galactoside and 1-O-caffeoylquinic acid were identified as major components of whole BF sprouts. The leaves/stems of the sprouts had higher total phenolic and flavonoid contents and lower IC50 values in DPPH• and ABTS•+ scavenging assays than whole sprouts or roots. The roots of the sprouts had the highest polygalacin D content (1.44 mg/g). We also determined the effects of different parts of BF sprouts on RAW 264.7 macrophage cells. When these cells were stimulated with lipopolysaccharide (LPS), their nitrite and pro-inflammatory cytokine production increased. BF sprouts suppressed the LPS-induced production of nitrite, tumor necrosis factor-α, and interleukin-6 in a concentration-dependent manner without causing any cytotoxic effects. Nitrite and pro-inflammatory cytokine production were significantly inhibited by the roots and leaves/stems, respectively. The inhibitory effects of BF sprouts on LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells were associated with suppressed NF-κB activation. These findings suggest that BF sprouts could be a valuable source of bioactive compounds and exert anti-inflammatory effects due to their polygalacin D, deapi-platycodin D3, and polyphenol content.
Collapse
Affiliation(s)
- Mina Kim
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural SciencesRural Development AdministrationWanjuKorea
| | - In‐Guk Hwang
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural SciencesRural Development AdministrationWanjuKorea
| | - Sang‐Bum Kim
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural SciencesRural Development AdministrationWanjuKorea
| | - Ae‐Jin Choi
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural SciencesRural Development AdministrationWanjuKorea
| |
Collapse
|
36
|
Effects of dietary cyanidin-3-diglucoside-5-glucoside complexes with rutin/Mg(II) against H2O2-induced cellular oxidative stress. Food Res Int 2019; 126:108591. [DOI: 10.1016/j.foodres.2019.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
|
37
|
Kim HY, Bae WY, Yu HS, Chang KH, Hong YH, Lee NK, Paik HD. Inula britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Sci Biotechnol 2019; 29:569-578. [PMID: 32296568 DOI: 10.1007/s10068-019-00690-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to increase the bioavailability of Inula britannica (IB) through fermentation with probiotic Weissella cibaria D30, and to evaluate the chemical composition, viability, and anti-inflammatory effect of fermented I. britannica (FIB). IB was fermented with W. cibaria D30 at 37 °C for 24 h. FIB increased total phenolic content and decreased total flavonoid content of IB. 1-O-acetylbritannilactone and ergolide production, which are associated with the viability, increased from 1.38 to 4.13 μg/mg, and decreased from 5.24 to 0.94 μg/mg, in the control and FIB, respectively. In addition, the cell viability of RAW264.7 cells increased when pretreated with 400 μg/mL FIB. FIB inhibited the production of nitric oxide and proinflammatory cytokines by inhibiting NF-κB and MAPKs pathways. Therefore, FIB with W. cibaria D30 reduced the toxicity and increased the anti-inflammatory properties. These results indicate that FIB is a potential beneficial bioactive agent for functional foods.
Collapse
Affiliation(s)
- Hyeong-Yeop Kim
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Won-Young Bae
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyung-Seok Yu
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Kyung-Hoon Chang
- CJ CheilJedang Blossom Park, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Young-Ho Hong
- CJ CheilJedang Blossom Park, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Na-Kyoung Lee
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
38
|
Madrigal DA, Escalante CH, Gutiérrez-Rebolledo GA, Cristobal-Luna JM, Gómez-García O, Hernández-Benitez RI, Esquivel-Campos AL, Pérez-Gutiérrez S, Chamorro-Cevallos GA, Delgado F, Tamariz J. Synthesis and highly potent anti-inflammatory activity of licofelone- and ketorolac-based 1-arylpyrrolizin-3-ones. Bioorg Med Chem 2019; 27:115053. [DOI: 10.1016/j.bmc.2019.115053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023]
|
39
|
Anti-inflammatory activity of Jefea gnaphalioides (a. gray), Astereaceae. Altern Ther Health Med 2019; 19:263. [PMID: 31547823 PMCID: PMC6757400 DOI: 10.1186/s12906-019-2654-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/26/2019] [Indexed: 12/04/2022]
Abstract
Background Inflammation is a symptom associated with many diseases. This symptom is treated with steroidal and non-steroidal anti-inflammatory drugs, which can cause severe side effects when used as long-term treatments. Natural products are an alternative source of new compounds with anti-inflammatory activity. Jefea gnaphalioides (Astereaceae) (A. Gray) is a plant species used to treat inflammatory problems, in Mexico. This study determined the anti-inflammatory activity and the composition of the methanol extract of Jefea gnaphalioides (MEJG). Methods The extract was obtained by heating the plant in methanol at boiling point for 4 h, and then the solvent was evaporated under vacuum (MEJG). The derivatization of the extract was performed using Bis-(trimethylsilyl) trifluoroacetamide, and the composition was determined by GC-MS. Total Phenols and flavonoids were determined by Folin-Ciocalteu AlCl3 reaction respectively. The antioxidant activity of MEJG was determined by DPPH method. The acute and chronic anti-inflammatory effects were evaluated on a mouse ear edema induced with 12-O-Tetradecanoylphorbol-13-acetate (TPA). Acute oral toxicity was tested in mice at doses of MEJG of 5000, 2500 and 1250 mg/kg. The levels of NO, TNF-α, IL-1β and IL-6 were determinate in J774A.1 macrophages stimulated by Lipopolysaccharide. The production of inflammatory interleukins was measured using commercial kits, and nitric oxide was measured by the Griess reaction. Results The anti-inflammatory activity of MEJG in acute TPA-induced ear edema was 80.7 ± 2.8%. This result was similar to the value obtained with indomethacin (IND) at the same dose (74.3 ± 2.8%). In chronic TPA-induced edema at doses of 200 mg/kg, the inhibition was 45.7%, which was similar to that obtained with IND (47.4%). MEJG have not toxic effects even at a dose of 5000 mg/kg. MEJG at 25, 50, 100 and 200 μg/mL decreased NO, TNF-α, IL-1β and IL-6 production in macrophages stimulated with LPS. The major compounds in MEJG were α-D-Glucopyranose (6.71%), Palmitic acid (5.59%), D-(+)-Trehalose (11.91%), Quininic acid (4.29%) and Aucubin (1.17%). Total phenolic content was 57.01 mg GAE/g and total flavonoid content was 35.26 mg QE/g MEJG had antioxidant activity. Conclusions MEJG has anti-inflammatory activity.
Collapse
|
40
|
Polygalasaponin F treats mice with pneumonia induced by influenza virus. Inflammopharmacology 2019; 28:299-310. [PMID: 31446589 PMCID: PMC7102181 DOI: 10.1007/s10787-019-00633-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Influenza is an acute viral respiratory illness that causes high morbidity and mortality globally. Therapeutic actions are limited to vaccines and a few anti-viral drugs. Polygala (P.) japonica herba is rich in Polygalasaponin F (PSF, C53H86O23), used for acute bronchitis, pharyngitis, pneumonia, amygdalitis, and respiratory tract infections treatment in China. Hypercytokinemia is often correlated with severe pneumonia caused by several influenza viruses. PSF was reported to have anti-inflammatory effects and its mechanism is associated with the nuclear factor (NF)-κB signaling pathway. The action of PSF to alleviate pulmonary inflammation caused by influenza A virus (IAV) infection requires careful assessment. In the present study, we evaluated the effect and mechanism of PSF on mice with pneumonia caused by influenza H1N1 (A/FM/1/47). METHODS Mice were infected intranasally with fifteen 50% mouse lethal challenge doses (MLD50) of influenza virus. BALB/c mice were treated with PSF or oseltamivir (oral administration) for 2 h post-infection and received concomitant treatment for 5 days after infection. On day 6 post-infection, 10 mice per group were killed to collect related samples, measure body weight and lung wet weight, and detect the viral load, cytokine, prostaglandins, pathological changes, and cell pathway protein expression in the lungs. In addition, the survival experiments were carried out to investigate the survival of mice. The expression profile of cell pathway proteins was detected and analyzed using a broad pathway antibody array and confirmed the findings from the array by western blotting. RESULTS Polygalasaponin F and oseltamivir can protect against influenza viral infection in mice. PSF and oseltamivir significantly relieved the signs and symptoms, reduced body weight loss, and improved the survival rate of H1N1-infected mice. Moreover, PSF efficiently decreased the level of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, interferon (IFN)-γ, thromboxane A2 (TXA2), and prostaglandin E2 (PGE2) in lung tissues of mice infected with influenza virus (p < 0.05-0.01). Oseltamivir had a similar effect to lung cytokine of PSF, but did not decrease the levels of TXA2 and PGE2. There was a twofold or greater increase in four cell pathway protein, namely NF-κB p65 (2.68-fold), I-kappa-B-alpha (IκBα) (2.56-fold), and MAPK/ERK kinase 1 (MEK1) (7.15-fold) assessed in the array induced by influenza virus. Western blotting showed that the expression of these proteins was significantly decreased in lung after influenza virus challenge in PSF and oseltamivir-treated mice (p < 0.05-0.01). CONCLUSION Polygalasaponin F appears to be able to augment protection against IAV infection in mice via attenuation of pulmonary inflammatory responses. Its effect on IAV-induced pulmonary inflammation was associated with suppression of Raf/MEK/ERK and NF-κB expressions.
Collapse
|
41
|
Heat shock protein 70 of filarial parasite Setaria equina: Cloning, expression, and analysis of binding with diethylcarbamazine citrate. Int J Biol Macromol 2019; 133:202-213. [DOI: 10.1016/j.ijbiomac.2019.04.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
|
42
|
Anti-Inflammatory Compounds from Atractylodes macrocephala. Molecules 2019; 24:molecules24101859. [PMID: 31091823 PMCID: PMC6571718 DOI: 10.3390/molecules24101859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/04/2022] Open
Abstract
In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases.
Collapse
|
43
|
Qiu L, Xiao Y, Liu YQ, Peng LX, Liao W, Fu Q. Platycosides P and Q, two new triterpene saponins from Platycodon grandiflorum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:419-425. [PMID: 29966448 DOI: 10.1080/10286020.2018.1488835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
The EtOH extract of the roots of Platycodon grandiflorum afforded two new triterpene saponins platycoside P (1) and platycoside Q (2). Their structures were elucidated based on spectroscopic means and hydrolysis products. These compounds were evaluated for inhibitory activity against LPS-induced TNF-α production in RAW 246.7 macrophages. Compounds 1 and 2 showed inhibitory activity with the inhibition ratios (%) of 38.6 and 44.1 at 50 μM, respectively.
Collapse
Affiliation(s)
- Lu Qiu
- a College of Pharmacy and Bioengineering , Chengdu University , Chengdu 610106 , China
| | - Yu Xiao
- a College of Pharmacy and Bioengineering , Chengdu University , Chengdu 610106 , China
| | - Yao-Qi Liu
- a College of Pharmacy and Bioengineering , Chengdu University , Chengdu 610106 , China
| | - Lian-Xin Peng
- a College of Pharmacy and Bioengineering , Chengdu University , Chengdu 610106 , China
- b Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture , Chengdu 610106 , China
| | - Wan Liao
- c State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , China
| | - Qiang Fu
- a College of Pharmacy and Bioengineering , Chengdu University , Chengdu 610106 , China
- b Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture , Chengdu 610106 , China
| |
Collapse
|
44
|
Jeon D, Kim SW, Kim HS. Platycodin D, a bioactive component of Platycodon grandiflorum, induces cancer cell death associated with extreme vacuolation. Anim Cells Syst (Seoul) 2019; 23:118-127. [PMID: 30949399 PMCID: PMC6440520 DOI: 10.1080/19768354.2019.1588163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/08/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022] Open
Abstract
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC. and possesses multiple biological and pharmacological properties, including anti-cancer activity. The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally, compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK activation when cellular energy levels are low. Therefore, our findings provide a mechanistic rationale for a novel combinatorial approach using PD to treat cancer.
Collapse
Affiliation(s)
- Daun Jeon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
45
|
Chun J, Song K, Kim YS. Anti-inflammatory Activity of Standardized Fraction from Inula helenium L. via Suppression of NF-κB Pathway in RAW 264.7 Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.20307/nps.2019.25.1.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jaemoo Chun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Current Address: Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kwangho Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
46
|
Park M, Park SY, Lee HJ, Kim CE. A Systems-Level Analysis of Mechanisms of Platycodon grandiflorum Based on A Network Pharmacological Approach. Molecules 2018; 23:E2841. [PMID: 30388815 PMCID: PMC6278259 DOI: 10.3390/molecules23112841] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Platycodon grandiflorum (PG) is widely used in Asia for its various beneficial effects. Although many studies were conducted to understand the molecular mechanisms of PG, it is still unclear how the combinations of multiple ingredients work together to exert its therapeutic effects. The aim of the present study was to provide a comprehensive review of the systems-level mechanisms of PG by adopting network pharmacological analysis. We constructed a compound⁻target⁻disease network for PG using experimentally validated and machine-leaning-based prediction results. Each target of the network was analyzed based on previously known pharmacological activities of PG. Gene ontology analysis revealed that the majority of targets were related to cellular and metabolic processes, responses to stimuli, and biological regulation. In pathway enrichment analyses of targets, the terms related to cancer showed the most significant enrichment and formed distinct clusters. Degree matrix analysis for target⁻disease associations of PG suggested the therapeutic potential of PG in various cancers including hepatocellular carcinoma, gastric cancer, prostate cancer, small-cell lung cancer, and renal cell carcinoma. We expect that network pharmacological approaches will provide an understanding of the systems-level mechanisms of medicinal herbs and further develop their therapeutic potentials.
Collapse
Affiliation(s)
- Musun Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sa-Yoon Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
47
|
Ferraiuolo M, Pulito C, Finch-Edmondson M, Korita E, Maidecchi A, Donzelli S, Muti P, Serra M, Sudol M, Strano S, Blandino G. Agave negatively regulates YAP and TAZ transcriptionally and post-translationally in osteosarcoma cell lines. Cancer Lett 2018; 433:18-32. [DOI: 10.1016/j.canlet.2018.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
|
48
|
Ahn HJ, You HJ, Park MS, Johnston TV, Ku S, Ji GE. Biocatalysis of Platycoside E and Platycodin D3 Using Fungal Extracellular β-Glucosidase Responsible for Rapid Platycodin D Production. Int J Mol Sci 2018; 19:ijms19092671. [PMID: 30205574 PMCID: PMC6163259 DOI: 10.3390/ijms19092671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Platycodi radix (i.e., Platycodon grandiflorum root) products (e.g., tea, cosmetics, and herbal supplements) are popular in East Asian nutraceutical markets due to their reported health benefits and positive consumer perceptions. Platycosides are the key drivers of Platycodi radixes' biofunctional effects; their nutraceutical and pharmaceutical activities are primarily related to the number and varieties of sugar side-chains. Among the various platycosides, platycodin D is a major saponin that demonstrates various nutraceutical activities. Therefore, the development of a novel technology to increase the total platycodin D content in Platycodi radix extract is important, not only for consumers' health benefits but also producers' commercial applications and manufacturing cost reduction. It has been reported that hydrolysis of platycoside sugar moieties significantly modifies the compound's biofunctionality. Platycodi radix extract naturally contains two major platycodin D precursors (platycoside E and platycodin D3) which can be enzymatically converted to platycodin D via β-d-glucosidase hydrolysis. Despite evidence that platycodin D precursors can be changed to platycodin D in the Platycodi radix plant, there is little research on increasing platycodin D concentrations during processing. In this work, platycodin D levels in Platycodi radix extracts were significantly increased via extracellular Aspergillus usamii β-d-glucosidase (n = 3, p < 0.001). To increase the extracellular β-d-glucosidase activity, A. usamii was cultivated in a culture media containing cellobiose as its major carbon source. The optimal pH and temperature of the fungal β-d-glucosidase were 6.0 and 40.0 °C, respectively. Extracellular A. usamii β-d-glucosidase successfully converted more than 99.9% (w/v, n = 3, p < 0.001) of platycoside E and platycodin D3 into platycodin D within 2 h under optimal conditions. The maximum level of platycodin D was 0.4 mM. Following the biotransformation process, the platycodin D was recovered using preparatory High Performance Liquid Chromatography (HPLC) and applied to in vitro assays to evaluate its quality. Platycodin D separated from the Platycodi radix immediately following the bioconversion process showed significant anti-inflammatory effects from the Lipopolysaccharide (LPS)-induced macrophage inflammatory responses with decreased nitrite and IL-6 production (n = 3, p < 0.001). Taken together, these results provide evidence that biocatalysis of Platycodi radix extracts with A. usamii may be used as an efficient method of platycodin D-enriched extract production and novel Platycodi radix products may thereby be created.
Collapse
Affiliation(s)
- Hyung Jin Ahn
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Hyun Ju You
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Korea.
| | - Myung Su Park
- Department of Hotel Culinary Arts, Yeonsung University, Anyang 14001, Korea.
| | - Tony V Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
- Research Center, BIFIDO Co., Ltd., Hongcheon 25117, Korea.
| |
Collapse
|
49
|
Attiq A, Jalil J, Husain K, Ahmad W. Raging the War Against Inflammation With Natural Products. Front Pharmacol 2018; 9:976. [PMID: 30245627 PMCID: PMC6137277 DOI: 10.3389/fphar.2018.00976] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last few decade Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are the drugs of choice for treating numerous inflammatory diseases including rheumatoid arthritis. The NSAIDs produces anti-inflammatory activity via inhibiting cyclooxygenase enzyme, responsible for the conversation of arachidonic acid to prostaglandins. Likewise, cyclooxegenase-2 inhibitors (COX-2) selectively inhibit the COX-2 enzyme and produces significant anti-inflammatory, analgesic, and anti-pyretic activity without producing COX-1 associated gastrointestinal and renal side effects. In last two decades numerous selective COX-2 inhibitors (COXIBs) have been developed and approved for various inflammatory conditions. However, data from clinical trials have suggested that the prolong use of COX-2 inhibitors are also associated with life threatening cardiovascular side effects including ischemic heart failure and myocardial infection. In these scenario secondary metabolites from natural product offers a great hope for the development of novel anti-inflammatory compounds. Although majority of the natural product based compounds exhibit more selectively toward COX-1. However, the data suggest that slight structural modification can be helpful in developing COX-2 selective secondary metabolites with comparative efficacy and limited side effects. This review is an effort to highlight the secondary metabolites from terrestrial and marine source with significant COX-2 and COX-2 mediated PGE2 inhibitory activity, since it is anticipated that isolates with ability to inhibit COX-2 mediated PGE2 production would be useful in suppressing the inflammation and its classical sign and symptoms. Moreover, this review has highlighted the potential lead compounds including berberine, kaurenoic acid, α-cyperone, curcumin, and zedoarondiol for further development with the help of structure-activity relationship (SAR) studies and their current status.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
50
|
Xu F, Cao J, Luo M, Che L, Li W, Ying S, Chen Z, Shen H. Early growth response gene 1 is essential for urban particulate matter-induced inflammation and mucus hyperproduction in airway epithelium. Toxicol Lett 2018; 294:145-155. [DOI: 10.1016/j.toxlet.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|