1
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2025; 62:6715-6747. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Losarwar S, Pancholi B, Babu R, Garabadu D. Mitochondria-dependent innate immunity: A potential therapeutic target in Flavivirus infection. Int Immunopharmacol 2025; 154:114551. [PMID: 40158432 DOI: 10.1016/j.intimp.2025.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Mitochondria, known as the powerhouse of cells, play a crucial role in host innate immunity during flavivirus infections such as Dengue, Zika, West Nile, and Japanese Encephalitis Virus. Mitochondrial antiviral signaling protein (MAVS) resides on the outer mitochondrial membrane which is triggered by viral RNA recognition by RIG-I-like receptors (RLRs). This activation induces IRF3 and NF-κB signaling, resulting in type I interferon (IFN) production and antiviral responses. Upon flavivirus infection, mitochondrial stress and dysfunction may lead to the release of mitochondrial DNA (mtDNA) into the cytoplasm, which serves as a damage-associated molecular pattern (DAMP). Cytosolic mtDNA is sensed by cGAS (cyclic GMP-AMP synthase), leading to the activation of the STING (Stimulator of Interferon Genes) pathway to increase IFN production and expand inflammation. Flaviviral proteins control mitochondrial morphology by controlling mitochondrial fission (MF) and fusion (MFu), disrupting mitochondrial dynamics (MD) to inhibit MAVS signaling and immune evasion. Flaviviral proteins also cause oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which triggers NLRP3 inflammasome activation and amplifies inflammation. Additionally, flaviviruses drive metabolic reprogramming by shifting host cell metabolism from oxidative phosphorylation (OxPhos) to glycolysis and fatty acid synthesis, creating a pro-replicative environment that supports viral replication and persistence. Thus, the present review explores the complex interaction between MAVS, mtDNA, and the cGAS-STING pathway, which is key to the innate immune response against flavivirus infections. Understanding these mechanisms opens new avenues in therapeutic interventions in targeting mitochondrial pathways to enhance antiviral immunity and mitigate viral infection.
Collapse
Affiliation(s)
- Saurabh Losarwar
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India
| | | | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India
| | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India.
| |
Collapse
|
3
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
4
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 PMCID: PMC11877805 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
6
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
8
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
9
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
10
|
Tao G, Liao W, Hou J, Jiang X, Deng X, Chen G, Ding C. Advances in crosstalk among innate immune pathways activated by mitochondrial DNA. Heliyon 2024; 10:e24029. [PMID: 38268572 PMCID: PMC10806296 DOI: 10.1016/j.heliyon.2024.e24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Mitochondria are not only the power plant for intracellular oxidative phosphorylation and ATP synthesis, but also involved in cell proliferation, differentiation, signaling and apoptosis. Recent studies have shown that mitochondria play an important role in other pathophysiological functions in addition to cellular energy metabolism. Mitochondria release mitochondrial DNA (mtDNA) as a damage-associated molecular pattern (DAMP) to activate Toll-like receptor 9 (TLR9), NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune signaling pathways against foreign pathogenic microorganisms. The innate immune response not only promotes antimicrobial immune defense and regulates antiviral signaling, but their overactivation also induces the onset and progression of inflammatory diseases. In this paper, we review the role of mtDNA in the activation of innate immune signaling pathways and the crosstalk among innate immune signaling pathways activated by mtDNA, providing clues for the study of inflammatory diseases caused by mtDNA cytoplasmic translocation.
Collapse
Affiliation(s)
- Guangwei Tao
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital of Anhui Medical University, Clinical Immunology Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenyan Liao
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jiafeng Hou
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinmiao Jiang
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Deng
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
11
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
12
|
Zhou Y, Jiao J, Yang R, Wen B, Wu Q, Xu L, Tong X, Yan H. Temozolomide-based sonodynamic therapy induces immunogenic cell death in glioma. Clin Immunol 2023; 256:109772. [PMID: 37716612 DOI: 10.1016/j.clim.2023.109772] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND In our previous study, we found for the first time that temozolomide (TMZ), the first-line chemotherapeutic agent for glioblastoma (GBM), can generate a large amount of reactive oxygen species (ROS) under ultrasound irradiation. Sonodynamic therapy (SDT) using TMZ as the sonosensitizer produced more potent antitumor effects than TMZ alone. Here, we further evaluate the effects of TMZ-based SDT on subcellular structures and investigate the immunogenic cell death (ICD)-inducing capability of TMZ-based SDT. METHODS The sonotoxic effects of TMZ were explored in LN229 and GL261 glioma cells. The morphology of endoplasmic reticulum and mitochondria was observed by transmission electron microscopy. The nuclear DNA damage was represented by γ-H2AX staining. Bone marrow-derived dendritic cells (BMDCs) were employed to assess ICD-inducing capability of TMZ-based SDT. A cyclic arginine-glycine-aspartic (c(RGDyC))-modified nanoliposome drug delivery platform was used to improve the tumor targeting of SDT. RESULTS TMZ-based SDT had a greater inhibitory effect on glioma cells than TMZ alone. Transmission electron microscopy revealed that TMZ-based SDT caused endoplasmic reticulum dilation and mitochondrial swelling. In addition, endoplasmic reticulum stress response (ERSR), nuclear DNA damage and mitochondrial permeability transition pore (mPTP) opening were promoted in TMZ-based SDT group. Most importantly, we found that TMZ-based SDT could promote the "danger signals" produced by glioma cells and induce the maturation and activation of BMDCs, which was associated with the mitochondrial DNA released into the cytoplasm in glioma cells. In vivo experiments showed that TMZ-based SDT could remodel glioma immune microenvironment and provoke durable and powerful anti-tumor immune responses. What's more, the engineered nanoliposome vector of TMZ conferred SDT tumor targeting, providing an option for safer clinical application of TMZ in combination with SDT in the future. CONCLUSIONS TMZ-based SDT was capable of triggering ICD in glioma. The discovery of TMZ as a sonosensitizer have shown great promise in the treatment of GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Rongyan Yang
- College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Binli Wen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
13
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
14
|
Yang J, Yang M, Wang Y, Sun J, Liu Y, Zhang L, Guo B. STING in tumors: a focus on non-innate immune pathways. Front Cell Dev Biol 2023; 11:1278461. [PMID: 37965570 PMCID: PMC10642211 DOI: 10.3389/fcell.2023.1278461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING) are involved in mediating innate immunity by promoting the release of interferon and other inflammatory factors. Mitochondrial DNA (mtDNA) with a double-stranded structure has greater efficiency and sensitivity in being detected by DNA sensors and thus has an important role in the activation of the cGAS-STING pathway. Many previous findings suggest that the cGAS-STING pathway-mediated innate immune regulation is the most important aspect affecting tumor survival, not only in its anti-tumor role but also in shaping the immunosuppressive tumor microenvironment (TME) through a variety of pathways. However, recent studies have shown that STING regulation of non-immune pathways is equally profound and also involved in tumor cell progression. In this paper, we will focus on the non-innate immune system pathways, in which the cGAS-STING pathway also plays an important role in cancer.
Collapse
Affiliation(s)
- Jiaying Yang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingtong Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
15
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
16
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
17
|
Cabral A, Cabral JE, Wang A, Zhang Y, Liang H, Nikbakht D, Corona L, Hoffman HM, McNulty R. Differential Binding of NLRP3 to non-oxidized and Ox-mtDNA mediates NLRP3 Inflammasome Activation. Commun Biol 2023; 6:578. [PMID: 37253813 PMCID: PMC10229695 DOI: 10.1038/s42003-023-04817-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
The NLRP3 inflammasome is a key mediator of the innate immune response to sterile tissue injury and is involved in many chronic and acute diseases. Physically and chemically diverse agents activate the NLRP3 inflammasome. Here, we show that NLRP3 binds non-oxidized and Ox-mtDNA differentially, with a half maximum inhibitory concentration (IC50) for non-oxidized and Ox-mtDNA of 4 nM and 247.2 nM, respectively. The NLRP3 Neonatal-Onset Multisystem Inflammatory Disease (NOMIDFCAS) gain of function mutant could bind non-oxidized mtDNA but had higher affinity for Ox-mtDNA compared to WT with an IC50 of 8.1 nM. NLRP3 lacking the pyrin domain can bind both oxidized and non-oxidized mtDNA. Isolated pyrin domain prefers Ox-mtDNA. The NLRP3 pyrin domain shares a protein fold with DNA glycosylases and generate a model for DNA binding based on the structure and sequence alignment to Clostridium acetobutylicum and human OGG1, an inhibitor of Ox-mtDNA generation, 8-oxoguanine DNA glycosylases. We provide a new model for how NLRP3 interacts with Ox-mtDNA supported by DNA binding in the presence of a monoclonal antibody against the pyrin domain. These results give new insights into the mechanism of inflammasome assembly, and into the function of reactive oxygen species in establishing a robust immune response.
Collapse
Affiliation(s)
- Angela Cabral
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Julia Elise Cabral
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Angelina Wang
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Yiyang Zhang
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Hailin Liang
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Donya Nikbakht
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Leslie Corona
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, San Diego, CA, USA
| | - Reginald McNulty
- Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA, 92694-3900, USA.
| |
Collapse
|
18
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
19
|
Guan H, Zhang W, Xie D, Nie Y, Chen S, Sun X, Zhao H, Liu X, Wang H, Huang X, Bai C, Huang B, Zhou P, Gao S. Cytosolic Release of Mitochondrial DNA and Associated cGAS Signaling Mediates Radiation-Induced Hematopoietic Injury of Mice. Int J Mol Sci 2023; 24:ijms24044020. [PMID: 36835431 PMCID: PMC9960871 DOI: 10.3390/ijms24044020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Mitochondrion is an important organelle of eukaryotic cells and a critical target of ionizing radiation (IR) outside the nucleus. The biological significance and mechanism of the non-target effect originating from mitochondria have received much attention in the field of radiation biology and protection. In this study, we investigated the effect, role, and radioprotective significance of cytosolic mitochondrial DNA (mtDNA) and its associated cGAS signaling on hematopoietic injury induced by IR in vitro culture cells and in vivo total body irradiated mice in this study. The results demonstrated that γ-ray exposure increases the release of mtDNA into the cytosol to activate cGAS signaling pathway, and the voltage-dependent anion channel (VDAC) may contribute to IR-induced mtDNA release. VDAC1 inhibitor DIDS and cGAS synthetase inhibitor can alleviate bone marrow injury and ameliorate hematopoietic suppression induced by IR via protecting hematopoietic stem cells and adjusting subtype distribution of bone marrow cells, such as attenuating the increase of the F4/80+ macrophage proportion in bone marrow cells. The present study provides a new mechanistic explanation for the radiation non-target effect and an alternative technical strategy for the prevention and treatment of hematopoietic acute radiation syndrome.
Collapse
Affiliation(s)
- Hua Guan
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Correspondence: (H.G.); (S.G.)
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dafei Xie
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuehua Nie
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Shi Chen
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Xiaoya Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Huang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Public Health, University of South China, Hengyang 421001, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Correspondence: (H.G.); (S.G.)
| |
Collapse
|
20
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
21
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
22
|
Luo S, Yang M, Zhao H, Han Y, Liu Y, Xiong X, Chen W, Li C, Sun L. Mitochondrial DNA-dependent inflammation in kidney diseases. Int Immunopharmacol 2022; 107:108637. [DOI: 10.1016/j.intimp.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
23
|
Hepokoski M, Singh P. Mitochondria as mediators of systemic inflammation and organ cross talk in acute kidney injury. Am J Physiol Renal Physiol 2022; 322:F589-F596. [PMID: 35379000 PMCID: PMC9054254 DOI: 10.1152/ajprenal.00372.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is a systemic inflammatory disease that contributes to remote organ failures. Multiple organ failure is the leading cause of death due to AKI, and lack of understanding of the mechanisms involved has precluded the development of novel therapies. Mitochondrial injury in AKI leads to mitochondrial fragmentation and release of damage-associated molecular patterns, which are known to active innate immune pathways and systemic inflammation. This review presents current evidence suggesting that extracellular mitochondrial damage-associated molecular patterns are mediators of remote organ failures during AKI that have the potential to be modifiable.
Collapse
Affiliation(s)
- Mark Hepokoski
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,2Division of Pulmonary and Critical Care Medicine, University of California, San Diego, California
| | - Prabhleen Singh
- 1Veterans Affairs San Diego Healthcare System, San Diego, California,3Division of Nephrology and Hypertension, University of California, San Diego, California
| |
Collapse
|
24
|
The fate of damaged mitochondrial DNA in the cell. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119233. [PMID: 35131372 DOI: 10.1016/j.bbamcr.2022.119233] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Mitochondrion is a double membrane organelle that is responsible for cellular respiration and production of most of the ATP in eukaryotic cells. Mitochondrial DNA (mtDNA) is the genetic material carried by mitochondria, which encodes some essential subunits of respiratory complexes independent of nuclear DNA. Normally, mtDNA binds to certain proteins to form a nucleoid that is stable in mitochondria. Nevertheless, a variety of physiological or pathological stresses can cause mtDNA damage, and the accumulation of damaged mtDNA in mitochondria leads to mitochondrial dysfunction, which triggers the occurrence of mitochondrial diseases in vivo. In response to mtDNA damage, cell initiates multiple pathways including mtDNA repair, degradation, clearance and release, to recover mtDNA, and maintain mitochondrial quality and cell homeostasis. In this review, we provide our current understanding of the fate of damaged mtDNA, focus on the pathways and mechanisms of removing damaged mtDNA in the cell.
Collapse
|
25
|
Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T, Passos JF, Adams PD. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 2021; 184:5506-5526. [PMID: 34715021 PMCID: PMC8627867 DOI: 10.1016/j.cell.2021.09.034] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Karl N Miller
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanna Salmonowicz
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK; International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Peter D Adams
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
De Gaetano A, Solodka K, Zanini G, Selleri V, Mattioli AV, Nasi M, Pinti M. Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells 2021; 10:2898. [PMID: 34831121 PMCID: PMC8616383 DOI: 10.3390/cells10112898] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions.
Collapse
Affiliation(s)
- Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
| | - Kateryna Solodka
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| |
Collapse
|
27
|
Wu Z, Sainz AG, Shadel GS. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem Sci 2021; 46:812-821. [PMID: 34088564 PMCID: PMC9809014 DOI: 10.1016/j.tibs.2021.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.
Collapse
Affiliation(s)
- Zheng Wu
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Graduate Program in Genetics, Yale School of Medicine, New Haven, CT 06437, USA,These authors contributed equally to this work
| | - Alva G. Sainz
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Graduate Program in Experimental Pathology, Yale School of Medicine, New Haven, CT 06437, USA,These authors contributed equally to this work
| | - Gerald S. Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA,Correspondence: (G.S. Shadel)
| |
Collapse
|
28
|
Son JM, Lee C. Aging: All roads lead to mitochondria. Semin Cell Dev Biol 2021; 116:160-168. [PMID: 33741252 PMCID: PMC9774040 DOI: 10.1016/j.semcdb.2021.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria were described as early as 1890 as ubiquitous intracellular structures by Ernster and Schatz (1981) [1]. Since then, the accretion of knowledge in the past century has revealed much of the molecular details of mitochondria, ranging from mitochondrial origin, structure, metabolism, genetics, and signaling, and their implications in health and disease. We now know that mitochondria are remarkably multifunctional and deeply intertwined with many vital cellular processes. They are quasi-self organelles that still possess remnants of its bacterial ancestry, including an independent genome. The mitochondrial free radical theory of aging (MFRTA), which postulated that aging is a product of oxidative damage to mitochondrial DNA, provided a conceptual framework that put mitochondria on the map of aging research. However, several studies have more recently challenged the general validity of the theory, favoring novel ideas based on emerging evidence to understand how mitochondria contribute to aging and age-related diseases. One prominent topic of investigation lies on the fact that mitochondria are not only production sites for bioenergetics and macromolecules, but also regulatory hubs that communicate and coordinate many vital physiological processes at the cellular and organismal level. The bi-directional communication and coordination between the co-evolved mitochondrial and nuclear genomes is especially interesting in terms of cellular regulation. Mitochondria are dynamic and adaptive, rendering their function sensitive to cellular context. Tissues with high energy demands, such as the brain, seem to be uniquely affected by age-dependent mitochondrial dysfunction, providing a foundation for the development of novel mitochondrial-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA,USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA,Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, South Korea,Corresponding author at: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
29
|
Oresta B, Pozzi C, Braga D, Hurle R, Lazzeri M, Colombo P, Frego N, Erreni M, Faccani C, Elefante G, Barcella M, Guazzoni G, Rescigno M. Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer. Sci Transl Med 2021; 13:13/575/eaba6110. [PMID: 33408185 DOI: 10.1126/scitranslmed.aba6110] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Although chemotherapeutic agents have been used for decades, the mechanisms of action, mechanisms of resistance, and the best treatment schedule remain elusive. Mitomycin C (MMC) is the gold standard treatment for non-muscle-invasive bladder cancer (NMIBC). However, it is effective only in a subset of patients, suggesting that, aside from cytotoxicity, other mechanisms could be involved in mediating the success of the treatment. Here, we showed that MMC promotes immunogenic cell death (ICD) and in vivo tumor protection. MMC-induced ICD relied on metabolic reprogramming of tumor cells toward increased oxidative phosphorylation. This favored increased mitochondrial permeability leading to the cytoplasmic release of mitochondrial DNA, which activated the inflammasome for efficient IL-1β (interleukin-1β) secretion that promoted dendritic cell maturation. Resistance to ICD was associated with mitochondrial dysfunction related to low abundance of complex I of the respiratory chain. Analysis of complex I in patient tumors indicated that low abundance of this mitochondrial complex was associated with recurrence incidence after chemotherapy in patients with NMIBC. The identification of mitochondria-mediated ICD as a mechanism of action of MMC offers opportunities to optimize bladder cancer management and provides potential markers of treatment efficacy that could be used for patient stratification.
Collapse
Affiliation(s)
- Bianca Oresta
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Chiara Pozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Daniele Braga
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Rodolfo Hurle
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Massimo Lazzeri
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Nicola Frego
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Cristina Faccani
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Grazia Elefante
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy
| | - Matteo Barcella
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy
| | - Giorgio Guazzoni
- Department of Urology, Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy.,Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, 20090 Pieve Emanuele (Milan), Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089 Rozzano (Milan), Italy. .,Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, 20090 Pieve Emanuele (Milan), Italy
| |
Collapse
|
30
|
Resveratrol Prevents Right Ventricle Dysfunction, Calcium Mishandling, and Energetic Failure via SIRT3 Stimulation in Pulmonary Arterial Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912434. [PMID: 34239697 PMCID: PMC8238598 DOI: 10.1155/2021/9912434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.
Collapse
|
31
|
Lu RO, Ho WS. Mitochondrial Dysfunction, Macrophage, and Microglia in Brain Cancer. Front Cell Dev Biol 2021; 8:620788. [PMID: 33520994 PMCID: PMC7843701 DOI: 10.3389/fcell.2020.620788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain cancer. Increasing evidence suggests that mitochondrial dysfunction plays a key role in GBM progression as mitochondria is essential in regulating cell metabolism, oxidative stress, and cell death. Meanwhile, the immune microenvironment in GBM is predominated by tumor-associated macrophages and microglia (TAM), which is a heterogenous population of myeloid cells that, in general, create an immunosuppressive milieu to support tumor growth. However, subsets of TAMs can be pro-inflammatory and thereby antitumor. Therapeutic strategies targeting TAMs are increasingly explored as novel treatment strategies for GBM. The connection between mitochondrial dysfunction and TAMs phenotype in the tumor microenvironment is unclear. This review aims to provide perspectives and discuss possible molecular mechanisms mediating the interplay between glioma mitochondrial dysfunction and TAMs phenotype in shaping tumor immune microenvironment.
Collapse
Affiliation(s)
- Rongze Olivia Lu
- Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Mulva Clinic for the Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Winson S. Ho
- Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Mulva Clinic for the Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
32
|
Gutiérrez-Aguilar M. Mitochondrial calcium transport and permeability transition as rational targets for plant protection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148288. [PMID: 32800781 DOI: 10.1016/j.bbabio.2020.148288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
The mitochondrial permeability transition (MPT) is a death-inducing mechanism that collapses electrochemical gradients across inner mitochondrial membranes. Several studies in model plants have detailed potential MPT-dependent cell death upon abiotic stress in response to heat shock, ultraviolet radiation, heavy metal toxicity and waterlogging. However, the molecular specifics of the MPT and its possible role on plant cell death remain controversial. This review addresses previous and recent developments on the role(s) of the MPT in plants. Considering these advances, MPT targeting can constitute a plausible strategy to ameliorate cell death in plants upon abiotic stress.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México City, Mexico.
| |
Collapse
|
33
|
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080647. [PMID: 32707949 PMCID: PMC7466131 DOI: 10.3390/antiox9080647] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress develops as a response to injury and reflects a breach in the cell’s antioxidant capacity. Therefore, the fine-tuning of reactive oxygen species (ROS) generation is crucial for preserving cell’s homeostasis. Mitochondria are a major source and an immediate target of ROS. Under different stimuli, including oxidative stress and impaired quality control, mitochondrial constituents (e.g., mitochondrial DNA, mtDNA) are displaced toward intra- or extracellular compartments. However, the mechanisms responsible for mtDNA unloading remain largely unclear. While shuttling freely within the cell, mtDNA can be delivered into the extracellular compartment via either extrusion of entire nucleoids or the generation and release of extracellular vesicles. Once discarded, mtDNA may act as a damage-associated molecular pattern (DAMP) and trigger an innate immune inflammatory response by binding to danger-signal receptors. Neuroinflammation is associated with a large array of neurological disorders for which mitochondrial DAMPs could represent a common thread supporting disease progression. The exploration of non-canonical pathways involved in mitochondrial quality control and neurodegeneration may unveil novel targets for the development of therapeutic agents. Here, we discuss these processes in the setting of two common neurodegenerative diseases (Alzheimer’s and Parkinson’s disease) and Down syndrome, the most frequent progeroid syndrome.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Correspondence: (R.C.); (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
| | | | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (R.C.); (R.B.); Tel.: +39-06-3015-5559 (R.C. & R.B.); Fax: +39-06-3051-911 (R.C. & R.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.L.); (E.M.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
34
|
Piantadosi CA. Mitochondrial DNA, oxidants, and innate immunity. Free Radic Biol Med 2020; 152:455-461. [PMID: 31958498 DOI: 10.1016/j.freeradbiomed.2020.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial oxidant damage, including damage to mitochondrial DNA (mtDNA) is a feature of both severe microbial infections and inflammation arising from sterile (non-infectious) sources such as tissue trauma. Damaged mitochondria release intact or oxidized fragments of mtDNA into the cytoplasm, which represent oxidant injury, and the fragments promote a spontaneous innate immune response, exemplifying a modern frontier of immunological research. MtDNA and mitochondrial-derived oxidants are central factors in activating at least three innate immune pathways involving the TLR9 (Toll-like receptor 9), the NLRP3 (NACHT, LRR and PYD domains-containing protein-3) inflammasome, and the cGAS (cyclic AMP-GMP synthase) pathway. The events that allow mtDNA to escape from damaged mitochondria and from damaged cells are incompletely known, but the presence of cytoplasmic mtDNA and cell-free mtDNA as immune regulators are important for understanding the cell's capacity for protecting mitochondrial quality control (MQC) and cell viability during inflammatory states.
Collapse
|
35
|
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep 2020; 21:e49799. [PMID: 32202065 PMCID: PMC7132203 DOI: 10.15252/embr.201949799] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS‐STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease.
Collapse
Affiliation(s)
- Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Wg Tait
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
36
|
Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165761. [PMID: 32169503 DOI: 10.1016/j.bbadis.2020.165761] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/09/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023]
Abstract
It is well-known that mitochondrial DNA (mtDNA) can escape to intracellular or extracellular compartments under different stress conditions, yet understanding their escape mechanisms remains a challenge. Although Bax/Bak pores and VDAC oligomers are the strongest possibilities, other mechanisms may be involved. For example, mitochondria permeability transition, altered mitophagy, and mitochondrial dynamics are associated with intracellular mtDNA escape, while extracellular traps and extracellular vesicles can participate in extracellular mtDNA escape. The evidence suggests that mtDNA escape is a complex event with more than one mechanism involved. In addition, once the mtDNA is outside the mitochondria, the effects can be complex. Different danger signal sensors recognize the mtDNA as a damage-associated molecular pattern, triggering an innate immune inflammatory response that can be observed in multiple metabolic diseases characterized by chronic inflammation, including autoimmune diseases, diabetes, cancer, and cardiovascular disorders. For these reasons, we will review the most recent evidence regarding mtDNA escape mechanisms and their impact on different metabolic diseases.
Collapse
Affiliation(s)
- Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Mónica Velásquez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, Nuevo León, Mexico.
| |
Collapse
|
37
|
Pavón N, Buelna-Chontal M, Macías-López A, Correa F, Uribe-Álvarez C, Hernández-Esquivel L, Chávez E. On the oxidative damage by cadmium to kidney mitochondrial functions. Biochem Cell Biol 2019; 97:187-192. [DOI: 10.1139/bcb-2018-0196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the kidney, the accumulation of heavy metals such as Cd2+ produces mitochondrial dysfunctions, i.e., uncoupling of the oxidative phosphorylation, inhibition of the electron transport through the respiratory chain, and collapse of the transmembrane electrical gradient. This derangement may be due to the fact that Cd2+ induces the transition of membrane permeability from selective to nonselective via the opening of a transmembrane pore. In fact, Cd2+ produces this injury through the stimulation of oxygen-derived radical generation, inducing oxidative stress. Several molecules have been used to avoid or even reverse Cd2+-induced mitochondrial injury, for instance, cyclosporin A, resveratrol, dithiocarbamates, and even EDTA. The aim of this study was to explore the possibility that the antioxidant tamoxifen could protect mitochondria from the deleterious effects of Cd2+. Our results indicate that the addition of 1 μmol/L Cd2+ to mitochondria collapsed the transmembrane electrical gradient, induced the release of cytochrome c, and increased both the generation of H2O2 and the oxidative damage to mitochondrial DNA (among other measured parameters). Of interest, these mitochondrial dysfunctions were ameliorated after the addition of tamoxifen.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - Arturo Macías-López
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | | | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
38
|
Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Biochem Pharmacol 2019; 163:472-480. [PMID: 30880061 DOI: 10.1016/j.bcp.2019.03.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
Cyclosporine A has long been known to suppress T cell responses by inhibiting the production of IL-2, which drives T cell proliferation, enabling its use as a therapeutic for transplantation or autoimmunity. However, cyclosporine A also impacts on innate immune cells including dendritic cells, macrophages and neutrophils. In dendritic cells, which are essential for T cell priming, cyclosporine A can modulate both expression of surface molecules that engage with T cells and cytokine secretion, leading to altered induction of T cell responses. In macrophages and neutrophils, which play key antimicrobial roles, cyclosporine A reduces the production of cytokines that can play protective roles against pathogens. Some of these molecules, if produced in the context of chronic disease, can also contribute to pathology. There have been a number of elegant recent studies addressing the mechanisms by which cyclosporine A can modulate innate immunity. In particular, cyclosporine A inhibits the release of mitochondrial factors that stimulate the production of type 1 interferons by innate immune cells. This review addresses the emerging literature on modulation of innate immune responses by cyclosporine A, its resultant impact on adaptive immune responses and how this offers potential for new therapeutic applications.
Collapse
Affiliation(s)
- Alex M Liddicoat
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02R590 Dublin 2, Ireland.
| |
Collapse
|
39
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
40
|
Pavón N, Buelna-Chontal M, Correa F, Yoval-Sánchez B, Belmont J, Hernández-Esquivel L, Rodríguez-Zavala JS, Chávez E. Tamoxifen inhibits mitochondrial membrane damage caused by disulfiram. Biochem Cell Biol 2017; 95:556-562. [DOI: 10.1139/bcb-2017-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| | - Javier Belmont
- Departamento de Bioquímica, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| | | | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología “Ignacio Chávez”, México D.F
| |
Collapse
|
41
|
Buelna-Chontal M, Franco M, Hernández-Esquivel L, Pavón N, Rodríguez-Zavala JS, Correa F, Jasso R, Pichardo-Ramos G, Santamaría J, González-Pacheco H, Soto V, Díaz-Ruíz JL, Chávez E. CDP-choline circumvents mercury-induced mitochondrial damage and renal dysfunction. Cell Biol Int 2017; 41:1356-1366. [PMID: 28884894 DOI: 10.1002/cbin.10871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/02/2017] [Indexed: 11/06/2022]
Abstract
Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Martha Franco
- Departamento de Fisopatología Renal, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Ricardo Jasso
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Gregorio Pichardo-Ramos
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - José Santamaría
- Departamento de Fisopatología Renal, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | | | - Virgilia Soto
- Departamento de Patología, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Jorge L Díaz-Ruíz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, D. F. México
| |
Collapse
|
42
|
Buelna-Chontal M, Hernández-Esquivel L, Correa F, Díaz-Ruiz JL, Chávez E. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline. Cell Biol Int 2016; 40:1349-1356. [PMID: 27730705 DOI: 10.1002/cbin.10690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022]
Abstract
In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Jorge Luis Díaz-Ruiz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| |
Collapse
|
43
|
The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016; 44:597-608. [PMID: 26944200 DOI: 10.1016/j.immuni.2016.02.004] [Citation(s) in RCA: 440] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 01/17/2023]
Abstract
The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses.
Collapse
|
44
|
Hernández-Esquivel L, Pavón N, Buelna-Chontal M, González-Pacheco H, Belmont J, Chávez E. Cardioprotective properties of citicoline against hyperthyroidism-induced reperfusion damage in rat hearts. Biochem Cell Biol 2014; 93:185-91. [PMID: 25589288 DOI: 10.1139/bcb-2014-0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hyperthyroidism represents an increased risk factor for cardiovascular morbidity, especially when the heart is subjected to an ischemia/reperfusion process. The aim of this study was to explore the possible protective effect of the nucleotide citicoline on the susceptibility of hyperthyroid rat hearts to undergo reperfusion-induced damage, which is associated with mitochondrial dysfunction. Hence, we analyzed the protective effect of citicoline on the electrical behavior and on the mitochondrial function in rat hearts. Hyperthyroidism was established after a daily i.p. injection of triiodothyronine (at 2 mg/kg of body weight) during 5 days. Thereafter, citicoline was administered i.p. (at 125 mg/kg of body weight) for 5 days. In hyperthyroid rat hearts, citicoline protected against reperfusion-induced ventricular arrhythmias. Moreover, citicoline maintained the accumulation of mitochondrial Ca(2+), allowing mitochondria to reach a high transmembrane electric gradient that protected against the release of cytochrome c. It also preserved the activity of the enzyme aconitase that inhibited the release of cytokines. The protection also included the inhibition of oxidative stress-induced mDNA disruption. We conclude that citicoline protects against the reperfusion damage that is found in the hyperthyroid myocardium. This effect might be due to its inhibitory action on the permeability transition in mitochondria.
Collapse
Affiliation(s)
- Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano N°1, Col Sección XVI, CP 14080 Tlalpan D.F. México
| | | | | | | | | | | |
Collapse
|
45
|
Pavón N, Hernández-Esquivel L, Buelna-Chontal M, Chávez E. Antiarrhythmic effect of tamoxifen on the vulnerability induced by hyperthyroidism to heart ischemia/reperfusion damage. J Steroid Biochem Mol Biol 2014; 143:416-23. [PMID: 24923730 DOI: 10.1016/j.jsbmb.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/06/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023]
Abstract
Hyperthyroidism, known to have deleterious effects on heart function, and is associated with an enhanced metabolic state, implying an increased production of reactive oxygen species. Tamoxifen is a selective antagonist of estrogen receptors. These receptors make the hyperthyroid heart more susceptible to ischemia/reperfusion. Tamoxifen is also well-known as an antioxidant. The aim of the present study was to explore the possible protective effect of tamoxifen on heart function in hyperthyroid rats. Rats were injected daily with 3,5,3'-triiodothyronine at 2mg/kg body weight during 5 days to induce hyperthyroidism. One group was treated with 10mg/kg tamoxifen and another was not. The protective effect of the drug on heart rhythm was analyzed after 5 min of coronary occlusion followed by 5 min reperfusion. In hyperthyroid rats not treated with tamoxifen, ECG tracings showed post-reperfusion arrhythmias, and heart mitochondria isolated from the ventricular free wall lost the ability to accumulate and retain matrix Ca(2+) and to form a high electric gradient. Both of these adverse effects were avoided with tamoxifen treatment. Hyperthyroidism-induced oxidative stress caused inhibition of cis-aconitase and disruption of mitochondrial DNA, effects which were also avoided by tamoxifen treatment. The current results support the idea that tamoxifen inhibits the hypersensitivity of hyperthyroid rat myocardium to reperfusion damage, probably because its antioxidant activity inhibits the mitochondrial permeability transition.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., Mexico
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, México D.F., Mexico.
| |
Collapse
|
46
|
Hernández-Esquivel L, Pavón N, Buelna-Chontal M, González-Pacheco H, Belmont J, Chávez E. Citicoline (CDP-choline) protects myocardium from ischemia/reperfusion injury via inhibiting mitochondrial permeability transition. Life Sci 2013; 96:53-8. [PMID: 24389400 DOI: 10.1016/j.lfs.2013.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023]
Abstract
AIMS Oxidative stress emerges after reperfusion of an organ following an ischemic period and results in tissue damage. In the heart, an amplified generation of reactive oxygen species and a significant Ca(2+) accumulation cause ventricular arrhythmias and mitochondrial dysfunction. This occurs in consequence of increased non-specific permeability. A number of works have shown that permeability transition is a common substrate that underlies the reperfusion-induced heart injury. The aim of this work was to explore the possibility that CDP-choline may circumvent heart damage and mitochondrial permeability transition. MAIN METHODS Rats were injected i.p. with CDP-choline at 20 mg/kg body weight. Heart electric behavior was followed during a closure/opening cycle of the left coronary descendent artery. Heart mitochondria were isolated from rats treated with CDP-choline, and their function was evaluated by analyzing Ca(2+) movements, achievement of a high level of the transmembrane potential, and respiratory control. Oxidative stress was estimated following the activity of the enzymes cis-aconitase and superoxide dismutase, as well as the disruption of mitochondrial DNA. KEY FINDINGS This study shows that CDP-choline avoided ventricular arrhythmias and drop of blood pressure. Results also show that mitochondria, isolated from CDP-choline-treated rats, maintained selective permeability, retained accumulated Ca(2+), an elevated value of transmembrane potential, and a high ratio of respiratory control. Furthermore, activity of cis-aconitase enzyme and mDNA structure were preserved. SIGNIFICANCE This work introduces CDP-choline as a useful tool to preserve heart function from reperfusion damage by inhibiting mitochondrial permeability transition.
Collapse
Affiliation(s)
- Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | - Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | | | - Javier Belmont
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico.
| |
Collapse
|
47
|
Hernández-Esquivel L, Zazueta C, Buelna-Chontal M, Hernández-Reséndiz S, Pavón N, Chávez E. Protective behavior of tamoxifen against Hg2+-induced toxicity on kidney mitochondria: in vitro and in vivo experiments. J Steroid Biochem Mol Biol 2011; 127:345-50. [PMID: 21821123 DOI: 10.1016/j.jsbmb.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/12/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
Heavy metals are known to induce functional alterations in kidney mitochondria, this damage plays a central role in the mercury-induced acute renal failure. In fact, mercury causes rapid and dramatic changes in the membrane's ionic permeability in such a way that a supra load of mitochondrial Ca(2+) occurs. As a consequence, the phenomenon of permeability transition takes place. In this work we studied in vitro and in vivo the protective effect of the selective estrogen receptor modulator tamoxifen on the deleterious action of mercury-induced nonselective permeability in kidney mitochondria. Added in vitro tamoxifen inhibited membrane nonspecific pore opening, brought about by Hg(2+), as well as the oxidative damage of the enzyme cis-aconitase. In vivo the administration of tamoxifen prevented Hg(2+)-induced poisoning on mitochondrial energy-dependent functions. Permeability transition was analyzed by measuring matrix Ca(2+) retention, mitochondrial swelling, and the build up and maintenance of a transmembrane electric gradient. The pharmacologic action of tamoxifen on mercury poisoning could be ascribed to its cyclosporin-like action.
Collapse
Affiliation(s)
- Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Tlalpan, DF 014080, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Pavón N, Franco M, Correa F, García N, Martínez-Abundis E, Cruz D, Hernández-Esquivel L, Santamaría J, Rodríguez JS, Zazueta C, Chávez E. Octylguanidine ameliorates the damaging effect of mercury on renal functions. J Biochem 2010; 149:211-7. [PMID: 21113053 DOI: 10.1093/jb/mvq137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mercurials are known to induce morphological and functional modifications in kidney. The protective effect of octylguanidine on the injury induced by Hg(2+) on renal functions was studied. Octylguanidine administered at a dose of 10 mg/kg body weight prevented the damage induced by Hg(2+) administration at a dose of 3 mg/kg body weight. The findings indicate that octylguanidine spared mitochondria from Hg(2+)-poisoning by preserving their ability to retain matrix content, such as accumulated Ca(2+) and pyridine nucleotides. The hydrophobic amine also protected mitochondria from the Hg(2+)-induced loss of the transmembrane potential, and from the oxidative injury of mitochondrial DNA. In addition, octylguanidine maintained renal functions, such as normal values of creatinine clearance and blood urea nitrogen (BUN), and serum creatinine after Hg(2+) administration. It is proposed that octylguanidine protects kidney by inhibiting Hg(2+) uptake to kidney tissue, and in consequence its binding to mitochondrial membrane through a screening phenomenon, in addition to its known action as inhibitor of permeability transition.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, DF, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J Bioenerg Biomembr 2009; 41:41-7. [DOI: 10.1007/s10863-009-9198-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/19/2009] [Indexed: 01/15/2023]
|
50
|
Chávez E, Zazueta C, García N, Martínez-Abundis E, Pavón N, Hernández-Esquivel L. Titration of cardiolipin by either 10-N-nonyl acridine orange or acridine orange sensitizes the adenine nucleotide carrier to permeability transition. J Bioenerg Biomembr 2008; 40:77-84. [DOI: 10.1007/s10863-008-9136-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|