1
|
Li Y, Sun S, Li B, Li Y, Liu C, Ta D. Low-intensity pulsed ultrasound relieved the diabetic peripheral neuropathy in mice via anti-oxidative stress mechanism. ULTRASONICS 2025; 150:107618. [PMID: 40031083 DOI: 10.1016/j.ultras.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Diabetic peripheral neuropathy (DPN), as one of the most prevalent complications of diabetes, leads to significant pain and financial burden to patients. Currently, there was no effective treatment for DPN since the glucose control was just a prevention and the drug therapy only relieved the DPN pain. As a non-invasive physical therapy, low-intensity pulsed ultrasound (LIPUS) is utilized in the musculoskeletal and nerve injuries therapy. Studies revealed that LIPUS could regenerate nerves by the mechanical stimulation via oxidative stress pathway, which was thought as the important factor for DPN, and might have potential in the DPN therapy. This study aimed to identify a new therapeutic strategy for DPN using LIPUS. We analyzed the therapy effect and explored the therapeutic mechanism of LIPUS on DPN in mice. This study involved animal experiments and C57BL/6J mice were randomly assigned to DPN model and Sham groups. The DPN model group was fed a high-fat chow diet and injected with streptozotocin (STZ) for 3 consecutive days (40 mg/kg/d), whereas the Sham group was fed a normal diet and injected with an equal volume of sodium citrate buffer. After the DPN model confirmed with the 84-day modeling process, the DPN mice were randomly allocated into the DPN group and the LIPUS group. The LIPUS group underwent ultrasound treatments with a center frequency of 1 MHz, a duty cycle of 20 %, and a spatial average temporal average intensity (ISATA) of 200 mW/cm2 for 20 min/d, 5 d/w. After the 56-day treatment, all mice were euthanized. LIPUS therapeutic effects were evaluated through measurements of fasting blood glucose (FBG), behavioral tests, oxidative stress tests, morphological analysis, immunofluorescence, and western blot analysis. The results indicated that DPN mice had significantly higher FBG levels (28.77 ± 2.95 mmol/L) compared with sham mice (10.31 ± 1.49 mmol/L). Additionally, DPN mice had significantly lower mechanical threshold (4.13 ± 0.92 g) and higher thermal latency (16.20 ± 2.39 s) compared with the sham mice (7.31 ± 0.83 g, 11.67 ± 1.21 s). After receiving LIPUS treatment, the glucose tolerance tests (GTT) suggested that LIPUS treatment improved glucose tolerance, which was shown by a decrease in the area under the curve (AUC) for glucose in the LIPUS group (AUC = 2452 ± 459.33 min*mmol/L) compared with the DPN group (AUC = 3271 ± 420.90 min*mmol/L). Behavioral tests showed that LIPUS treatment significantly alleviated DPN-induced abnormalities by improving the mechanical threshold from 2.79 ± 0.79 g in the DPN group to 5.50 ± 1.00 g in the LIPUS group, and significantly decreasing thermal latency from 12.38 ± 1.88 s in the DPN group to 9.49 ± 2.31 s in the LIPUS group. Morphological observations revealed that DPN mice had a thinning and irregularly shaped myelin sheath, with 61.04 ± 5.60 % of abnormal nerve fibers in the sciatic nerve in LIPUS group, compared with 49.76 ± 4.88 % of abnormal nerve fibers in the LIPUS-treated group. Additionally, LIPUS treatment increased the mean fluorescence intensity of the associated nerve regeneration protein (i.e., Nf200) from 27.81 ± 0.32 arbitrary units in the DPN group to 37.62 ± 0.36 arbitrary units in the LIPUS group. Western blot and immunofluorescence analysis showed that LIPUS treatment significantly reduced Keap1 expression to 0.04 ± 0.06 relative units, compared with 0.17 ± 0.30 in the DPN group. Furthermore, immunofluorescence analysis revealed that LIPUS treatment promoted the production of its downstream antioxidant protein, heme oxygenase-1 (HO-1), with an increase in the fluorescence intensity from 27.81 ± 0.32 arbitrary units in the DPN group to 37.62 ± 0.36 arbitrary units in the LIPUS-treated group. The fluorescence intensity of Nrf2 was significantly higher in the LIPUS group, increasing from 4.90 ± 0.25 arbitrary units in the DPN group to 15.18 ± 2.13 arbitrary units in the LIPUS-treated group. Additionally, the malondialdehyde (MDA) levels, an indicator of oxidative stress, were significantly reduced in the serum, from 5.40 ± 0.48 nmol/ml in the DPN group to 4.64 ± 0.16 nmol/ml in the LIPUS-treated group, and in the sciatic nerve, from 16.17 ± 5.88 nmol/mg protein to 4.67 ± 2.10 nmol/mg protein, suggesting the oxidative stress was inhibited by LIPUS. This study demonstrated for the first time that LIPUS could relive DPN through anti-oxidative stress process. This study suggests that LIPUS might be a new therapy strategy for DPN.
Collapse
Affiliation(s)
- Yiyuan Li
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shuxin Sun
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Boyi Li
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Chengcheng Liu
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.
| | - Dean Ta
- Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Hou W, Shang X, Hao X, Pan C, Zheng Z, Zhang Y, Deng X, Chi R, Liu J, Guo F, Sun K, Xu T. SHP2-mediated ROS activation induces chondrocyte paraptosis in osteoarthritis and is attenuated by low-intensity pulsed ultrasound. J Orthop Translat 2025; 52:233-248. [PMID: 40337549 PMCID: PMC12056802 DOI: 10.1016/j.jot.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/20/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025] Open
Abstract
Background Paraptosis is a novel form of programmed cell death, generally caused by disrupted proteostasis or alterations of redox homeostasis. However, its impact and underlying mechanisms on the pathology of osteoarthritis (OA) are still unclear. This study aimed to investigate the role and regulatory mechanism of SHP2 in chondrocyte paraptosis and the effects influenced by low-intensity pulsed ultrasound (LIPUS). Methods SHP2, a MAPK upstream intermediary, has been identified as one of the critical targets of IL-1β-induced paraptosis in the GEO and GeneCard databases. The expression of SHP2 in chondrocytes was regulated by either siRNA knockdown or plasmid overexpression. Additionally, adeno-associated viruses were injected into the knee joints of rats to explore whether SHP2 plays a role in the development of OA. The impact of LIPUS on paraptosis and OA was examined in IL-1β-induced chondrocytes and a post-traumatic OA model, with SHP2 regulation assessed at both cellular and animal levels. Results An increase in cellular reactive oxygen species (ROS) caused by IL-1β halts the growth of chondrocytes and induces paraptosis in the chondrocytes. IL-1β-induced paraptosis, manifested as endoplasmic reticulum (ER)-derived vacuolization, was mediated by ROS-mediated ER stress and MAPK activation. SHP2 facilitates ROS production, thereby exacerbating the chondrocytes paraptosis. SHP2 knockdown and ROS inhibition effectively reduced this process and significantly mitigated inflammation and cartilage degeneration. Furthermore, we discovered that LIPUS delayed OA progression by inhibiting the activation of the MAPK pathway, ER stress, and ER-derived vacuoles in chondrocytes, all of which play critical roles in paraptosis, through the downregulation of SHP2 expression. Results on animals showed that LIPUS inhibited cartilage degeneration and alleviated OA progression. Conclusion SHP2 exacerbates IL-1β-induced oxidative stress and the subsequent paraptosis in chondrocytes, promoting OA progression. LIPUS mitigates paraptosis by modulating SHP2, which in turn slows OA progression. The translational potential of this article This study indicates that a novel SHP2-mediated cell death mechanism, paraptosis, plays a role in post-traumatic OA progression. LIPUS helps maintain cartilage-subchondral bone unit integrity by targeting SHP2 inhibition. SHP2 emerges as a potential therapeutic target, while LIPUS provides a promising non-invasive approach for treating trauma-related OA.
Collapse
Affiliation(s)
- Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Rehabilitation Medicine,Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Marcotulli M, Barbetta A, Scarpa E, Bini F, Marinozzi F, Ruocco G, Casciola CM, Scognamiglio C, Carugo D, Cidonio G. Jingle Cell Rock: Steering Cellular Activity With Low-Intensity Pulsed Ultrasound (LIPUS) to Engineer Functional Tissues in Regenerative Medicine. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1973-1986. [PMID: 39289118 DOI: 10.1016/j.ultrasmedbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.
Collapse
Affiliation(s)
- Martina Marcotulli
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Edoardo Scarpa
- Infection Dynamics Laboratory, Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; National Institute of Molecular Gentics (INGM), Milan, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy
| | - Chiara Scognamiglio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Gianluca Cidonio
- 3D Microfluidic Bioprinting Lab, Center for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), Rome, Italy; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK; Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Kim D, Lee MJ, Arai Y, Ahn J, Lee GW, Lee SH. Ultrasound-triggered three dimensional hyaluronic acid hydrogel promotes in vitro and in vivo reprogramming into induced pluripotent stem cells. Bioact Mater 2024; 38:331-345. [PMID: 38764447 PMCID: PMC11101682 DOI: 10.1016/j.bioactmat.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Cellular reprogramming technologies have been developed with different physicochemical factors to improve the reprogramming efficiencies of induced pluripotent stem cells (iPSCs). Ultrasound is a clinically applied noncontact biophysical factor known for regulating various cellular behaviors but remains uninvestigated for cellular reprogramming. Here, we present a new reprogramming strategy using low-intensity ultrasound (LIUS) to improve cellular reprogramming of iPSCs in vitro and in vivo. Under 3D microenvironment conditions, increased LIUS stimulation shows enhanced cellular reprogramming of the iPSCs. The cellular reprogramming process facilitated by LIUS is accompanied by increased mesenchymal to epithelial transition and histone modification. LIUS stimulation transiently modulates the cytoskeletal rearrangement, along with increased membrane fluidity and mobility to increase HA/CD44 interactions. Furthermore, LIUS stimulation with HA hydrogel can be utilized in application of both human cells and in vivo environment, for enhanced reprogrammed cells into iPSCs. Thus, LIUS stimulation with a combinatorial 3D microenvironment system can improve cellular reprogramming in vitro and in vivo environments, which can be applied in various biomedical fields.
Collapse
Affiliation(s)
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Gun Woo Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University-Seoul, 04620, Seoul, South Korea
| |
Collapse
|
5
|
Mohamad Yusoff F, Kajikawa M, Yamaji T, Kishimoto S, Maruhashi T, Nakashima A, Tsuji T, Higashi Y. Low-intensity pulsed ultrasound improves symptoms in patients with Buerger disease: a double-blinded, randomized, and placebo-controlled study. Sci Rep 2024; 14:13704. [PMID: 38871832 PMCID: PMC11176328 DOI: 10.1038/s41598-024-64118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Here we report the effects of low-intensity pulsed ultrasound (LIPUS) on symptoms in peripheral arterial disease patients with Buerger disease. A double-blinded and randomized study with active and inactive LIPUS was conducted. We assessed symptoms in leg circulation during a 24-week period of LIPUS irradiation in 12 patients with Buerger disease. Twelve patients without LIPUS irradiation served as controls. The pain intensity on visual analog score was significantly decreased after 24-week LIPUS treatment. Skin perfusion pressure was significantly increased in patients who received LIPUS treatment. There was no significant difference in symptoms and perfusion parameters in the control group. No severe adverse effects were observed in any of the patients who underwent LIPUS treatment. LIPUS is noninvasive, safe and effective option for improving symptoms in patients with Buerger disease.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Takayuki Yamaji
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shinji Kishimoto
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshio Tsuji
- Graduate School of Engineering, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
6
|
Wang W, Zhong Y, Zhou Y, Yu Y, Li J, Kang S, Ma Z, Fan X, Sun L, Tang L. Low-intensity pulsed ultrasound mitigates cognitive impairment by inhibiting muscle atrophy in hindlimb unloaded mice. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1427-1438. [PMID: 37672304 DOI: 10.1121/10.0020835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Microgravity leads to muscle loss, usually accompanied by cognitive impairment. Muscle reduction was associated with the decline of cognitive ability. Our previous studies showed that low-intensity pulsed ultrasound (LIPUS) promoted muscle hypertrophy and prevented muscle atrophy. This study aims to verify whether LIPUS can improve cognitive impairment by preventing muscle atrophy in hindlimb unloaded mice. In this study, mice were randomly divided into normal control (NC), hindlimb unloading (HU), hindlimb unloading + LIPUS (HU+LIPUS) groups. The mice in the HU+LIPUS group received a 30 mW/cm2 LIPUS irradiation on gastrocnemius for 20 min/d. After 21 days, LIPUS significantly prevented the decrease in muscle mass and strength caused by tail suspension. The HU+LIPUS mice showed an enhanced desire to explore unfamiliar environments and their spatial learning and memory abilities, enabling them to quickly identify differences between different objects, as well as their social discrimination abilities. MSTN is a negative regulator of muscle growth and also plays a role in regulating cognition. LIPUS significantly inhibited MSTN expression in skeletal muscle and serum and its receptor ActRIIB expression in brain, upregulated AKT and BDNF expression in brain. Taken together, LIPUS may improve the cognitive dysfunction in hindlimb unloaded rats by inhibiting muscle atrophy through MSTN/AKT/BDNF pathway.
Collapse
Affiliation(s)
- Wanzhao Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Zhong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaling Zhou
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Sufang Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
7
|
da Silva ANG, de Oliveira JRS, Madureira ÁNDM, Lima WA, Lima VLDM. Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2417-2429. [PMID: 36115728 DOI: 10.1016/j.ultrasmedbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.
Collapse
Affiliation(s)
- Ayala Nathaly Gomes da Silva
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Ricardhis Saturnino de Oliveira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Álvaro Nóbrega de Melo Madureira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Wildberg Alencar Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
8
|
Savchenko M, Hurtado M, Lopez-Lopez MT, Rus G, Álvarez de Cienfuegos L, Melchor J, Gavira JA. Lysozyme crystallization in hydrogel media under ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2022; 88:106096. [PMID: 35868210 PMCID: PMC9305616 DOI: 10.1016/j.ultsonch.2022.106096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.
Collapse
Affiliation(s)
- Mariia Savchenko
- Universidad de Granada (UGR), Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Universidad de Granada (UGR), Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR), UEQ, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Manuel Hurtado
- Universidad de Granada (UGR), Departamento de Estadística e Investigación Operativa, Spain; Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Ultrasonics Lab TEP-959, Universidad de Granada, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada (UGR), Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Guillermo Rus
- Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Ultrasonics Lab TEP-959, Universidad de Granada, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada (UGR), Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain.
| | - Juan Melchor
- Universidad de Granada (UGR), Departamento de Estadística e Investigación Operativa, Spain; Unidad de Excelencia Modeling Nature MNAT, Universidad de Granada, Spain; Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR), UEQ, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
9
|
Calabrese EJ, Calabrese V. Enhancing health span: muscle stem cells and hormesis. Biogerontology 2022; 23:151-167. [PMID: 35254570 DOI: 10.1007/s10522-022-09949-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a significant public health and medical concern confronting the elderly. Considerable research is being directed to identify ways in which the onset and severity of sarcopenia may be delayed/minimized. This paper provides a detailed identification and assessment of hormetic dose responses in animal model muscle stem cells, with particular emphasis on cell proliferation, differentiation, and enhancing resilience to inflammatory stresses and how this information may be useful in preventing sarcopenia. Hormetic dose responses were observed following administration of a broad range of agents, including dietary supplements (e.g., resveratrol), pharmaceuticals (e.g., dexamethasone), endogenous ligands (e.g., tumor necrosis factor α), environmental contaminants (e.g., cadmium) and physical agents (e.g., low level laser). The paper assesses both putative mechanisms of hormetic responses in muscle stem cells, and potential therapeutic implications and application(s) of hormetic frameworks for slowing muscle loss and reduced functionality during the aging process.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA, 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia, 97, 95125, Catania, Italy
| |
Collapse
|
10
|
Molecular and Metabolic Mechanism of Low-Intensity Pulsed Ultrasound Improving Muscle Atrophy in Hindlimb Unloading Rats. Int J Mol Sci 2021; 22:ijms222212112. [PMID: 34829990 PMCID: PMC8625684 DOI: 10.3390/ijms222212112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been proved to promote the proliferation of myoblast C2C12. However, whether LIPUS can effectively prevent muscle atrophy has not been clarified, and if so, what is the possible mechanism. The aim of this study is to evaluate the effects of LIPUS on muscle atrophy in hindlimb unloading rats, and explore the mechanisms. The rats were randomly divided into four groups: normal control group (NC), hindlimb unloading group (UL), hindlimb unloading plus 30 mW/cm2 LIPUS irradiation group (UL + 30 mW/cm2), hindlimb unloading plus 80 mW/cm2 LIPUS irradiation group (UL + 80 mW/cm2). The tails of rats in hindlimb unloading group were suspended for 28 days. The rats in the LIPUS treated group were simultaneously irradiated with LIPUS on gastrocnemius muscle in both lower legs at the sound intensity of 30 mW/cm2 or 80 mW/cm2 for 20 min/d for 28 days. C2C12 cells were exposed to LIPUS at 30 or 80 mW/cm2 for 5 days. The results showed that LIPUS significantly promoted the proliferation and differentiation of myoblast C2C12, and prevented the decrease of cross-sectional area of muscle fiber and gastrocnemius mass in hindlimb unloading rats. LIPUS also significantly down regulated the expression of MSTN and its receptors ActRIIB, and up-regulated the expression of Akt and mTOR in gastrocnemius muscle of hindlimb unloading rats. In addition, three metabolic pathways (phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism) were selected as important metabolic pathways for hindlimb unloading effect. However, LIPUS promoted the stability of alanine, aspartate and glutamate metabolism pathway. These results suggest that the key mechanism of LIPUS in preventing muscle atrophy induced by hindlimb unloading may be related to promoting protein synthesis through MSTN/Akt/mTOR signaling pathway and stabilizing alanine, aspartate and glutamate metabolism.
Collapse
|
11
|
Mei L, Zhang Z. Advances in Biological Application of and Research on Low-Frequency Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2839-2852. [PMID: 34304908 DOI: 10.1016/j.ultrasmedbio.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the in-depth study of low-frequency sonophoresis (LFS) has greatly elucidated its biological effects in various therapeutic applications, including drug delivery, enhanced healing, thrombolytic technology, anti-inflammatory effects and tumor treatment. Specifically, numerous studies have reported its use in drug delivery and synergistic antitumor activity, indicating a new treatment direction for cancer. However, there are significant gaps in the understanding of LFS in terms of frequency and sound intensity safety; these issues are becoming increasingly important in understanding the biological effects of LFS ultrasound. This article reviews the treatment mechanism and current applications of LFS technology and discusses and summarizes its safety and application prospects.
Collapse
Affiliation(s)
- Lixia Mei
- Department of Ultrasound, Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, China.
| |
Collapse
|
12
|
Peng DY, Reed-Maldonado AB, Lin GT, Xia SJ, Lue TF. Low-intensity pulsed ultrasound for regenerating peripheral nerves: potential for penile nerve. Asian J Androl 2021; 22:335-341. [PMID: 31535626 PMCID: PMC7406088 DOI: 10.4103/aja.aja_95_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve damage, such as that found after surgery or trauma, is a substantial clinical challenge. Much research continues in attempts to improve outcomes after peripheral nerve damage and to promote nerve repair after injury. In recent years, low-intensity pulsed ultrasound (LIPUS) has been studied as a potential method of stimulating peripheral nerve regeneration. In this review, the physiology of peripheral nerve regeneration is reviewed, and the experiments employing LIPUS to improve peripheral nerve regeneration are discussed. Application of LIPUS following nerve surgery may promote nerve regeneration and improve functional outcomes through a variety of proposed mechanisms. These include an increase of neurotrophic factors, Schwann cell (SC) activation, cellular signaling activations, and induction of mitosis. We searched PubMed for articles related to these topics in both in vitro and in vivo animal research models. We found numerous studies, suggesting that LIPUS following nerve surgery promotes nerve regeneration and improves functional outcomes. Based on these findings, LIPUS could be a novel and valuable treatment for nerve injury-induced erectile dysfunction.
Collapse
Affiliation(s)
- Dong-Yi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA.,Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Gui-Ting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
14
|
Feltham T, Paudel S, Lobao M, Schon L, Zhang Z. Low-Intensity Pulsed Ultrasound Suppresses Synovial Macrophage Infiltration and Inflammation in Injured Knees in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1045-1053. [PMID: 33423862 DOI: 10.1016/j.ultrasmedbio.2020.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to investigate how low-intensity pulsed ultrasound (LIPUS) suppresses traumatic joint inflammation and thereafter affects the progression of posttraumatic osteoarthritis. Intra-articular fracture (IAF) was created in the right knee of rats. LIPUS was applied to the knees with IAFs for 20 min/d for 2 wk-LIPUS(+) group. The study controls included rats that underwent sham surgery but no LIPUS treatment (control group) or underwent IAF surgery without LIPUS treatment-LIPUS(-) group. By histology, at 4 wk, leukocyte infiltration in the synovium was reduced in the LIPUS(+) group. Furthermore, LIPUS treatment reduced CD68+ macrophages in the synovium and limited their distribution mostly in the subintimal synovium. Measured with enzyme-linked immunosorbent assay, interleukin-1β (IL-1β) in the joint fluid of the LIPUS(+) group was reduced to about one-third that in the LIPUS(-) group. By reducing synovial macrophages and lowering IL-1β in the joint fluid, LIPUS is potentially therapeutic for posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Tyler Feltham
- Philadelphia College of Osteopathic Medicine-Georgia, Suwanee, Georgia, USA
| | - Sharada Paudel
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mario Lobao
- Columbia Medical Center, Columbia University, New York, New York, USA
| | - Lew Schon
- Institute for Foot & Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
| | - Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Fan B, Guo Z, Li X, Li S, Gao P, Xiao X, Wu J, Shen C, Jiao Y, Hou W. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioact Mater 2020; 5:1087-1101. [PMID: 32695938 PMCID: PMC7363989 DOI: 10.1016/j.bioactmat.2020.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
For large segmental bone defects, porous titanium scaffolds have some advantages, however, they lack electrical activity which hinders their further use. In this study, a barium titanate (BaTiO3) piezoelectric ceramic was used to modify the surface of a porous Ti6Al4V scaffold (pTi), which was characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and roughness and water contact angle analyses. Low intensity pulsed ultrasound (LIPUS) was applied in vitro and in vivo study. The activity of bone marrow mesenchymal stem cells, including adhesion, proliferation, and gene expression, was significantly superior in the BaTiO3/pTi, pTi + LIPUS, and BaTiO3/pTi + LIPUS groups than in the pTi group. The activity was also higher in the BaTiO3/pTi + LIPUS group than in the BaTiO3/pTi and pTi + LIPUS groups. Additionally, micro-computed tomography, the mineral apposition rate, histomorphology, and the peak pull-out load showed that these scaffold conditions significantly enhanced osteogenesis and osseointegration 6 and 12 weeks after implantation in large segmental bone defects in the radius of rabbits compared with those resulting from the pTi condition. Consequently, the improved osteogenesis and osseointegration make the BaTiO3/pTi + LIPUS a promising method to promote bone regeneration in large segmental bone defects for clinical application.
Collapse
Affiliation(s)
- Bo Fan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Orthopedic Centre-Spine Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songkai Li
- Orthopedic Centre-Spine Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Peng Gao
- Department of Joint Surgery and Sports Medicine, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, PR China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Shen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
16
|
de Lucas B, Pérez LM, Bernal A, Gálvez BG. Ultrasound Therapy: Experiences and Perspectives for Regenerative Medicine. Genes (Basel) 2020; 11:genes11091086. [PMID: 32957737 PMCID: PMC7563547 DOI: 10.3390/genes11091086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Ultrasound has emerged as a novel tool for clinical applications, particularly in the context of regenerative medicine. Due to its unique physico-mechanical properties, low-intensity ultrasound (LIUS) has been approved for accelerated fracture healing and for the treatment of established non-union, but its utility has extended beyond tissue engineering to other fields, including cell regeneration. Cells and tissues respond to acoustic ultrasound by switching on genetic repair circuits, triggering a cascade of molecular signals that promote cell proliferation, adhesion, migration, differentiation, and extracellular matrix production. LIUS also induces angiogenesis and tissue regeneration and has anti-inflammatory and anti-degenerative effects. Accordingly, the potential application of ultrasound for tissue repair/regeneration has been tested in several studies as a stand-alone treatment and, more recently, as an adjunct to cell-based therapies. For example, ultrasound has been proposed to improve stem cell homing to target tissues due to its ability to create a transitional and local gradient of cytokines and chemokines. In this review, we provide an overview of the many applications of ultrasound in clinical medicine, with a focus on its value as an adjunct to cell-based interventions. Finally, we discuss the various preclinical and clinical studies that have investigated the potential of ultrasound for regenerative medicine.
Collapse
Affiliation(s)
- Beatriz de Lucas
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Laura M. Pérez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
| | - Beatriz G. Gálvez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
- Correspondence:
| |
Collapse
|
17
|
Rahimi A, Case N. Computational model to evaluate modulation of the acoustic field in an ultrasonic bioreactor by incorporation of a water layer bounded by an acoustic absorbent boundary layer. ULTRASONICS 2020; 103:106086. [PMID: 32070827 DOI: 10.1016/j.ultras.2020.106086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Ultrasonic bioreactors have been used for in vitro experimentation to study cellular responses to low-intensity pulsed ultrasound. The presence of an air interface in these bioreactors contributes to variability in the acoustic pressure field, reducing experimental reproducibility. A multiphysics finite element model was developed to simulate the acoustic field in an in-dish ultrasonic bioreactor, where the transducer is immersed in culture medium above the dish surface, and the effects of replacing air below the dish in the bioreactor with a water layer bounded by an acoustic absorbent layer were evaluated. Frequency domain simulations showed that the spatially-averaged pressure at the dish surface alternated between a minimum and maximum level as the distance between the dish and transducer increased. The ratio of the maximum to minimum level was 6.5-fold when the air interface was present, and this ratio dropped to 1.8-fold with replacement of the air interface. However, radial pressure variability was present with or without the air interface in the bioreactor model. Time-dependent simulations showed that the increase in acoustic pressure to a maximum level after US signal activation and the pressure drop after signal cessation were faster when the water-coupled non-reflective layer was used to replace the air layer below the dish, generating a pressure pattern that more closely followed the applied pulsed ultrasound signal due to reduced wave reflection and interference. Overall, this work showed that having water rather than air in contact with the lower dish surface when paired with an acoustic absorbent layer resulted in a less variable pressure field, providing an improved bioreactor design for in vitro experiments.
Collapse
Affiliation(s)
- Abdolrasol Rahimi
- Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, Saint Louis, MO 63103, USA
| | - Natasha Case
- Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
18
|
Nasb M, Liangjiang H, Gong C, Hong C. Human adipose-derived Mesenchymal stem cells, low-intensity pulsed ultrasound, or their combination for the treatment of knee osteoarthritis: study protocol for a first-in-man randomized controlled trial. BMC Musculoskelet Disord 2020; 21:33. [PMID: 31941483 PMCID: PMC6964002 DOI: 10.1186/s12891-020-3056-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Human adipose-derived Mesenchymal stem cells (HADMSCs) have proven their efficacy in treating osteoarthritis (OA), in earlier preclinical and clinical studies. As the tissue repairers are under the control of mechanical and biochemical signals, improving regeneration outcomes using such signals has of late been the focus of attention. Among mechanical stimuli, low-intensity pulsed ultrasound (LIPUS) has recently shown promise both in vitro and in vivo. This study will investigate the potential of LIPUS in enhancing the regeneration process of an osteoarthritic knee joint. Methods This study involves a prospective, randomized, placebo-controlled, and single-blind trial based on the SPIRIT guidelines, and aims to recruit 96 patients initially diagnosed with knee osteoarthritis, following American College of Rheumatology criteria. Patients will be randomized in a 1:1:1 ratio to receive Intraarticular HADMSCs injection with LIPUS, Intraarticular HADMSCs injection with shame LIPUS, or Normal saline with LIPUS. The primary outcome is Western Ontario and McMaster Universities Index of OA (WOMAC) score, while the secondary outcomes will be other knee structural changes, and lower limb muscle strength such as the knee cartilage thickness measured by MRI. Blinded assessments will be performed at baseline (1 month prior to treatment), 1 month, 3 months, and 6 months following the interventions. Discussion This trial will be the first clinical study to comprehensively investigate the safety and efficacy of LIPUS on stem cell therapy in OA patients. The results may provide evidence of the effectiveness of LIPUS in improving stem cell therapy and deliver valuable information for the design of subsequent trials. Trial registration This study had been prospectively registered with the Chinese Clinical Trials Registry. registration number: ChiCTR1900025907 at September 14, 2019.
Collapse
Affiliation(s)
- Mohammad Nasb
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Physical Therapy, Health science faculty, Albaath University, Homs, Syria
| | - Huang Liangjiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chenzi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chen Hong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
19
|
Amini A, Chien S, Bayat M. Impact of Ultrasound Therapy on Stem Cell Differentiation - A Systematic Review. Curr Stem Cell Res Ther 2020; 15:462-472. [PMID: 32096749 DOI: 10.2174/1574888x15666200225124934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This is a systematic review of the effects of low-intensity pulsed ultrasound (LIPUS) on stem cell differentiation. BACKGROUND DATA Recent studies have investigated several types of stem cells from different sources in the body. These stem cells should strictly be certified and promoted for cell therapies before being used in medical applications. LIPUS has been used extensively in treatment centers and in research to promote stem cell differentiation, function, and proliferation. MATERIALS AND METHODS The databases of PubMed, Google Scholar, and Scopus were searched for abstracts and full-text scientific papers published from 1989-2019 that reported the application of LIPUS on stem cell differentiation. Related English language articles were found using the following defined keywords: low-intensity pulsed ultrasound, stem cell, differentiation. Criteria for inclusion in the review were: LIPUS with frequencies of 1-3 MHz and pulsed ultrasound intensity of <500 mW/cm2. Duration, exposure time, and cell sources were taken into consideration. RESULTS Fifty-two articles were selected based on the inclusion criteria. Most articles demonstrated that the application of LIPUS had positive effects on stem cell differentiation. However, some authors recommended that LIPUS combined with other physical therapy aides was more effective in stem cell differentiation. CONCLUSION LIPUS significantly increases the level of stem cell differentiation in cells derived mainly from bone marrow mesenchymal stem cells. There is a need for further studies to analyze the effect of LIPUS on cells derived from other sources, particularly adipose tissue-derived mesenchymal stem cells, for treating hard diseases, such as osteoporosis and diabetic foot ulcer. Due to a lack of reporting on standard LIPUS parameters in the field, more experiments comparing the protocols for standardization of LIPUS parameters are needed to establish the best protocol, which would allow for the best results.
Collapse
Affiliation(s)
- Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, United States
| |
Collapse
|
20
|
Cell alignment and accumulation using acoustic nozzle for bioprinting. Sci Rep 2019; 9:17774. [PMID: 31780803 PMCID: PMC6883046 DOI: 10.1038/s41598-019-54330-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023] Open
Abstract
Bioprinting could spatially align various cells in high accuracy to simulate complex and highly organized native tissues. However, the uniform suspension and low concentration of cells in the bioink and subsequently printed construct usually results in weak cell-cell interaction and slow proliferation. Acoustic manipulation of biological cells during the extrusion-based bioprinting by a specific structural vibration mode was proposed and evaluated. Both C2C12 cells and human umbilical vein endothelial cells (HUVECs) could be effectively and quickly accumulated at the center of the cylindrical tube and consequently the middle of the printed construct with acoustic excitation at the driving frequency of 871 kHz. The full width at half maximum (FWHM) of cell distributions fitted with a Gaussian curve showed a significant reduction by about 2.2 fold in the printed construct. The viability, morphology, and differentiation of these cells were monitored and compared. C2C12 cells that were undergone the acoustic excitation had nuclei oriented densely within ±30° and decreased circularity index by 1.91 fold or significant cell elongation in the printing direction. In addition, the formation of the capillary-like structure in the HUVECs construct was found. The number of nodes, junctions, meshes, and branches of HUVECs on day 14 was significantly greater with acoustic excitation for the enhanced neovascularization. Altogether, the proposed acoustic technology can satisfactorily accumulate/pattern biological cells in the printed construct at high biocompatibility. The enhanced cell interaction and differentiation could subsequently improve the performance and functionalities of the engineered tissue samples.
Collapse
|
21
|
Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, Chen J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng 2019; 66:2704-2718. [DOI: 10.1109/tbme.2018.2889669] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
23
|
Osborn J, Aliabouzar M, Zhou X, Rao R, Zhang LG, Sarkar K. Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Microbubbles and Low Intensity Pulsed Ultrasound on 3D Printed Scaffolds. ACTA ACUST UNITED AC 2018; 3:e1800257. [PMID: 32627376 DOI: 10.1002/adbi.201800257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Indexed: 11/05/2022]
Abstract
Lipid-coated microbubbles, clinically approved as contrast enhancing agents for ultrasound imaging, are investigated for the first time for their possible applications in bone tissue engineering. Effects of microbubbles (average diameter 1.1 µm) coated by a mixture of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000], and 1,2-dipalmitoyl-3-trimethylmmonium-propane) in the presence of low intensity pulsed ultrasound (LIPUS) on human mesenchymal stem cells seeded on 3D printed poly(lactic acid) porous scaffolds are investigated. LIPUS stimulation (30 mW cm-2 , 1.5 MHz, 20% duty cycle) for 3 min a day with 0.5% v/v microbubbles results in a significant increase in proliferation (up to 19.3%) when compared to control after 1, 3, and 5 d. A 3-week osteogenic differentiation study shows a significant increase in total protein content (up to 27.5%), calcium deposition (up to 4.3%), and alkaline phosphatase activity (up to 43.1%) initiated by LIPUS with and without the presence of microbubbles. The microbubbles are found to remain stable during exposure, and their sustained oscillations demonstrably help focus the LIPUS energy toward enhanced cellular response. Integrating LIPUS and microbubbles promises to be a novel and effective strategy for bone tissue engineering and regeneration therapies.
Collapse
Affiliation(s)
- Jenna Osborn
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Mitra Aliabouzar
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Xuan Zhou
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Raj Rao
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA.,Orthopaedic Surgery, School of Medicine, George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Kausik Sarkar
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
24
|
Kaur H, Siraki AG, Sharma M, Uludağ H, Dederich DN, Flood P, El-Bialy T. Reactive Oxygen Species Mediate Therapeutic Ultrasound-Induced, Mitogen-Activated Protein Kinase Activation in C28/I2 Chondrocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2105-2114. [PMID: 30037475 DOI: 10.1016/j.ultrasmedbio.2018.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/03/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been used for the treatment of non-healing fractures because of its therapeutic properties of stimulating enhancing endochondral bone formation. However, its mechanism of action remains unclear. In this study, we hypothesized that LIPUS activates mitogen-activated protein kinases through generation of reactive oxygen species. C28/I2 cells were stimulated with LIPUS for 10 and 20 min, while the control group was treated using a sham LIPUS transducer. Through quantitative reverse transcription polymerase chain reaction and immunoblot analyses, we determined that LIPUS application increased reactive oxygen species generation and cell viability in C28/I2 cells. There were increases in the phosphorylation level of ERK1/2 and in expression of SOX9, COL2 A1 and ACAN genes. These effects were reversed when cells were treated with diphenylene iodonium, which is known to inhibit NADPH oxidase. It was concluded that exposure of chondrocytes to LIPUS led to reactive oxygen species generation, which activated MAPK signaling and further increased chondrocyte-specific gene markers involved in chondrocyte differentiation and extracellular matrix formation.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Sharma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas N Dederich
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Flood
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek El-Bialy
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. MATERIALS 2018; 11:ma11071116. [PMID: 29966303 PMCID: PMC6073924 DOI: 10.3390/ma11071116] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising approach to repair tendon and muscle when natural healing fails. Biohybrid constructs obtained after cells’ seeding and culture in dedicated scaffolds have indeed been considered as relevant tools for mimicking native tissue, leading to a better integration in vivo. They can also be employed to perform advanced in vitro studies to model the cell differentiation or regeneration processes. In this review, we report and analyze the different solutions proposed in literature, for the reconstruction of tendon, muscle, and the myotendinous junction. They classically rely on the three pillars of tissue engineering, i.e., cells, biomaterials and environment (both chemical and physical stimuli). We have chosen to present biomimetic or bioinspired strategies based on understanding of the native tissue structure/functions/properties of the tissue of interest. For each tissue, we sorted the relevant publications according to an increasing degree of complexity in the materials’ shape or manufacture. We present their biological and mechanical performances, observed in vitro and in vivo when available. Although there is no consensus for a gold standard technique to reconstruct these musculo-skeletal tissues, the reader can find different ways to progress in the field and to understand the recent history in the choice of materials, from collagen to polymer-based matrices.
Collapse
|
26
|
Ren C, Chen X, Du N, Geng S, Hu Y, Liu X, Wu X, Lin Y, Bai X, Yin W, Cheng S, Yang L, Zhang Y. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway. Int J Biol Sci 2018; 14:497-507. [PMID: 29805301 PMCID: PMC5968842 DOI: 10.7150/ijbs.22409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong Ren
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiaohui Chen
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Ning Du
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Shuo Geng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Liu
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Xianxian Wu
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Yuan Lin
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Xue Bai
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
| | - Wenzhe Yin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Shi Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yong Zhang
- Departmentof Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, eilongjiang Province 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
27
|
Zahoor T, Mitchell R, Bhasin P, Guo Y, Paudel S, Schon L, Zhang Z. Effect of Low-Intensity Pulsed Ultrasound on Joint Injury and Post-Traumatic Osteoarthritis: an Animal Study. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:234-242. [PMID: 29111161 DOI: 10.1016/j.ultrasmedbio.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the therapeutic potential of low-intensity pulsed ultrasound (LIPUS) in post-traumatic osteoarthritis (PTOA). Intra-articular fracture of the medial tibial plateau was surgically created in 30 rats. LIPUS was applied to the operated joints either for the first 2 wk (LIPUS1-2 group) or in weeks 4 and 5 after intra-articular fracture (LIPUS4-5 group). In controls, the operated knees were not treated with LIPUS (LIPUS0 group). The rats were monitored with weekly gait analysis and euthanized at week 8. Among the altered gait parameters, the maximal and average paw print areas in the LIPUS1-2 and LIPUS4-5 groups, but not the LIPUS0 group, had either reached baseline or significantly recovered (70%, p <0.05) by week 8. PTOA pathology in both the LIPUS1-2 and LIPUS4-5 groups was less severe than that in the LIPUS0 group (Mankin score: 5.4 and 4.5 vs. 8.8, p <0.05). In conclusion, LIPUS treatment partially improved the gait of the affected limbs and reduced cartilage degeneration in PTOA.
Collapse
Affiliation(s)
- Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Priya Bhasin
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Yi Guo
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Sharada Paudel
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA.
| |
Collapse
|
28
|
Teo A, Morshedi A, Wang JC, Zhou Y, Lim M. Enhancement of Cardiomyogenesis in Murine Stem Cells by Low-Intensity Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1693-1706. [PMID: 28439945 DOI: 10.7863/ultra.16.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 10/19/2016] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Low-intensity ultrasound (LIUS) has been shown to enhance bone and cartilage regeneration from stem cells. The ease of its incorporation makes it an attractive mechanical stimulus for not only osteogenesis and chondrogenesis, but also cardiomyogenesis. However, to date, no study has investigated its effects on cardiomyogenesis from embryonic stem cells. METHODS In this study, murine embryonic stem cells were differentiated via embryoid body formation and plating, and after 3 days they were subjected to daily 10 minutes of LIUS treatment with various conditions: (1) low-pulsed (21 mW/cm2 , 20% duty cycle), (2) low-continuous, (3) high-pulsed (147 mW/cm2 , 20% duty cycle), and (4) high-continuous LIUS. RESULTS Low-pulsed and high-continuous LIUS had improved beating rates of contractile areas as well as increased late cardiac gene expressions, such as α- and β-myosin heavy chain and cardiac troponin T, showing its benefits on cardiomyocyte differentiation. Meanwhile, an early endodermal marker, α-fetoprotein, was significantly attenuated after LIUS treatments. CONCLUSIONS With these observations, it is demonstrated that LIUS simulation could enhance cardiomyogenesis from embryonic stem cells and increase its selectivity toward cardiomyocytes by reducing spontaneous differentiation.
Collapse
Affiliation(s)
- Ailing Teo
- Schools of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Amir Morshedi
- Schools of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Jen-Chieh Wang
- Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yufeng Zhou
- Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Mayasari Lim
- Schools of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
29
|
Tang L, Zhang J, Zhao X, Li N, Jian W, Sun S, Guo J, Sun L, Ta D. Low-Intensity Pulsed Ultrasound Promotes Exercise-Induced Muscle Hypertrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1411-1420. [PMID: 28461063 DOI: 10.1016/j.ultrasmedbio.2017.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/08/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes exercise-induced muscle hypertrophy. Twenty-four adult Sprague-Dawley (SD) rats were randomly assigned to three groups (n = 8 per group): normal control group (NC), treadmill exercise group (TE) and treadmill exercise + LIPUS group (TE + LIPUS). The TE + LIPUS group received a LIPUS treatment (1 MHz, 30 mW/cm2) at the gastrocnemius for 20 min/d after treadmill exercise. The TE group was sham-treated. Eight weeks of treadmill training successfully established the exercise-induced muscle hypertrophy model. Muscle strength, muscle mass and muscle fiber cross-sectional area were significantly increased in the TE + LIPUS group compared with the TE group. Moreover, LIPUS treatment significantly upregulated the expression of Akt, mTOR, p-Akt and p-mTOR and significantly downregulated the expression of MSTN, ActRIIB, FoxO1 and its phosphorylation. The results indicated that LIPUS promotes exercise-induced muscle hypertrophy by facilitating protein synthesis and inhibiting the protein catabolism pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Jing Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xinjuan Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Nan Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Wenqi Jian
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
| |
Collapse
|
30
|
Salgarella AR, Cafarelli A, Ricotti L, Capineri L, Dario P, Menciassi A. Optimal Ultrasound Exposure Conditions for Maximizing C2C12 Muscle Cell Proliferation and Differentiation. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1452-1465. [PMID: 28433437 DOI: 10.1016/j.ultrasmedbio.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 05/07/2023]
Abstract
Described here is an in vitro systematic investigation of the effects on C2C12 myoblasts of exposure to finely controlled and repeatable low-intensity pulsed ultrasound of different frequencies (500 kHz, 1 MHz, 3 MHz and 5 MHz) and different intensities (250, 500 and 1000 mW/cm2). An in-house stimulation system and an ultrasound-transparent cell culture well minimized reflections and attenuations, allowing precise control of ultrasound delivery. Results indicated that a 3 MHz stimulation at 1 W/cm2 intensity maximized cell proliferation in comparison with the other exposure conditions and untreated controls. In contrast, cell differentiation and the consequent formation of multinucleated myotubes were maximized by 1 MHz stimulation at 500 mW/cm2 intensity. The highly controlled exposure conditions employed allowed precise correlation of the ultrasound delivery to the bio-effects produced, thus overcoming the inconsistency of some results available in the literature and contributing to the potential of ultrasound treatment for muscle therapy and regeneration.
Collapse
Affiliation(s)
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Lorenzo Capineri
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera (Pisa), Italy
| |
Collapse
|
31
|
Abstract
Ultrasound is an inaudible form of acoustic sound wave at 20 kHz or above that is widely used in the medical field with applications including medical imaging and therapeutic stimulation. In therapeutic ultrasound, low-intensity pulsed ultrasound (LIPUS) is the most widely used and studied form that generally uses acoustic waves at an intensity of 30 mW/cm2, with 200 ms pulses and 1.5 MHz. In orthopaedic applications, it is used as a biophysical stimulus for musculoskeletal tissue repair to enhance tissue regeneration. LIPUS has been shown to enhance fracture healing by shortening the time to heal and reestablishment of mechanical properties through enhancing different phases of the healing process, including the inflammatory phase, callus formation, and callus remodelling phase. Reports from in vitro studies reveal insights in the mechanism through which acoustic stimulations activate cell surface integrins that, in turn, activate various mechanical transduction pathways including FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), PI3K, and Akt. It is then followed by the production of cyclooxygenase 2 and prostaglandin E2 to stimulate further downstream angiogenic, osteogenic, and chondrogenic cytokines, explaining the different enhancements observed in animal and clinical studies. Furthermore, LIPUS has also been shown to have remarkable effects on mesenchymal stem cells (MSCs) in musculoskeletal injuries and tissue regeneration. The recruitment of MSCs to injury sites by LIPUS requires the SDF-1 (stromal cell derived factor-1)/CXCR-4 signalling axis. MSCs would then differentiate differently, and this is regulated by the presence of different cytokines, which determines their fates. Other musculoskeletal applications including bone–tendon junction healing, and distraction osteogenesis are also explored, and the results are promising. However, the use of LIPUS is controversial in treating osteoporosis, with negative findings in clinical settings, which may be attributable to the absence of an injury entry point for the acoustic signal to propagate, strong attenuation effect of cortical bone and the insufficient intensity for penetration, whereas in some animal studies it has proven effective.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,The Chinese University of Hong Kong - Astronaut Center of China (CUHK-ACC) Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwok-Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,The Chinese University of Hong Kong - Astronaut Center of China (CUHK-ACC) Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
32
|
Effects of Indomethacin and Meloxicam, Nonsteroidal Anti-inflammatory Drugs, on Tibia Fracture Union in Rats. JOURNAL OF ORTHOPEDIC AND SPINE TRAUMA 2016. [DOI: 10.5812/jost.10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Yamaguchi S, Aoyama T, Ito A, Nagai M, Iijima H, Tajino J, Zhang X, Wataru K, Kuroki H. Effect of Low-Intensity Pulsed Ultrasound after Mesenchymal Stromal Cell Injection to Treat Osteochondral Defects: An In Vivo Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2903-2913. [PMID: 27600474 DOI: 10.1016/j.ultrasmedbio.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/03/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
We investigated the effect of low-intensity pulsed ultrasound (LIPUS) treatment combined with mesenchymal stromal cell (MSC) injection for cartilage repair and subchondral bone reconstitution for treatment of osteochondral defects. An osteochondral defect was created on both femur grooves of Wistar rats. Four weeks later, bone marrow MSCs were injected into the right knee joint. The rats were divided into two intervention groups: without or with LIPUS irradiation. Cartilage repair was evaluated histologically based on the Wakitani cartilage repair score. Subchondral bone reconstitution was evaluated as bone volume (BV)/tissue volume (TV) by micro-computed tomography analysis. MSC injection improved the cartilage repair score, and LIPUS irradiation improved BV/TV. Combination treatment promoted both cartilage repair and BV/TV improvement. Thus, MSC injection combined with LIPUS irradiation is more effective than either treatment alone in promoting concurrent cartilage repair and subchondral reconstitution.
Collapse
Affiliation(s)
- Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Japan Society for the Promotion of Science, Tokyo, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nagai
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyan Wataru
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
34
|
Zhao L, Feng Y, Hu H, Shi A, Zhang L, Wan M. Low-Intensity Pulsed Ultrasound Enhances Nerve Growth Factor-Induced Neurite Outgrowth through Mechanotransduction-Mediated ERK1/2-CREB-Trx-1 Signaling. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2914-2925. [PMID: 27592560 DOI: 10.1016/j.ultrasmedbio.2016.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Enhancing the action of nerve growth factor (NGF) is a potential therapeutic approach to neural regeneration. To facilitate neural regeneration, we investigated whether combining low-intensity pulsed ultrasound (LIPUS) and NGF could promote neurite outgrowth, an essential process in neural regeneration. In the present study, PC12 cells were subjected to a combination of LIPUS (1 MHz, 30 or 50 mW/cm2, 20% duty cycle and 100-Hz pulse repetition frequency, 10 min every other day) and NGF (50 ng/mL) treatment, and then neurite outgrowth was compared. Our findings indicated that the combined treatment with LIPUS (50 mW/cm2) and NGF (50 ng/mL) promotes neurite outgrowth that is comparable to that achieved by NGF (100 ng/mL) treatment alone. LIPUS significantly increased NGF-induced neurite length, but not neurite branching. These effects were attributed to the enhancing effects of LIPUS on NGF-induced phosphorylation of ERK1/2 and CREB and the expression of thioredoxin (Trx-1). Furthermore, blockage of stretch-activated ion channels with Gd3+ suppressed the stimulating effects of LIPUS on NGF-induced neurite outgrowth and the downstream signaling activation. Taken together, our findings suggest that LIPUS enhances NGF-induced neurite outgrowth through mechanotransduction-mediated signaling of the ERK1/2-CREB-Trx-1 pathway. The combination of LIPUS and NGF could potentially be used for the treatment of nerve injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Hong Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Aiwei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
35
|
Puts R, Rikeit P, Ruschke K, Kadow-Romacker A, Hwang S, Jenderka KV, Knaus P, Raum K. Activation of Mechanosensitive Transcription Factors in Murine C2C12 Mesenchymal Precursors by Focused Low-Intensity Pulsed Ultrasound (FLIPUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1505-1513. [PMID: 27392348 DOI: 10.1109/tuffc.2016.2586972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigated the mechanoresponse of C2C12 mesenchymal precursor cells to focused low-intensity pulsed ultrasound (FLIPUS). The setup has been developed for in vitro stimulation of adherent cells in the defocused far field of the ultrasound propagating through the bottom of the well plate. Twenty-four-well tissue culture plates, carrying the cell monolayers, were incubated in a temperature-controlled water tank. The ultrasound was applied at 3.6-MHz frequency, pulsed at 100-Hz repetition frequency with a 27.8% duty cycle, and calibrated at an output intensity of ISATA = 44.5 ±7.1 mW/cm2. Numerical sound propagation simulations showed no generation of standing waves in the well plate. The response of murine C2C12 cells to FLIPUS was evaluated by measuring activation of mechanosensitive transcription factors, i.e., activator protein-1 (AP-1), specificity protein 1 (Sp1), and transcriptional enhancer factor (TEAD), and expression of mechanosensitive genes, i.e., c-fos, c-jun, heparin binding growth associated molecule (HB-GAM), and Cyr-61. FLIPUS induced 50% ( p ≤ 0.05 ) and 70% ( p ≤ 0.05 ) increases in AP-1 and TEAD promoter activities, respectively, when stimulated for 5 min. The Sp1 activity was enhanced by about 20% ( p ≤ 0.05 ) after 5-min FLIPUS exposure and the trend persisted for 30-min ( p ≤ 0.05 ) and 1-h ( p ≤ 0.05 ) stimulation times. Expressions of mechanosensitive genes c-fos ( p ≤ 0.05 ), c-jun ( p ≤ 0.05 ), HB-GAM ( p ≤ 0.05 ), and cystein-rich protein 61 ( p ≤ 0.05 ) were enhanced in response to 5-min FLIPUS stimulation. The increase in proliferation of C2C12s occurred after the FLIPUS stimulation ( p ≤ 0.05 ), with AP-1, Sp1, and TEAD possibly regulating the observed cellular activities.
Collapse
|
36
|
Higuchi M, Moroi A, Yoshizawa K, Kosaka A, Ikawa H, Iguchi R, Saida Y, Hotta A, Tsutsui T, Ueki K. Comparison between various densities of pore titanium meshes and e-polytetrafluoroethylene (ePTFE) membrane regarding bone regeneration induced by low intensity pulsed ultrasound (LIPUS) in rabbit nasal bone. J Craniomaxillofac Surg 2016; 44:1152-61. [PMID: 27443802 DOI: 10.1016/j.jcms.2016.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The purpose of this study was to compare bone regenerative capability following use of polytetrafluoroethylene (ePTFE) membrane against that when various densities of pore titanium meshes are used with and without low intensity pulsed ultrasound (LIPUS). MATERIALS AND METHODS Adult male white rabbits were divided into 8 groups. In 4 groups, after incising along the nasal bone, four 3 × 8 mm bone defects were made in both sides and covered by an ePTFE membrane (group E: n = 15), a high density pore titanium mesh (group H: n = 15), a low density pore titanium mesh (group L: n = 15), and no mesh (control) (group C: n = 15). Furthermore, LIPUS was irradiated after surgery in 4 groups (groups EL, HL, LL and CL, in each n = 15). The rabbits were sacrificed at 1, 2 and 8 weeks postoperative, and formalin-fixed specimens were embedded in acrylic resin. The specimens were stained with hematoxylin and eosin. For immunohistochemical analysis, the specimens were treated with bone morphogenetic protein (BMP)-2 antibody. RESULTS Group H had significantly higher values than groups L, E, and C regarding bone area ratio and labeling index of BMP-2 positive cells (P < 0.05). Furthermore, Group HL also had significantly higher values than the other groups regarding bone area ratio and labeling index of BMP-2 positive cells at 1, 2 and 8 weeks postoperative (P < 0.05). CONCLUSION The results suggested that high density pore titanium mesh could induce new bone regeneration more than low density pore titanium mesh and ePTFE membrane. New bone formation may increase following LIPUS application.
Collapse
Affiliation(s)
- Masatoshi Higuchi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Akinori Moroi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Akihiko Kosaka
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Hiroumi Ikawa
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Ran Iguchi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Yuriko Saida
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Asami Hotta
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Takamitsu Tsutsui
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
37
|
Xin Z, Lin G, Lei H, Lue TF, Guo Y. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl Androl Urol 2016; 5:255-66. [PMID: 27141455 PMCID: PMC4837316 DOI: 10.21037/tau.2016.02.04] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that delivered at a much lower intensity (<3 W/cm2) than traditional ultrasound energy and output in the mode of pulse wave, and it is typically used for therapeutic purpose in rehabilitation medicine. LIPUS has minimal thermal effects due to its low intensity and pulsed output mode, and its non-thermal effects which is normally claimed to induce therapeutic changes in tissues attract most researchers’ attentions. LIPUS have been demonstrated to have a rage of biological effects on tissues, including promoting bone-fracture healing, accelerating soft-tissue regeneration, inhibiting inflammatory responses and so on. Recent studies showed that biological effects of LIPUS in healing morbid body tissues may be mainly associated with the upregulation of cell proliferation through activation of integrin receptors and Rho/ROCK/Src/ERK signaling pathway, and with promoting multilineage differentiation of mesenchyme stem/progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Hopefully, LIPUS may become an effective clinical procedure for the treatment of urological diseases, such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), erectile dysfunction (ED), and stress urinary incontinence (SUI) in the field of urology. It still needs an intense effort for basic-science and clinical investigators to explore the biomedical applications of ultrasound.
Collapse
Affiliation(s)
- Zhongcheng Xin
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Guiting Lin
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Hongen Lei
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Tom F Lue
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Yinglu Guo
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| |
Collapse
|
38
|
Deng B, Zhang F, Chen K, Wen J, Huang H, Liu W, Ye S, Wang L, Yang Y, Gong P, Jiang S. MyoD promotes porcine PPARγ gene expression through an E-box and a MyoD-binding site in the PPARγ promoter region. Cell Tissue Res 2016; 365:381-91. [PMID: 26944559 DOI: 10.1007/s00441-016-2380-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor in adipogenesis and can be regulated by adipogenesis-related factors. However, little information is available regarding its regulation by myogenic factors. In this study, we found that over-expression of MyoD enhanced porcine adipocyte differentiation and up-regulated PPARγ expression, whereas small interfering RNA against MyoD significantly attenuated porcine adipocyte differentiation and inhibited PPARγ expression. The MyoD-binding sites in the PPARγ promoter region at -412 to -396 and -155 to -150 were identified by promoter deletion analysis and site-directed mutagenesis. Electrophoretic mobility shift assays and chromatin immunoprecipitation further showed that these two regions are MyoD-binding sites, both in vitro and in vivo, indicating that MyoD directly interacts with the porcine PPARγ promoter. Thus, our results demonstrate that an Enhancer box and a binding site for a cooperative co-activator of MyoD are present in the promoter region of porcine PPARγ; furthermore, MyoD up-regulates PPARγ expression and promotes porcine adipocyte differentiation.
Collapse
Affiliation(s)
- Bing Deng
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Feng Zhang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Peoples Republic of China
| | - Kun Chen
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Peoples Republic of China
| | - Jianghui Wen
- Wuhan University of Technology, Wuhan, 430074, Peoples Republic of China
| | - Haijun Huang
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Wu Liu
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Shengqiang Ye
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Lixia Wang
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Yu Yang
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Ping Gong
- Wuhan Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208, Peoples Republic of China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Peoples Republic of China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Peoples Republic of China.
| |
Collapse
|
39
|
Padilla F, Puts R, Vico L, Guignandon A, Raum K. Stimulation of Bone Repair with Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:385-427. [PMID: 26486349 DOI: 10.1007/978-3-319-22536-4_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews the different options available for the use of ultrasound in the enhancement of fracture healing or in the reactivation of a failed healing process: LIPUS, shock waves and ultrasound-mediated delivery of bioactive molecules, such as growth factors or plasmids. The main emphasis is on LIPUS, or Low Intensity Pulsed Ultrasound, the most widespread and studied technique. LIPUS has pronounced bioeffects on tissue regeneration, while employing intensities within a diagnostic range. The biological response to LIPUS is complex as the response of numerous cell types to this stimulus involves several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2 and iNOS/NO pathways, and activation of the ATI mechanoreceptor. Mechanisms at the origin of LIPUS biological effects remain intriguing, and analysis is hampered by the diversity of experimental systems used in-vitro. Data point to clear evidence that bioeffects can be modulated by direct and indirect mechanical effects, like acoustic radiation force, acoustic streaming, propagation of surface waves, heat, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. One of the future engineering challenge is therefore the design of dedicated experimental set-ups allowing control of these different mechanical phenomena, and to relate them to biological responses. Then, the derivation of an 'acoustic dose' and the cross-calibration of the different experimental systems will be possible. Despite this imperfect knowledge of LIPUS biophysics, the clinical evidence, although most often of low quality, speaks in favor of the clinical use of LIPUS, when the economics of nonunion and the absence of toxicity of this ultrasound technology are taken into account.
Collapse
Affiliation(s)
| | - Regina Puts
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Alain Guignandon
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| |
Collapse
|
40
|
Puts R, Ruschke K, Ambrosi TH, Kadow-Romacker A, Knaus P, Jenderka KV, Raum K. A Focused Low-Intensity Pulsed Ultrasound (FLIPUS) System for Cell Stimulation: Physical and Biological Proof of Principle. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:91-100. [PMID: 26552085 DOI: 10.1109/tuffc.2015.2498042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitative ultrasound (QUS) is a promising technique for bone tissue evaluation. Highly focused transducers used for QUS also have the capability to be applied for tissue-regenerative purposes and can provide spatially limited deposition of acoustic energy. We describe a focused low-intensity pulsed ultrasound (FLIPUS) system, which has been developed for the stimulation of cell monolayers in the defocused far field of the transducer through the bottom of the well plate. Tissue culture well plates, carrying the cells, were incubated in a special chamber, immersed in a temperature-controlled water tank. A stimulation frequency of 3.6 MHz provided an optimal sound transmission through the polystyrene well plate. The ultrasound was pulsed for 20 min daily at 100-Hz repetition frequency with 27.8% duty cycle. The calibrated output intensity corresponded to I(SATA) = 44.5 ± 7.1 mW/cm2, which is comparable to the most frequently reported nominal output levels in LIPUS studies. No temperature change by the ultrasound exposure was observed in the well plate. The system was used to stimulate rat mesenchymal stem cells (rMSCs). The applied intensity had no apoptotic effect and enhanced the expression of osteogenic markers, i.e., osteopontin (OPN), collagen 1 (Col-1), the osteoblast-specific transcription factor-Runx-2 and E11 protein, an early osteocyte marker, in stimulated cells on day 5. The proposed FLIPUS setup opens new perspectives for the evaluation of the mechanistic effects of LIPUS.
Collapse
|
41
|
Yan H, Liu X, Zhu M, Luo G, Sun T, Peng Q, Zeng Y, Chen T, Wang Y, Liu K, Feng B, Weng J, Wang J. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering. J Biomed Mater Res A 2015; 104:195-208. [DOI: 10.1002/jbm.a.35556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Haoran Yan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Xia Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Minghua Zhu
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Guilin Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Tao Sun
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Qiang Peng
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Yi Zeng
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Yingying Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Keliang Liu
- Sichuan Centre for Disease Control and Prevention; Chengdu 610041 People's Republic of China
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| |
Collapse
|
42
|
Low-Intensity Pulsed Ultrasound Improves the Functional Properties of Cardiac Mesoangioblasts. Stem Cell Rev Rep 2015. [DOI: 10.1007/s12015-015-9608-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Ting SYW, Montagne K, Nishimura Y, Ushida T, Furukawa KS. Modulation of the Effect of Transforming Growth Factor-β3 by Low-Intensity Pulsed Ultrasound on Scaffold-Free Dedifferentiated Articular Bovine Chondrocyte Tissues. Tissue Eng Part C Methods 2015; 21:1005-14. [PMID: 25915185 DOI: 10.1089/ten.tec.2014.0428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to evaluate how low-intensity pulsed ultrasound (LIPUS) modulates the effect of transforming growth factor-β3 (TGF-β3) on the differentiation of scaffold-free dedifferentiated bovine articular chondrocyte tissues toward a cartilage-like phenotype. Specifically, the effect of these stimuli on the expression of hypertrophic markers collagen type I, collagen type X, and cartilage-degrading collagenase gene expression for a scaffold-free model was analyzed. A bioreactor that applied LIPUS directly from the transducer through a silicone gel to a six-well plate containing the tissues allowed simple, sterile, and large-scale experiments. Tissues were subjected to LIPUS of 55 mW/cm(2) in a 200 μs burst sine wave of 1 MHz over a 10-day period with or without TGF-β3 (10 ng/mL). Tissues exposed to TGF-β3 had significantly increased glycosaminoglycan and total collagen protein production along with upregulated cartilage-specific gene expression, resulting in tissues with a higher Young's Modulus. However, these tissues had also upregulated gene expression for hypertrophic markers collagen type I, collagen type X, MMP-1, MMP-13, MMP-2, and also an increase in the phosphorylation of p38. The expression of these matrix-degrading enzymes was remediated by hypertrophic development and differentiate dedifferentiated bovine articular chondrocytes towards a chondrogenic lineage allowing it to be a valuable tool in cartilage tissue engineering.
Collapse
Affiliation(s)
| | - Kevin Montagne
- 1 Department of Mechanical Engineering, The University of Tokyo , Tokyo, Japan
| | | | - Takashi Ushida
- 1 Department of Mechanical Engineering, The University of Tokyo , Tokyo, Japan .,3 Department of Bioengineering, The University of Tokyo , Tokyo, Japan
| | - Katsuko S Furukawa
- 1 Department of Mechanical Engineering, The University of Tokyo , Tokyo, Japan .,3 Department of Bioengineering, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
44
|
Xia P, Ren S, Lin Q, Cheng K, Shen S, Gao M, Li X. Low-Intensity Pulsed Ultrasound Affects Chondrocyte Extracellular Matrix Production via an Integrin-Mediated p38 MAPK Signaling Pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1690-1700. [PMID: 25736607 DOI: 10.1016/j.ultrasmedbio.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/26/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Although low-intensity pulsed ultrasound (LIPUS) regulates p38 mitogen-activated protein kinase (MAPK) and promotes cartilage repair in osteoarthritis, the role of integrin-mediated p38 MAPK in the effect of LIPUS on extracellular matrix (ECM) production of normal and OA chondrocytes remains unknown. The aim of this study was to investigate whether LIPUS affects ECM production in normal and OA rabbit chondrocytes through an integrin-p38 signaling pathway. A rabbit model of OA was established by anterior cruciate ligament transection, and chondrocytes were isolated from normal or OA cartilage and cultured in vitro. Chondrocytes were treated with LIPUS and then pre-incubated with the integrin inhibitor GRGDSP or the p38 inhibitor SB203580. Expression of type II collagen, MMP-13, integrin β1, p38 and phosphorylated p38 was assessed by Western blot analysis. We found that type II collagen and integrin β1 were upregulated (p < 0.05), whereas MMP-13 was downregulated (p < 0.05) in normal and OA chondrocytes. Furthermore, phosphorylated p38 was upregulated (p < 0.05) in normal chondrocytes, but downregulated (p < 0.05) in OA chondrocytes after LIPUS stimulation. Pre-incubation of chondrocytes with the integrin inhibitor disrupted the effects of LIPUS on normal and OA chondrocytes. Pre-incubation of chrondocytes with the p38 inhibitor reduced the effects of LIPUS on normal chondrocytes, but had no impact on OA chondrocytes. Our findings suggest that the integrin-p38 MAPK signaling pathway plays an important role in LIPUS-mediated ECM production in chondrocytes.
Collapse
Affiliation(s)
- Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shasha Ren
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shihao Shen
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingxia Gao
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Andrade I, Sousa ABDS, da Silva GG. New therapeutic modalities to modulate orthodontic tooth movement. Dental Press J Orthod 2014; 19:123-33. [PMID: 25628089 PMCID: PMC4347420 DOI: 10.1590/2176-9451.19.6.123-133.sar] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022] Open
Abstract
Modulation of orthodontic tooth movement (OTM) is desirable not only to patients because it shortens treatment time, but also to orthodontists, since treatment duration is associated with increased risk of gingival inflammation, decalcification, dental caries, and root resorption. The increased focus on the biological basis of tooth movement has rendered Orthodontics a more comprehensive specialty that incorporates facets of all fields of medicine. Current knowledge raises the possibility of using new therapeutic modalities for modulation of OTM, such as corticotomy, laser therapy, vibration (low-intensity pulsed ultrasound), local injections of biomodulators and gene therapy; with the latter being applicable in the near future. They are intended to enhance or inhibit recruitment, differentiation and/or activation of bone cells, accelerate or reduce OTM, increase stability of orthodontic results, as well as assist with the prevention of root resorption. This article summarizes recent studies on each one of these therapeutic modalities, provides readers with information about how they affect OTM and points out future clinical perspectives.
Collapse
Affiliation(s)
- Ildeu Andrade
- School of Dentistry, Catholic University of Minas Gerais
| | | | | |
Collapse
|
46
|
Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. ULTRASONICS 2014; 54:1125-45. [PMID: 24507669 DOI: 10.1016/j.ultras.2014.01.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 05/15/2023]
Abstract
In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture dish walls and the formation of standing waves will greatly affect the local type and amplitude of the stimulus exerted on the cells. A future engineering challenge is therefore the design of dedicated experimental set-ups, in which the different mechanical phenomena induced by ultrasound can be controlled. This is a prerequisite to evaluate the biological effects of the different phenomena with respect to particular parameters, like intensity, frequency, or duty cycle. By relating the variations of these parameters to the induced physical effects and to the biological responses, it will become possible to derive an 'acoustic dose' and propose a quantification and cross-calibration of the different experimental systems. Improvements in bone healing management will probably also come from a combination of ultrasound with a 'biologic' components, e.g. growth factors, scaffolds, gene therapies, or drug delivery vehicles, the effects of which being potentiated by the ultrasound.
Collapse
Affiliation(s)
- Frédéric Padilla
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon, Lyon F-69003, France.
| | - Regina Puts
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Lyon, St-Etienne F-42023, France
| | - Kay Raum
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
47
|
Yang MH, Lim KT, Choung PH, Cho CS, Chung JH. Application of ultrasound stimulation in bone tissue engineering. Int J Stem Cells 2014; 3:74-9. [PMID: 24855544 DOI: 10.15283/ijsc.2010.3.2.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2010] [Indexed: 12/17/2022] Open
Abstract
Many studies have been investigated on the effects of the low-intensity pulsed ultrasound (LIPUS) on bone healing, acceleration of bone mineralization and regeneration. Many researchers have focused on a more comprehensive understanding of the biological mechanism of the osteoblast by LIPUS because the osteoblast is an important cell in bone formation. The effects of LIPUS on the proliferation, gene expression of Runx2, Msx2, Dlx5, and AJ18, and the second messenger signaling of osteoblast were reported. Various parameters of LIPUS, such as intensity, frequency, duration and topology, were investigated to find appropriate conditions in osteoblast. Less than 120 mW/cm(2) of intensity and 1-3 MHz of frequency were considered good condition for regeneration of bone tissue. Increased osteoblast cells and higher mineralized nodule formation explain the enhancement of proliferation by LIPUS. In addition, LIPUS affects on differentiation of osteoblast cells, which is shown by increased ALPase, and transcriptional factors, Runx2. Ultrasound stimulates PEG2 and COX-2 in osteoblast, and the signals accelerates the bone regeneration in tissue engineering.
Collapse
Affiliation(s)
- Min-Ho Yang
- Department of Biosystems & Biomaterials Science and Engineering, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Taek Lim
- Department of Biosystems & Biomaterials Science and Engineering, School of Dentistry, Seoul National University, Seoul, Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea ; Tooth Bioengineering National Research Laboratory of Post BK21, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Yang Z, Ren L, Deng F, Wang Z, Song J. Low-intensity pulsed ultrasound induces osteogenic differentiation of human periodontal ligament cells through activation of bone morphogenetic protein-smad signaling. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:865-873. [PMID: 24764342 DOI: 10.7863/ultra.33.5.865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Low-intensity pulsed ultrasound (US) can accelerate fracture healing and osteogenic differentiation. The aim of this study was to investigate the osteogenic effect of low-intensity pulsed US on human periodontal ligament cells and to determine whether bone morphogenetic protein (BMP)-Smad signaling was involved. METHODS Human periodontal ligament cells were exposed to low-intensity pulsed US at a frequency of 1.5 MHz and intensity of 90 mW/cm(2) for 20 min/d. Osteogenic differentiation was determined by assaying alkaline phosphatase (ALP) and calcium deposition. Expression of BMP-2, BMP-6, and BMP-9 was detected by real-time polymerase chain reaction analysis. Phosphorylated Smad was detected by western blotting; Smad in the cells was labeled by an immunofluorescent antibody and observed by laser-scanning confocal microscopy. RESULTS The optical density of ALP stimulated by US at 1.5 MHz and 90 mW/cm(2) for 20 min/d was significantly higher than in other groups (P < .01); therefore, this dosage was considered optimal for promoting osteogenic differentiation. After 13 days of US exposure, ALP increased gradually after 5 days, peaked at 11 days, and decreased at 13 days, with a significant difference compared with the control group (P < .05). Osteocalcin production increased from 9 to 13 days and peaked at 15 days, with a significant difference compared with the control group (P < .05). BMP-2 and BMP-6 increased dynamically after exposure for 13 days. BMP-2 increased 6.07-fold at 3 days, 6.39-fold at 11 days, and 5.97-fold at 13 days. BMP-6 expression increased 6.82-fold at 1 day and 51.5-fold at 3 days and decreased thereafter. BMP-9 was not expressed. Phospho-Smad1/5/8 expression was significantly increased after exposure (P< .05) and transferred from the cytoplasm into the nuclei. CONCLUSIONS Low-intensity pulsed US effectively induced osteogenic differentiation of human periodontal ligament cells, and the BMP-Smad signaling pathway was involved in the mechanism.
Collapse
Affiliation(s)
- Zun Yang
- Affiliated Hospital of Stomatology, Chongqing Medical University, 426 Songshi North St, Yubei District, 401147 Chongqing, China.
| | | | | | | | | |
Collapse
|
49
|
Abrunhosa VM, Soares CP, Batista Possidonio AC, Alvarenga AV, Costa-Felix RPB, Costa ML, Mermelstein C. Induction of skeletal muscle differentiation in vitro by therapeutic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:504-512. [PMID: 24412173 DOI: 10.1016/j.ultrasmedbio.2013.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 06/03/2023]
Abstract
Therapeutic ultrasound (TU) has been used for the last 50 y in rehabilitation, including treatment of soft tissues. Ultrasound waves can be employed in two different modes of operation, continuous and pulsed, which produce both thermal and non-thermal effects. Despite the large-scale use of TU, there are few scientific studies on its biologic effects during skeletal muscle differentiation. To better analyze the cellular effects of TU, we decided to follow cells in vitro. The main purpose of this study was to evaluate the effects of TU in primary chick myogenic cell cultures using phase contrast optical microscopy and immunofluorescence microscopy, followed by image analysis and quantification. Our results indicate that TU can stimulate the differentiation of skeletal muscle cells in vitro, as measured by the thickness of multinucleated myotubes, the ratio of mononucleated cells to multinucleated cells and expression of the muscle-specific protein desmin. This study is a first step toward a metrologic and science-based protocol for cell treatment under different ultrasound field exposures.
Collapse
Affiliation(s)
- Viviane Mendes Abrunhosa
- Laboratório de Ultrassom, Diretoria de Metrologia Científica e Industrial (DIMCI), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carolina Pontes Soares
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - André Victor Alvarenga
- Laboratório de Ultrassom, Diretoria de Metrologia Científica e Industrial (DIMCI), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, RJ, Brazil
| | - Rodrigo P B Costa-Felix
- Laboratório de Ultrassom, Diretoria de Metrologia Científica e Industrial (DIMCI), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, RJ, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
Yang SW, Kuo CL, Chang SJ, Chen PC, Lin YT, Manousakas I, Kuo SM. Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study. BMC Musculoskelet Disord 2014; 15:36. [PMID: 24507771 PMCID: PMC3923237 DOI: 10.1186/1471-2474-15-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/06/2014] [Indexed: 03/29/2023] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) regiment has been used to treat fractures with non-union and to promote bone union in general. The effect of LIPUS on articular cartilage metabolism has been characterized. Yet, the effect of LIPUS to repair articular cartilage injury remains unclear in vivo. Methods We designed a study to investigate the effect of LIPUS on articular cartilage repairing in a rabbit severe cartilage injury model. Eighteen rabbits were divided into three groups: Sham-operated group, operated group without-LIPUS-treatment, operated group with-LIPUS-treatment (a daily 20-minute treatment for 3 months). Full-thickness cartilage defects were surgically created on the right side distal femoral condyle without intending to penetrate into the subchondral bone, which mimicked severe chondral injury. MR images for experimental joints, morphology grading scale, and histopathological Mankin score were evaluated. Results The preliminary results showed that the operated groups with-LIPUS-treatment and without-LIPUS-treatment had significantly higher Mankin score and morphological grading scale compared with the sham-operated group. However, there was no significant difference between the with-LIPUS-treatment and without-LIPUS-treatment groups. Cartilage defects filled with proliferative tissue were observed in the with-LIPUS-treatment group grossly and under MR images, however which presented less up-take under Alcian blue stain. Furthermore, no new deposition of type II collagen or proliferation of chondrocyte was observed over the cartilage defect after LIPUS treatment. Conclusion LIPUS has no significant therapeutic potential in treating severe articular cartilage injury in our animal study.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, No,1, Sec, 1, Syuecheng Rd,, Kaohsiung City 84001, Dashu District, Taiwan.
| |
Collapse
|