1
|
Sannino S, Chini B, Grinevich V. Lifespan oxytocin signaling: Maturation, flexibility, and stability in newborn, adolescent, and aged brain. Dev Neurobiol 2017; 77:158-168. [DOI: 10.1002/dneu.22450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/21/2016] [Accepted: 09/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sara Sannino
- Department of Medical Biotechnology and Translational Medicine, Universitá degli Studi di Milano, National Research Council, Institute of Neuroscience; Milan Italy
| | - Bice Chini
- Department of Medical Biotechnology and Translational Medicine, Universitá degli Studi di Milano, National Research Council, Institute of Neuroscience; Milan Italy
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center DKFZ, Central Institute of Mental Health and CellNetworks Cluster of Excellence at the University of Heidelberg; Heidelberg Mannheim Germany
| |
Collapse
|
2
|
Ebner NC, Maura GM, MacDonald K, Westberg L, Fischer H. Oxytocin and socioemotional aging: Current knowledge and future trends. Front Hum Neurosci 2013; 7:487. [PMID: 24009568 PMCID: PMC3755210 DOI: 10.3389/fnhum.2013.00487] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022] Open
Abstract
The oxytocin (OT) system is involved in various aspects of social cognition and prosocial behavior. Specifically, OT has been examined in the context of social memory, emotion recognition, cooperation, trust, empathy, and bonding, and-though evidence is somewhat mixed-intranasal OT appears to benefit aspects of socioemotional functioning. However, most of the extant data on aging and OT is from animal research and human OT research has focused largely on young adults. As such, though we know that various socioemotional capacities change with age, we know little about whether age-related changes in the OT system may underlie age-related differences in socioemotional functioning. In this review, we take a genetic-neuro-behavioral approach and evaluate current evidence on age-related changes in the OT system as well as the putative effects of these alterations on age-related socioemotional functioning. Looking forward, we identify informational gaps and propose an Age-Related Genetic, Neurobiological, Sociobehavioral Model of Oxytocin (AGeNeS-OT model) which may structure and inform investigations into aging-related genetic, neural, and sociocognitive processes related to OT. As an exemplar of the use of the model, we report exploratory data suggesting differences in socioemotional processing associated with genetic variation in the oxytocin receptor gene (OXTR) in samples of young and older adults. Information gained from this arena has translational potential in depression, social stress, and anxiety-all of which have high relevance in aging-and may contribute to reducing social isolation and improving well-being of individuals across the lifespan.
Collapse
Affiliation(s)
- Natalie C. Ebner
- Department of Psychology, University of FloridaGainesville, FL, USA
| | | | - Kai MacDonald
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Lars Westberg
- Department of Pharmacology, University of GothenburgGothenburg, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm UniversityStockholm, Sweden
- Aging Research Center, Karolinska InstituteStockholm, Sweden
| |
Collapse
|
3
|
Alterations in nitric oxide synthase in the aged CNS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718976. [PMID: 22829960 PMCID: PMC3399597 DOI: 10.1155/2012/718976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/03/2012] [Accepted: 06/05/2012] [Indexed: 01/27/2023]
Abstract
Aging is associated with neuronal loss, gross weight reduction of the brain, and glial proliferation in the cortex, all of which lead to functional changes in the brain. It is known that oxidative stress is a critical factor in the pathogenesis of aging; additionally, growing evidence suggests that excessive nitric oxide (NO) production contributes to the aging process. However, it is still unclear how NO plays a role in the aging process. This paper describes age-related changes in the activity of NADPH-diaphorase (NADPH-d), a marker for neurons containing nitric oxide synthase (NOS), in many CNS regions. Understanding these changes may provide a novel perspective in identifying the aging mechanism.
Collapse
|
4
|
Shim HJ, Lee LH, Huh Y, Lee SY, Yeo SG. Age-related changes in the expression of NMDA, serotonin, and GAD in the central auditory system of the rat. Acta Otolaryngol 2012; 132:44-50. [PMID: 22054020 DOI: 10.3109/00016489.2011.622785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS We suggest that age-induced changes of serotonin, N-methyl-d-aspartate receptor (NMDAR), and glutamate decarboxylase (GAD) expression in rats are dependent on the specific location in the central auditory system (CAS). OBJECTIVES Despite the importance of understanding changes in neurotransmitters during presbycusis, only a few studies have assessed age-associated changes in neurotransmitter at each level of the CAS. We therefore evaluated effects of aging on neurotransmission in the CAS of rats. METHODS The concentrations of serotonin, NMDAR, and GAD were assayed immunohistochemically in the cochlear nucleus (CN), superior olivary nucleus (SON), inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) of Sprague-Dawley rats, aged 2 weeks (n = 20) or 24 months (n = 20). RESULTS The total number of neuronal cell bodies of the CAS did not differ significantly at each level between young and aged rats (p > 0.05). Serotonin expression was increased with age in the IC and MGB, but decreased in the CN, SON, and AC (p < 0.05). NMDAR was significantly higher in the CN, MGB, and AC of aged compared with young rats, but was significantly decreased over time in the SOC and IC (p < 0.05). GAD67 was increased with age in the MGB and AC and decreased in the CN and SON (p < 0.05), but was not changed in the IC.
Collapse
Affiliation(s)
- Hyun Joon Shim
- Department of Otorhinolaryngology, Eulji Hospital, Eulji University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
5
|
Age-related changes in nitric oxide synthase in the lateral geniculate nucleus of rats. J Mol Histol 2010; 41:129-35. [PMID: 20473709 DOI: 10.1007/s10735-010-9268-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/06/2010] [Indexed: 01/23/2023]
Abstract
Age-related changes in nitric oxide production in the visual system have not been well characterized. Therefore, we used staining and image-processing approaches to describe changes in levels of neuronal nitric oxide synthase (nNOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and 3-nitrotyrosine in the lateral geniculate nucleus (LGN) of young and aged rats. The LGN plays an important role in the visual system, as it acts as a visual relay nucleus. Quantitative analysis of NADPH-d-positive and nNOS-immunoreactive neurons revealed significant optical density increases in the dorsal LGN and ventral LGN of aged rats; however, no significant changes were observed in the number of neurons with age. 3-Nitrotyrosine immunoreactivity was increased in the dorsal LGN and ventral LGN of aged rats. These results indicate that increased nitric oxide production and peroxynitrite may be associated with alterations in visual function during aging.
Collapse
|
6
|
Sprenger N, Julita M, Donnicola D, Jann A. Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes. Glycobiology 2009; 19:1492-502. [PMID: 19696237 DOI: 10.1093/glycob/cwp124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Old age is linked to numerous changes of body functions such as salivation, gastrointestinal motility, and permeability all linked to central and enteric nervous system decline. Thus, gut motility and barrier functions suffer. Sialic acid plays a key role in the nervous system at large and for many receptor functions specifically. Decreased sialylation in the elderly suggests an endogenous sialic acid deficit. We used a rat model of aging, to ask whether sialic acid feeding would affect (i) stimulated salivation, (ii) gut functions, and (iii) sialic acid levels and neuronal markers in brain and gut. We observed reduced levels of pilocarpine-stimulated salivation in old versus young rats and restored this function by sialic acid feeding. Brain ganglioside bound sialic acid levels were found lower in aged versus young rats, and sialic acid feeding partly restored the levels. The hypothalamic expression of cholinergic and panneuronal markers was reduced in aged rats. The expression of the nitrergic marker nNOS was increased upon sialic acid feeding in aged rats. Neither fecal output nor gut permeability was different between young and aged rats studied here, and sialic acid feeding did not alter these parameters. However, the colonic expression of specific nervous system markers nNOS and Uchl1 and the key enzyme for sialic acid synthesis GNE were differentially affected in young and aged rats by sialic acid feeding indicating that regulatory mechanisms change with age. Investigation of sialic acid supplementation as a functional nutrient in the elderly may help those who suffer from disorders of reduced salivation. Further research is needed to understand the differential effects of sialic acid feeding in young and aged rats.
Collapse
Affiliation(s)
- Norbert Sprenger
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000 Switzerland.
| | | | | | | |
Collapse
|
7
|
Kim JI, Kim YS, Kang SK, Kim C, Park C, Lee MS, Huh Y. Electroacupuncture decreases nitric oxide synthesis in the hypothalamus of spontaneously hypertensive rats. Neurosci Lett 2009; 446:78-82. [PMID: 18834924 DOI: 10.1016/j.neulet.2008.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 12/21/2022]
Abstract
Acupuncture-related effects on autonomic function have been explored via biological and neurophysiologic studies. The hypothalamus, known to regulate the autonomic nervous system, is likely affected by acupuncture treatment that modulates sympathetic functions. The aim of this study was to investigate the effect of electroacupuncture at the Jogsamni point (ST36, an acupoint known to modulate autonomic function) on expression of neuronal nitric oxide synthase (nNOS) in the hypothalamus of spontaneously hypertensive rat. Nitric oxide, which is produced by nNOS activity, plays an important role in the regulation of many physiologic processes, including sympathetic activities, in the hypothalamus and other parts of the brain. nNOS expression was assessed by immunohistochemistry of nNOS and histochemistry of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d). The staining intensities of nNOS-positive neurons and NADPH-d-positive neurons were quantitatively assessed using microdensitometry to measure changes in optical density. The results show that electroacupuncture at ST36 reduced the expression and activity of nNOS in the hypothalamus of spontaneously hypertensitive rats. These findings suggest that the electroacupuncture at ST36 results in modulation of the activity of nNOS in the hypothalamus of spontaneously hypertensive rat.
Collapse
Affiliation(s)
- Jong-In Kim
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Lee JJ, Cho YW, Huh Y, Cha CI, Yeo SG. Effect of nitric oxide on auditory cortical neurons of aged rats. Neurosci Lett 2008; 447:37-41. [PMID: 18840505 DOI: 10.1016/j.neulet.2008.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/03/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
Age-related changes in the effects of nitric oxide (NO) on neurons of the auditory cortex have not been determined. We therefore evaluated the anatomical changes and neurophysiological characteristics of these neurons in rats as a function of age. The numbers of cresyl violet stained cells, the numbers and areas of NADPH-d-positive neuronal cell bodies, and their optical density, were measured in Sprague-Dawley rats aged 24 months (aged group) and 4 months (control group). The modulatory effects of NO on K(+) currents of acutely isolated rat auditory cortical neurons were also assessed. There were no between-group differences in the distribution patterns of glial cells and neurons, or in the numbers and areas of NADPH-d-positive neuronal cell bodies. However, the optical density of NADPH-d-positive neuronal cell bodies was significantly greater in the aged group than in the control group. In addition, voltage-gated K(+) currents of rat auditory cortical neurons were activated by increased levels of NO. As activation of the K(+) current likely suppresses neuronal excitability, age-associated increases in NO production can hinder the function of the acoustic center by inhibiting neuron excitability.
Collapse
Affiliation(s)
- Jong-Ju Lee
- Department of Physiology, Biomedical Science Institute, Medical Research Center, Kyung Hee University School of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
9
|
Huh Y, Choon Park D, Huh Y, Choon Park D, Geun Yeo S, Cha Il C. Evidence for increased NADPH-diaphorase-positive neurons in the central auditory system of the aged rat. Acta Otolaryngol 2008; 128:648-53. [PMID: 18568499 DOI: 10.1080/00016480701636868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONCLUSIONS The age-related increase in the production of nitric oxide (NO) suggests that this increase was related to neuron aging. Additional studies may provide information regarding aging-related changes in the central auditory system. OBJECTIVES Although NO has been associated with aging, it is unclear whether specific areas of the central auditory system are involved. We therefore assayed aging-related changes in NADPH-diaphorase (NADPH-d), a selective histochemical marker for NO, in the neurons of the central auditory system and other brain regions. MATERIALS AND METHODS The numbers of NADPH-d-stained neurons and the area and staining density of cell bodies were examined in aged (24 months old) and younger (4 months old) Wistar rats. RESULTS The number of NADPH-d-positive neurons in the inferior colliculus was significantly increased in aged rats (p<0.05), whereas the area of NADPH-d-positive neurons in all areas did not differ significantly between aged and younger rats (p>0.05). The staining densities of NADPH-d-positive neurons in the inferior colliculus, the auditory cortex, and the visual cortex were significantly greater in aged compared with younger rats (p<0.05).
Collapse
|
10
|
Yamova L, Atochin D, Glazova M, Chernigovskaya E, Huang P. Role of neuronal nitric oxide in the regulation of vasopressin expression and release in response to inhibition of catecholamine synthesis and dehydration. Neurosci Lett 2007; 426:160-5. [PMID: 17904738 PMCID: PMC2768346 DOI: 10.1016/j.neulet.2007.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/27/2022]
Abstract
We used neuronal nitric oxide synthase (nNOS) gene knockout mice to study the effects of catecholamines and neuronal nitric oxide on vasopressin expression in the hypothalamic neurosecretory centers. nNOS gene deletion did not change the level of vasopressin mRNA in the supraoptic or paraventricular nuclei. In contrast, vasopressin immunoreactivity was lower in nNOS deficient mice than in wild-type animals. Dehydration increased vasopressin mRNA levels and decreased vasopressin immunoreactivity in both wild-type and nNOS knockout mice, but these responses were more marked in the nNOS knockout mice. Treatment with alpha-mpt, a pharmacologic inhibitor of catecholamine synthesis, resulted in increased vasopressin mRNA levels in wild-type mice and in reduced vasopressin immunoreactivity in both wild-type and nNOS knockout mice. From these results, we conclude: (1) neuronal nitric oxide suppresses vasopressin expression under basal conditions and during activation of the vasopressinergic system by dehydration; (2) catecholamines limit vasopressin expression; (3) nNOS is required for the effects of catecholamines on vasopressin expression.
Collapse
Affiliation(s)
- Liubov Yamova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr, Saint-Petersburg 194223, Russia
| | | | | | | | | |
Collapse
|
11
|
Saad WA, . IFM, . LADA, . TAF, . WAS. Effects of Nitric Oxide and Arginine Vasopressin on Water Intake Induced by Central Angiotensin II. Part 1. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.845.849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|