1
|
Ahmad-Molaei L, Pourhamzeh M, Ahadi R, Khodagholi F, Hassanian-Moghaddam H, Haghparast A. Time-Dependent Changes in the Serum Levels of Neurobiochemical Factors After Acute Methadone Overdose in Adolescent Male Rat. Cell Mol Neurobiol 2021; 41:1635-1649. [PMID: 32712727 PMCID: PMC11444013 DOI: 10.1007/s10571-020-00931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Acute methadone toxicity is a major public health concern which has adverse effects on brain tissue and results in recurrent or delayed respiratory arrest. Our study aimed to investigate the time-dependent changes in several serum biochemical markers of brain damage, spatial working memory, and the brain tissue following acute methadone overdose. Adolescent male rats underwent an intraperitoneal (i.p.) injection of 15 mg/kg methadone. In case of apnea occurrence, resuscitation was performed by a ventilatory pump and administrating naloxone (2 mg/kg; i.p.). The animals were classified into groups of treated rats; methadone and naloxone-Apnea (M/N-Apnea), M/N-Sedate, Methadone, Naloxone, and control (saline) groups. The serum levels of S100B, neuron-specific enolase (NSE), myelin basic protein factors, and (Lactate/Pyruvate) L/P ratio were evaluated at the time-points of 6, 24, and 48 h (h). We found that the alterations of S100B and L/P ratio were considerable in the M/N-Apnea and Methadone groups from the early hours post-methadone overdose, while NSE serum levels elevation was observed only in M/N-Apnea group with a delay at 48 h. Further, we assessed the spatial working memory (Y-maze test), morphological changes, and neuronal loss. The impaired spontaneous alternation behavior was detected in the M/N-Apnea groups on days 5 and 10 post-methadone overdose. The morphological changes of neurons and the neuronal loss were detectable in the CA1, striatum, and cerebellum regions, which were pronounced in both M/N-Apnea and Methadone groups. Together, our findings suggest that alterations in the serum levels of S100B and NSE factors as well as L/P ratio could be induced by methadone overdose with the presence or absence of apnea before the memory impairment and tissue injury in adolescent male rats.
Collapse
Affiliation(s)
- Leila Ahmad-Molaei
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
2
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate has diverse roles in the brain at the molecular and behavioral levels under physiological and pathophysiological conditions. This study investigates whether lysine lactylation (Kla), a lactate-derived post-translational modification in macrophages, occurs in brain cells and if it does, whether Kla is induced by the stimuli that accompany changes in lactate levels. Here, we show that Kla in brain cells is regulated by neural excitation and social stress, with parallel changes in lactate levels. These stimuli increase Kla, which is associated with the expression of the neuronal activity marker c-Fos, as well as with decreased social behavior and increased anxiety-like behavior in the stress model. In addition, we identify 63 candidate lysine-lactylated proteins and find that stress preferentially increases histone H1 Kla. This study may open an avenue for the exploration of a role of neuronal activity-induced lactate mediated by protein lactylation in the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hikari Otabi
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
3
|
An X, Shi X. Effects of electroconvulsive shock on neuro-immune responses: Does neuro-damage occur? Psychiatry Res 2020; 292:113289. [PMID: 32702550 DOI: 10.1016/j.psychres.2020.113289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, this treatment may produce memory impairment. The mechanisms of the cognitive adverse effects are not known. Neuroimmune response is related to the cognitive deficits. By reviewing the available animal literature, we examined the glia activation, inflammatory cytokines, neuron oxidative stress responses, and neural morphological changes following electroconvulsive shock (ECS) treatment. The studies showed that ECS activates microglia, upregulates neuro-inflammatory cytokines, and increases oxidative stress responses. But these effects are rapid and may be transient. They normalize as ECS treatment continues, suggesting endogenous neuroprotection may be mobilized. The transient changes are well in line with the clinical observations that ECT usually does not cause significant long-lasting retrograde amnesia. The longitudinal studies will be particularly important to explore the dynamic changes of neuroplasticity following ECT (Jonckheere et al., 2018). Investigating the neuroplasticity changes in animals that suffered chronic stress may also be crucial to giving support to the translation of preclinical research.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Xiujian Shi
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
4
|
Photoelectrochemical immunoassay platform based on MoS 2 nanosheets integrated with gold nanostars for neuron-specific enolase assay. Mikrochim Acta 2020; 187:480. [PMID: 32743701 DOI: 10.1007/s00604-020-04411-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/23/2020] [Indexed: 02/01/2023]
Abstract
MoS2 nanosheets were prepared by exfoliating MoS2 bulk crystals with ultrasonication in N-methylpyrrolidone and were integrated with gold nanostars (AuNS) to fabricate an AuNS/MoS2 nanocomposite. All nanomaterials were characterized by transmission electron microscope, scanning electron microscope, ultraviolet-visible spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. AuNS/MoS2 nanocomposites were coated onto a glassy carbon electrode (GCE) surface to construct a nanointerface for immobilizing neuron-specific enolase antibody (anti-NSE) thus forming a photoelectrochemical immunoassay system. AuNS can significantly promote the photoelectric conversion of MoS2 nanosheets improving the performance for a photoelectrochemical assay. Being illuminated with white light LED and controlling the potential at 0.05 V (vs. SCE), the photocurrent generated from anti-NSE(BSA)/AuNS/MoS2/GCE using 0.15 mol L-1 ascorbic acid as electron donor can be recorded with amperometry and used as an output signal for NSE quantitative assay. Under optimized experimental conditions, the photocurrent variation for the affinity-binding NSE is proportional to the logarithm of NSE concentration in the range 5.0 pg mL-1 to 1.5 ng mL-1 with a detection limit of 3.5 pg mL-1 (S/N = 3). The practicability of the PEC immunoassay system was evaluated by determining NSE in clinical serum samples. The recoveries ranged from 93.0 to 103% for the determination of NSE in serum samples with a standard addition method. The PEC immunoassay system possesses good accuracy for determining NSE in real samples. Graphical abstract.
Collapse
|
5
|
Oses JP, Müller AP, Strogulski NR, Moreira JD, Böhmer AE, Hansel G, Carteri RB, Busnello JV, Kopczynski A, Rodolphi MS, Souza DO, Portela LV. Sustained elevation of cerebrospinal fluid glucose and lactate after a single seizure does not parallel with mitochondria energy production. Epilepsy Res 2019; 152:35-41. [PMID: 30875635 DOI: 10.1016/j.eplepsyres.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Generalized seizures trigger excessive neuronal firing that imposes large demands on the brain glucose/lactate availability and utilization, which synchronization requires an integral mitochondrial oxidative capability. We investigated whether a single convulsive crisis affects brain glucose/lactate availability and mitochondrial energy production. Adult male Wistar rats received a single injection of pentylentetrazol (PTZ, 60 mg/kg, i.p.) or saline. The cerebrospinal fluid (CSF) levels of glucose and lactate, mitochondrial respirometry, [14C]-2-deoxy-D-glucose uptake, glycogen content and cell viability in hippocampus were measured. CSF levels of glucose and lactate (mean ± SD) in control animals were 68.08 ± 11.62 mg/dL and 1.17 ± 0.32 mmol/L, respectively. Tonic-clonic seizures increased glucose levels at 10 min (96.25 ± 13.19) peaking at 60 min (113.03 ± 16.34) returning to control levels at 24 h (50.12 ± 12.81), while lactate increased at 10 min (3.23 ± 1.57) but returned to control levels at 360 min after seizures (1.58 ± 0.21). The hippocampal [14C]-2-deoxy-D-glucose uptake, glycogen content, and cell viability decreased up to 60 min after the seizures onset. Also, an uncoupling between mitochondrial oxygen consumption and ATP synthesis via FoF1-ATP synthase was observed at 10 min, 60 min and 24 h after seizures. In summary, after a convulsive seizure glucose and lactate levels immediately rise within the brain, however, considering the acute impact of this metabolic crisis, mitochondria are not able to increase energy production thereby affecting cell viability.
Collapse
Affiliation(s)
- Jean Pierre Oses
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Pastoris Müller
- Unidade de Ciências da Saúde, Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC, Av. Universitária, 1105 - Bairro Universitário, CEP 88806-000, Criciúma, Santa Catarina, Brazil
| | - Nathan Ryzewski Strogulski
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia D Moreira
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Nutrição, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana Elisa Böhmer
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gisele Hansel
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Randhall Bruce Carteri
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - João Vicente Busnello
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Afonso Kopczynski
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Salimen Rodolphi
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Valmor Portela
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica, Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
6
|
Hao J, Zhang X, Jiang K, Wu M. New insights into the role of neuron-specific enolase in tic disorders. Neurol Sci 2019; 40:1167-1172. [PMID: 30838543 DOI: 10.1007/s10072-019-03811-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Neuron-specific enolase (NSE) has been suggested for demonstrating brain metabolism in neuropsychiatric disorders. This study assessed serum NSE levels in patients with tic disorders (TD). METHODS In this retrospective case-control study, we investigated whether NSE levels were increased in TD patients. Then, the influencing factors and correlations between NSE levels and clinical features were analyzed. Finally, we tested its diagnostic value for identifying tic severity. RESULTS NSE levels were increased in TD patients, although no statistically significant difference was present between transient TD, chronic TD, and Tourette syndrome. Factors influencing NSE levels assessed by multiple linear regression were the Yale Global Tic Severity Scale (YGTSS) global severity scores and gender. There were significant correlations between NSE levels and tic severity. The optimal cut-off value to distinguish mild tics from moderate-severe tics estimated by receiver operating characteristics curve was 24.95 ng/ml (AUC = 0.683). CONCLUSION Our findings suggested that NSE may be a significant biomarker in TD but should be confirmed in further investigation.
Collapse
Affiliation(s)
- Juanjuan Hao
- Shanghai Jiao Tong University School of Medicine, 227 Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xin Zhang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Keyu Jiang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Min Wu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
7
|
S100B, Homocysteine, Vitamin B12, Folic Acid, and Procalcitonin Serum Levels in Remitters to Electroconvulsive Therapy: A Pilot Study. DISEASE MARKERS 2018; 2018:2358451. [PMID: 29545905 PMCID: PMC5818900 DOI: 10.1155/2018/2358451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
Background Electroconvulsive therapy (ECT) is one of the most effective treatment options for refractory depressed patients. To date, there are only a few predictors of response. Aim The aim was to identify predictive biomarkers of remission to ECT on a molecular level. Methods 11 patients suffering from a major depressive episode—according to the Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)—underwent 10 ECT sessions. Blood samples were taken, and the depression severity was assessed before, one hour and 24 hours after sessions 1, 4, 7, and 10 using the Montgomery Asberg Depression Rating Scale (MADRS). A MADRS total score < 12 was interpreted as remission. Results Patients remitting under ECT had significantly higher homocysteine (p < 0.001), S100B (p < 0.001), and procalcitonin (PCT) (p = 0.027) serum levels. On the contrary, serum levels of vitamin B12 (p < 0.001) and folic acid (p = 0.007) were significantly lower in remitters compared to those in nonremitters. Levels remained unchanged throughout the whole ECT course. Conclusions Our findings indicate that lower levels of vitamin B12 and folic acid associated with higher levels of homocysteine, S100B, and PCT point to a subgroup of depressed patients sensitive to ECT. Due to the limited sample size, further studies are required to replicate our findings.
Collapse
|
8
|
Jiang J, Wang J, Li C. Potential Mechanisms Underlying the Therapeutic Effects of Electroconvulsive Therapy. Neurosci Bull 2017; 33:339-347. [PMID: 28032314 PMCID: PMC5567510 DOI: 10.1007/s12264-016-0094-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023] Open
Abstract
In spite of the extensive application of electroconvulsive therapy (ECT), how it works remains unclear. So far, researchers have made great efforts in figuring out the mechanisms underlying the effect of ECT treatment via determining the levels of neurotransmitters and cytokines and using genetic and epigenetic tools, as well as structural and functional neuroimaging. To help address this question and provide implications for future research, relevant clinical trials and animal experiments are reviewed.
Collapse
Affiliation(s)
- Jiangling Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
9
|
Wiener CD, Molina ML, Passos M, Moreira FP, Bittencourt G, de Mattos Souza LD, da Silva RA, Jansen K, Oses JP. Neuron-specific enolase levels in drug-naïve young adults with major depressive disorder. Neurosci Lett 2016; 620:93-6. [PMID: 27026487 DOI: 10.1016/j.neulet.2016.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/23/2016] [Accepted: 03/26/2016] [Indexed: 01/08/2023]
Abstract
The aim of this study is to assess neuron-specific enolase (NSE) levels and clinical features in subjects with major depressive disorder (MDD). This is a cross-sectional study with drug-naïve young adults with MDD (aged 18-29 years). Serum levels of NSE were assessed using the electrochemiluminescence method. MDD diagnosis, suicidal ideation, and time of disease were assessed using the Structured Clinical Interview for DSM-IV (SCID). The Hamilton Depression Rating Scale (HDRS) and Hamilton Anxiety Rating Scale (HARS) were used to assess depressive and anxiety symptoms. No relationship was observed between NSE levels and severity of depressive and anxiety symptoms, time of disease, and suicidal ideation. These results suggest that NSE serum levels were not associated with clinical features of MDD among drug-naïve young adults.
Collapse
Affiliation(s)
- Carolina David Wiener
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil; Hospital São Francisco de Paula, Universidade Católica de Pelotas, Pelotas, Brazil.
| | - Mariane Lopez Molina
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Miguel Passos
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Fernanda Pedrotti Moreira
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Guilherme Bittencourt
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | | | - Ricardo Azevedo da Silva
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Karen Jansen
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Jean Pierre Oses
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil; Hospital São Francisco de Paula, Universidade Católica de Pelotas, Pelotas, Brazil
| |
Collapse
|
10
|
Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: Evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 2014; 47:876-88. [DOI: 10.1016/j.clinbiochem.2014.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/05/2014] [Accepted: 01/23/2014] [Indexed: 01/06/2023]
|
11
|
Kranaster L, Janke C, Mindt S, Neumaier M, Sartorius A. Protein S-100 and neuron-specific enolase serum levels remain unaffected by electroconvulsive therapy in patients with depression. J Neural Transm (Vienna) 2014; 121:1411-5. [PMID: 24801966 DOI: 10.1007/s00702-014-1228-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/22/2014] [Indexed: 01/03/2023]
Abstract
The mechanism of the reversible cognitive deficits that might occur within an electroconvulsive therapy (ECT) treatment has not been clarified in a substantial way yet. Although the data available so far do not point towards a cause due to any structural or diffuse damage, further clarification, especially of the role of S-100 seems to be necessary before robust conclusions can be drawn. Serum levels of protein S-100 and neuron-specific enolase (NSE) were analysed in 19 patients with depression, who received ECT. The sampling was adjusted for the short half-life of protein S-100. Several outcome parameters such as Hamilton Depression Rating Scale and Mini-mental state examination before and after the ECT, response and remission to the treatment were recorded. S-100 and NSE levels at baseline, 30 and 60 min after the third session and after the end of the ECT remained stable. S-100 and NSE levels were neither associated with antidepressant response or remission nor with alterations in the cognitive performance. Although aiming for detecting potential rise in these established brain damage markers, an increase due to ECT was not observed, which is in line with the previous studies concerning the safety of ECT on a cellular basis.
Collapse
Affiliation(s)
- Laura Kranaster
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Ruprecht-Karls-University Heidelberg, J5, 68159, Mannheim, Germany,
| | | | | | | | | |
Collapse
|
12
|
Ullrich H, Kranaster L, Sigges E, Andrich J, Sartorius A. Neuron specific enolase and serum remain unaffected by ultra high frequency left prefrontal transcranial magnetic stimulation in patients with depression: a preliminary study. J Neural Transm (Vienna) 2013; 120:1733-6. [PMID: 23736947 DOI: 10.1007/s00702-013-1050-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Abstract
Serum levels of neuron specific enolase (NSE) and protein S-100 were analysed in 22 patients with depression, who got repetitive transcranial magnetic stimulation (rTMS) for 3 weeks with ultra high frequency stimulation or sham. NSE and S-100 at baseline and after 3 weeks did not differ between the groups. Neither in the ultra high frequency group, nor in the sham group a difference between baseline and end could be found. No evidence for a significant rise in brain damage markers in rTMS was found in this preliminary study.
Collapse
Affiliation(s)
- Heiko Ullrich
- Department of Psychiatry and Psychotherapy, Kreisklinikum Siegen GmbH, Siegen, Germany
| | | | | | | | | |
Collapse
|
13
|
Reduced Serum Levels of Neuron Specific Enolase (NSE) in Drug-Naïve Subjects with Major Depression and Bipolar Disorder. Neurochem Res 2013; 38:1394-8. [DOI: 10.1007/s11064-013-1036-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
|
14
|
Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013; 23:171-85. [PMID: 22609317 DOI: 10.1016/j.euroneuro.2012.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | |
Collapse
|
15
|
Réus GZ, Stringari RB, Rezin GT, Pezente DP, Scaini G, Maggi DD, De-Nês BT, Streck EL, Quevedo J, Feier G. Effects of maintenance electroshock on mitochondrial respiratory chain and creatine kinase activities in the rat brain. Acta Neuropsychiatr 2012; 24:275-85. [PMID: 25286992 DOI: 10.1111/j.1601-5215.2011.00629.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Réus GZ, Stringari RB, Rezin GT, Pezente DP, Scaini G, Maggi DD, De-Nês BT, Streck EL, Quevedo J, Feier G. Effects of maintenance electroshock on mitochondrial respiratory chain and creatine kinase activities in the rat brain.Objective:Electroconvulsive therapy is used efficacious treatment for a variety of complicated psychiatric disorders and evidences have indicated that energy metabolism impairment may be involved in pathophysiology and treatment of mood disorders. This work was performed to determine creatine kinase and mitochondrial respiratory chain activities at different times after the maintenance electroconvulsive shock (ECS).Methods:Male Wistar rats received a protocol mimicking therapeutic of maintenance or simulated ECS (sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance ECS. We measured creatine kinase and mitochondrial respiratory chain activities in the prefrontal cortex, hippocampus, cortex, cerebellum and striatum.Results:Our results showed that maintenance ECS alter respiratory chain complexes and creatine kinase activities in the rat brain, but these effects were related to brain area and time after the ECS, in which the animal were killed.Conclusion:Finally, these findings further support the hypothesis that alteration on the energy metabolism could be involved in the therapeutic or adverse effects of ECS.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roberto B Stringari
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Daiana P Pezente
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora D Maggi
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna T De-Nês
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Feier
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
16
|
Validating serum S100B and neuron-specific enolase as biomarkers for the human brain - a combined serum, gene expression and MRI study. PLoS One 2012; 7:e43284. [PMID: 22916238 PMCID: PMC3422594 DOI: 10.1371/journal.pone.0043284] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/23/2012] [Indexed: 12/02/2022] Open
Abstract
Introduction Former studies have investigated the potential of serum biomarkers for diseases affecting the human brain. In particular the glial protein S100B, a neuro- and gliotrophin inducing plasticity, seems to be involved in the pathogenesis and treatment of psychiatric diseases such as major depression and schizophrenia. Neuron-specific enolase (NSE) is a specific serum marker for neuronal damage. However, the specificity of these biomarkers for cell type and brain region has not been investigated in vivo until now. Methods We acquired two magnetic resonance imaging parameters sensitive to changes in gray and white matter (T1-weighted/diffusion tensor imaging) and obtained serum S100B and NSE levels of 41 healthy subjects. Additionally, we analyzed whole brain gene expressions of S100B in another male cohort of three subjects using the Allen Brain Atlas. Furthermore, a female post mortal brain was investigated using double immunofluorescence labelling with oligodendrocyte markers. Results We show that S100B is specifically related to white matter structures, namely the corpus callosum, anterior forceps and superior longitudinal fasciculus in female subjects. This effect was observed in fractional anisotropy and radial diffusivity – the latest an indicator of myelin changes. Histological data confirmed a co-localization of S100B with oligodendrocyte markers in the human corpus callosum. S100B was most abundantly expressed in the corpus callosum according to the whole genome Allen Human Brain Atlas. In addition, NSE was related to gray matter structures, namely the amygdala. This effect was detected across sexes. Conclusion Our data demonstrates a very high S100B expression in white matter tracts, in particular in human corpus callosum. Our study is the first in vivo study validating the specificity of the glial marker S100B for the human brain, and supporting the assumption that radial diffusivity represents a myelin marker. Our results open a new perspective for future studies investigating major neuropsychiatric disorders.
Collapse
|
17
|
Böhmer AE, Oses JP, Schmidt AP, Perón CS, Krebs CL, Oppitz PP, D'Avila TT, Souza DO, Portela LV, Stefani MA. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery 2011; 68:1624-30; discussion 1630-1. [PMID: 21368691 DOI: 10.1227/neu.0b013e318214a81f] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The availability of markers able to provide an early insight related to prognostic and functional outcome of patients with traumatic brain injury (TBI) are limited. OBJECTIVE The relationship of clinical outcome with CSF neuron-specific enolase (NSE), S100B and glial fibrillary acidic protein (GFAP) levels in patients with severe TBI was investigated. METHODS Twenty patients with severe TBI (7 days at unit care) and controls were studied. Patients were grouped according to the outcome: (1) nonsurvival (n=5): patients who died; (2) survival A (n=15): CSF sampled between 1st and 3rd day from patients who survived after hospital admission; and (3) survival B (n=7): CSF sampled between 4th and 7th day from patients who survived after hospital admission and were maintained with intraventricular catheter up to 7 days. RESULTS Up to 3 days, S100B and NSE levels (ng/mL) were significantly elevated in the nonsurvival compared with survival A group (S100: 12.45 ± 5.46 vs 5.64 ± 3.36; NSE: 313.20 ± 45.51 vs 107.80 ± 112.10). GFAP levels did not differ between groups. In the survival B group S100B, GFAP, and NSE levels were still elevated compared with control (4.59 ± 2.19, 2.48 ± 2.55, and 89.80 ± 131.10, respectively). To compare S100B and NSE for the prediction of nonsurvival and survival patients we performed receiver operating characteristic curves. At admission, CSF NSE level predicts brain death more accurately than S100B. CONCLUSION Early elevations (up to 3 days) of S100B and NSE secondary to severe TBI predict deterioration to brain death. However, this feature was more prominently associated with NSE than S100B.
Collapse
Affiliation(s)
- Ana Elisa Böhmer
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto, Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
19
|
Electroconvulsive therapy and biomarkers of neuronal injury and plasticity: Serum levels of neuron-specific enolase and S-100b protein. Psychiatry Res 2010; 177:97-100. [PMID: 20378182 DOI: 10.1016/j.psychres.2009.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 01/12/2009] [Accepted: 01/21/2009] [Indexed: 11/22/2022]
Abstract
Electroconvulsive therapy (ECT) is considered an effective and safe treatment in major depressive disorders. However, the possibility that it may induce cognitive adverse effects observed in selected patients has raised a concern that ECT may induce neuronal damage. The biomarkers of brain damage, neuron-specific enolase (NSE) and S-100b protein (S-100b), were measured in serum before and after ECT to determine whether this treatment induces neuronal injury or glial activation. ECT was administered to 10 patients with major depressive disorder. The serum samples were analyzed before (baseline) and after ECT at 1 h, 2 h, 6 h, 24 h and 48 h. The severity of depression was scored with the Montgomery-Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory (BDI) pre-to-post ECT. There were no statistically significant changes in the median concentrations of NSE or S-100b at various time points before or after ECT. However, there were substantial elevations in the levels of S-100b in four patients. High levels of S-100 at 2 and 6 h correlated with the response to the treatment. These results suggest that ECT does not produce neuronal injury. The transient increase in the levels of S-100b reflecting activation of glial cells may play a part in mediating the antidepressant effects of ECT.
Collapse
|
20
|
Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall'Igna O, Mazzini GS, Souza DO, Portela LV. Serum levels of S100B and NSE proteins in Alzheimer's disease patients. J Neuroinflammation 2010; 7:6. [PMID: 20105309 PMCID: PMC2832635 DOI: 10.1186/1742-2094-7-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 01/27/2010] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer's disease is the most common dementia in the elderly, and the potential of peripheral biochemical markers as complementary tools in the neuropsychiatric evaluation of these patients has claimed further attention. Methods We evaluated serum levels of S100B and neuron-specific enolase (NSE) in 54 mild, moderate and severe Alzheimer's disease (AD) patients and in 66 community-dwelling elderly. AD patients met the probable NINCDS-ADRDA criteria. Severity of dementia was ascertained by the Clinical Dementia Rating (CDR) scale, cognitive function by the Mini Mental State Examination (MMSE), and neuroimage findings with magnetic resonance imaging. Serum was obtained from all individuals and frozen at -70°C until analysis. Results By comparing both groups, serum S100B levels were lower in AD group, while serum NSE levels were the same both groups. In AD patients, S100B levels were positively correlated with CDR scores (rho = 0.269; p = 0.049) and negatively correlated with MMSE scores (rho = -0.33; P = 0.048). NSE levels decreased in AD patients with higher levels of brain atrophy. Conclusions The findings suggest that serum levels of S100B may be a marker for brain functional condition and serum NSE levels may be a marker for morphological status in AD.
Collapse
Affiliation(s)
- Márcia L Chaves
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Production of panic-like symptoms by lactate is associated with increased neural firing and oxidation of brain redox in the rat hippocampus. Neurosci Lett 2009; 453:219-24. [PMID: 19429039 DOI: 10.1016/j.neulet.2009.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 11/20/2022]
Abstract
Lactate uses an unknown mechanism to induce panic attacks in people and panic-like symptoms in rodents. We tested whether intraperitoneal (IP) lactate injections act peripherally or centrally to induce panic-like symptoms in rats by examining whether IP lactate directly affects the CNS. In Long-Evans rats, IP lactate (2 mmol/kg) injection increased lactate levels in the plasma and the cerebrospinal fluid. IP lactate also induced tachycardia and behavioral freezing suggesting the production of panic-like behavior. To enter intermediate metabolism, lactate is oxidized by lactate dehydrogenase (LDH) to pyruvate with co-reduction of NAD(+) to NADH. Therefore, we measured the ratio of NADH/NAD(+) to test whether IP lactate altered lactate metabolism in the CNS. Lactate metabolism was studied in the hippocampus, a brain region believed to contribute to panic-like symptoms. IP lactate injection lowered the ratio of NADH/NAD(+) without altering the total amount of NADH and NAD(+) suggesting oxidation of hippocampal redox state. Lactate oxidized hippocampal redox since intrahippocampal injection of the LDH inhibitor, oxamate (50mM) prevented the oxidation of NADH/NAD(+) by IP lactate. In addition to oxidizing hippocampal redox, IP lactate rapidly increased the firing rate of hippocampal neurons. Similar IP pyruvate injections had no effect. Neural discharge also increased following intrahippocampal lactate injection suggesting that increased discharge was a direct action of lactate on the hippocampus. These studies show that oxidation of brain redox and increased hippocampal firing are direct actions of lactate on the CNS that may contribute to the production of lactate-induced panic.
Collapse
|
22
|
Kato N. Neurophysiological mechanisms of electroconvulsive therapy for depression. Neurosci Res 2009; 64:3-11. [PMID: 19321135 DOI: 10.1016/j.neures.2009.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/15/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
The neurobiological foundation of electroconvulsive therapy (ECT) remains fragile. How ECT affects neural activities in the brain of depressives is largely unknown. There has been accumulating knowledge on genes and molecules induced by the animal model of ECT. Exact functions of those molecules in the context of mood disorder remain unknown. Among the dozens of molecules highly expressed by ECT, one that shows an especially prominent induction (>6-fold) is Homer 1a, a member of the intracellular scaffold protein family Homer. We have examined effects of Homer 1a in ECT-subjected cortical pyramidal cells, on the basis of which two neurobiological consequences of ECT are proposed. First, Homer 1a either injected intracellularly or induced by ECT was shown to reduce neuronal excitability. This agrees with diverse lines of mutually consistent clinical investigations, which unanimously point to an enhanced excitability in the cerebral cortex of depressive patients. The GABAergic dysfunction hypothesis of depression was thus revitalized. Second, again by relying on Homer 1a, we have proposed a molecular mechanism by which ECT affects a form of long-term depression (LTD). The possibility is discussed that clinical effects of ECT are exerted at least partly by reducing neural excitability and modifying synaptic plasticity.
Collapse
Affiliation(s)
- Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
23
|
Lee CS, Kang KR, Lee JY, Park CS, Hahn KH, Sohn JW, Kim BJ. Proteomic analysis of rat brains following exposure to electroconvulsive therapy. J Korean Med Sci 2009; 24:132-7. [PMID: 19270826 PMCID: PMC2650984 DOI: 10.3346/jkms.2009.24.1.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 06/03/2008] [Indexed: 11/30/2022] Open
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments used in psychiatry to date. The mechanisms of ECT action, however, are the least understood and still unclear. As a tool to elucidate the mechanisms of action of ECT, we employed proteomic analysis based on the identification of differentially expressed proteins after exposure to repeated ECT in rat brains. The expression of proteins was visualized by silver stain after two-dimensional gel electrophoresis. Of 24 differentially expressed protein spots (p<0.05 by Student t-test), six different proteins from 7 spots were identified by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF)/mass spectrometry. Among the identified proteins, there were five dominantly expressed proteins in the ECT-treated rat brain tissues (p<0.05); S100 protein beta chain, 14-3-3 protein zeta/delta, similar to ubiquitin-like 1 (sentrin) activating enzyme subunit 1, suppressor of G2 allele of SKP1 homolog, and phosphatidylinositol transfer protein alpha. The expression of only one protein, ACY1 protein, was repressed (p<0.05). These findings likely serve for a better understanding of mechanisms involved in the therapeutic effects of ECT.
Collapse
Affiliation(s)
- Cheol Soon Lee
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Ryeon Kang
- Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
- MRC for Neural Dysfunction, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Ji-Young Lee
- Department of Biochemistry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
- MRC for Neural Dysfunction, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Chul Soo Park
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kyu Hee Hahn
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jin Wook Sohn
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
24
|
Busnello JV, Oses JP, da Silva RS, Feier G, Barichello T, Quevedo J, Böhmer AE, Kapczinski F, Souza DO, Sarkis JJF, Portela LV. Peripheral nucleotide hydrolysis in rats submitted to a model of electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1829-33. [PMID: 18775464 DOI: 10.1016/j.pnpbp.2008.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/11/2008] [Accepted: 08/11/2008] [Indexed: 01/18/2023]
Abstract
Electroconvulsive therapy (ECT) is an efficacious and safe method for the treatment of mood disorders. Its utilization is accompanied by a myriad of biochemical and cellular changes, which are far from fully understood. The present work investigates in rat serum the effects of seizures induced by electroconvulsive shocks (ECS), an animal model of ECT, on enzymes that hydrolyze ATP, ADP and AMP to adenosine. Two different models of ECS were used, consisting in the application of one or eight ECS sessions, and respectively named acute or chronic. Serum samples were collected at several time points after the single shock in the acute and after the eighth and last shock in the chronic model. A single shock produced a sudden and short-lived inhibition of enzymatic activity (P<0.01 for ADP and AMP), whereas in the chronic model significant increases were noticed starting as early as 12 h after the last shock, remaining significantly elevated until the last measurement 7 days later for ATP and ADP. Analysis of hydrolysis was assessed at the selected time point of 7 days in cerebrospinal fluid samples, also demonstrating a significant activation in the chronic model (P<0.0001 for ATP and ADP). These results support the idea that adenosine nucleotides may be involved in the biochemical mechanisms underlying longer lasting therapeutic effects associated with ECT, and suggest that peripheral markers can possibly contribute to the evaluation of activity in the central nervous system.
Collapse
Affiliation(s)
- João Vicente Busnello
- Departamento de Bioquímica, ICBS, UFRGS, Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jeon WJ, Kim SH, Seo MS, Kim Y, Kang UG, Juhnn YS, Kim YS. Repeated electroconvulsive seizure induces c-Myc down-regulation and Bad inactivation in the rat frontal cortex. Exp Mol Med 2008; 40:435-44. [PMID: 18779656 DOI: 10.3858/emm.2008.40.4.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Repeated electroconvulsive seizure (ECS), a model for electroconvulsive therapy (ECT), exerts neuroprotective and proliferative effects in the brain. This trophic action of ECS requires inhibition of apoptotic activity, in addition to activation of survival signals. c-Myc plays an important role in apoptosis of neurons, in cooperation with the Bcl-2 family proteins, and its activity and stability are regulated by phosphorylation and ubiquitination. We examined c-Myc and related proteins responsible for apoptosis after repeated ECS. In the rat frontal cortex, repeated ECS for 10 days reduced the total amount of c-Myc, while increasing phosphorylation of c-Myc at Thr58, which reportedly induces degradation of c-Myc. As expected, ubiquitination of both phosphorylated and total c-Myc increased after 10 days ECS, suggesting that ECS may reduce c-Myc protein level via ubiquitination-proteasomal degradation. Bcl-2 family proteins, caspase, and poly(ADP-ribose) polymerase (PARP) were investigated to determine the consequence of down-regulating c-Myc. Protein levels of Bcl-2, Bcl-X(L), Bax, and Bad showed no change, and cleavage of caspase-3 and PARP were not induced. However, phosphorylation of Bad at Ser-155 and binding of Bad to 14-3-3 increased without binding to Bcl-X(L) after repeated ECS, implying that repeated ECS sequesters apoptotic Bad and frees pro-survival Bcl-XL. Taken together, c-Myc down-regulation via ubiquitination-proteasomal degradation and Bad inactivation by binding to 14-3-3 may be anti-apoptotic mechanisms elicited by repeated ECS in the rat frontal cortex. This finding further supports the trophic effect of ECS blocking apoptosis as a possible therapeutic effect of ECT.
Collapse
Affiliation(s)
- Won Je Jeon
- Clinical Research Institute, Seoul National University Hospital, Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul 110-744, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008; 7:575-90. [PMID: 18591979 DOI: 10.1038/nrd2605] [Citation(s) in RCA: 471] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purines have key roles in neurotransmission and neuromodulation, with their effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. Recently, purinergic mechanisms and specific receptor subtypes have been shown to be involved in various pathological conditions including brain trauma and ischaemia, neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions, as well as in neuropsychiatric diseases, including depression and schizophrenia. This article reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic receptor subtypes, most notably A(2A), P2X(4) and P2X(7), that might be therapeutically targeted for the treatment of these conditions.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
27
|
Jinno S, Kosaka T. Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol 2008; 212:440-7. [PMID: 18538764 DOI: 10.1016/j.expneurol.2008.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/03/2008] [Accepted: 04/21/2008] [Indexed: 01/31/2023]
Abstract
Recent studies place emphasis on the modulations of immune system in various psychiatric disorders and/or treatments. The aim of this study was to investigate the implications of immune-related glial cells in a rapid-acting treatment for depression, namely, electroconvulsive therapy (ECT). Specifically, the effects of electroconvulsive shock (ECS; animal model of ECT) on microglia were morphologically determined in the mouse hippocampus by using ionized calcium-binding adaptor molecule 1 (Iba1) immunocytochemistry. For comparison, S100beta-positive astrocytes, another type of glial cells, were also tested. After 24 hours of acute ECS administration, a meshwork of Iba1-positive microglial processes was largely diminished, although the change was transient. In mice that received chronic ECS administration, the decline of Iba1-positive microglial process meshwork continued even 1 month after the last shock. Morphometric image analysis revealed the significant reduction of Iba1-positive microglial process density following ECS administration. On the other hand, neither acute nor chronic ECS administration made alterations in the patterns of expression of S100beta immunoreactivity. No significant changes were detected in the cell surface area of S100beta-positive astrocytes following ECS administration. The optical disector analysis demonstrated that ECS did not affect the numerical densities of Iba1-positive microglia and S100beta-positive astrocytes in the hippocampus. These results provide some key to understand the potential role of microglia and astrocytes in the antidepressant action of ECT.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
28
|
Relationship between cerebrospinal and peripheral S100B levels after focal cerebral ischemia in rats. Neurosci Lett 2008; 436:40-3. [DOI: 10.1016/j.neulet.2008.02.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/03/2008] [Accepted: 02/25/2008] [Indexed: 11/23/2022]
|
29
|
Serum S100B but not NSE Levels are Increased in Morbidly Obese Individuals Affected by Obstructive Sleep Apnea–Hypopnea Syndrome. Obes Surg 2008; 18:993-9. [DOI: 10.1007/s11695-007-9386-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 11/28/2007] [Indexed: 02/01/2023]
|
30
|
de Oliveira DL, Fischer A, Jorge RS, da Silva MC, Leite M, Gonçalves CA, Quillfeldt JA, Souza DO, e Souza TM, Wofchuk S. Effects of early-life LiCl-pilocarpine-induced status epilepticus on memory and anxiety in adult rats are associated with mossy fiber sprouting and elevated CSF S100B protein. Epilepsia 2008; 49:842-52. [PMID: 18177363 DOI: 10.1111/j.1528-1167.2007.01484.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This study investigated putative correlations among behavioral changes and: (1) neuronal loss, (2) hippocampal mossy fiber sprouting, and (3) reactive astrogliosis in adult rats submitted to early-life LiCl-pilocarpine-induced status epilepticus (SE). METHODS Rats (P15) received LiCl (3 mEq/kg, i.p.) 12-18 h prior pilocarpine (60 mg/kg; s.c.). At adulthood, animals were submitted to behavioral tasks and after the completion of tasks biochemical and histological analysis were performed. RESULTS In SE group, it was observed an increased number of degenerating neurons in the CA1 subfield and in the hilus of animals 24 h after SE. At adulthood, SE group presented an aversive memory deficit in an inhibitory avoidance task and the animals that presented lower latency to the step down showed a higher score for mossy fiber sprouting. In the light-dark exploration task, SE rats returned less and spent less time in the light compartment and present an increased number of risk assessment behavior (RA). There was a negative correlation between the time spent in the light compartment and the score for mossy fiber sprouting and a positive correlation between score for mossy fiber sprouting and number of RA. LiCl-pilocarpine-treated animals showed higher levels of S100B immunocontent in the CSF as well as a positive correlation between the score for sprouting and the GFAP immunocontent in the CA1 subfield, suggesting an astrocytic response to neuronal injury. CONCLUSIONS We showed that LiCl-pilocarpine-induced SE during development produced long-lasting behavioral abnormalities, which might be associated with mossy fiber sprouting and elevated CSF S100B levels at adulthood.
Collapse
Affiliation(s)
- Diogo Losch de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jornada LK, Feier G, Barichello T, Vitali AM, Reinke A, Gavioli EC, Dal-Pizzol F, Quevedo J. Effects of maintenance electroshock on the oxidative damage parameters in the rat brain. Neurochem Res 2007; 32:389-94. [PMID: 17268857 DOI: 10.1007/s11064-006-9214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 10/30/2006] [Indexed: 01/11/2023]
Abstract
Although several advances have occurred over the past 20 years concerning refining the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding the mechanisms underlying its therapeutic or adverse effects. This work was performed in order to determine the level of oxidative damage at different times after the maintenance electroconvulsive shock (ECS). Male Wistar rats (250-300 g) received a protocol mimicking therapeutic of maintenance or simulated ECS (Sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance electroconvulsive shock. We measured oxidative damage parameters (thiobarbituric acid reactive species for lipid peroxidation and protein carbonyls for protein damage, respectively) in hippocampus, cortex, cerebellum and striatum. We demonstrated no alteration in the lipid peroxidation and protein damage in the four structures studied immediately after, 48 h and 7 days after a last maintenance electroconvulsive shock. Our findings, for the first time, demonstrated that after ECS maintenance we did protocol minimal oxidative damage in the brain regions, predominating absence of damage on the findings.
Collapse
Affiliation(s)
- Luciano K Jornada
- Laboratorio de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciuma, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia. PROGRESS IN BRAIN RESEARCH 2007; 162:459-78. [PMID: 17645933 DOI: 10.1016/s0079-6123(06)62023-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-CSF barrier (BCSFB) in choroid plexus works with the blood-brain barrier (BBB) in cerebral capillaries to stabilize the fluid environment of neurons. Dysfunction of either transport interface, i.e., BCSFB or BBB, causes augmented fluxes of ions, water and proteins into the CNS. These barrier disruptions lead to problems with edema and other compromised homeostatic mechanisms. Hyperthermic effects on BCSFB permeability and transport are not as well known as for BBB. However, it is becoming increasingly appreciated that elevated prostaglandin synthesis from fever/heat activation of cyclooxygenases (COXs) in the BCSFB promotes water and ion transfer from plasma to the ventricles; this harmful fluid movement into the CSF-brain interior can be attenuated by agents that inhibit the COXs. Moreover, new functional data from our laboratory animal model indicate that the BCSFB (choroidal epithelium) and the CSF-bordering ependymal cells are vulnerable to whole body hyperthermia (WBH). This is evidenced from the fact that rats subjected to 4h of heat stress (38 degrees C) showed a significant increase in the translocation of Evans blue and (131)Iodine from plasma to cisternal CSF, and manifested blue staining of the dorsal surface of the hippocampus and caudate nucleus. Degeneration of choroidal epithelial cells and underlying ependyma, a dilated ventricular space and damage to the underlying neuropil were frequent. A disrupted BCSFB is associated with a marked increase in edema formation in the hippocampus, caudate nucleus, thalamus and hypothalamus. Taken together, these findings suggest that the breaching of the BCSFB in hyperthermia significantly contributes to cell and tissue injuries in the CNS.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Institute of Surgical Sciences, Department of Anaesthesiology and Intensive Care, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
| | | |
Collapse
|