1
|
Mei X, Liu G, Chen G, Zhang Y, Xue C, Chang Y. Structural Determination and Functional Residues Analysis of a CBM99 Family Carbohydrate-Binding Module Targeting Porphyran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4764-4769. [PMID: 39908185 DOI: 10.1021/acs.jafc.4c09912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Porphyran is a bioactive polysaccharide extensively distributed in algae of the genus Porphyra. Carbohydrate-binding modules (CBMs) are independent domains often found in carbohydrate-active enzymes that function to bind carbohydrates and have various applications. Only one porphyran-binding CBM has been hitherto structurally characterized. The founding member (FvCBM99) of the CBM99 family was previously shown to exhibit a specific binding capacity to the primary constituent units of porphyran. In this study, the structure of FvCBM99 was determined at 1.75 Å resolution by X-ray crystallography. The protein adopts an overall β-sandwich fold with two antiparallel β-sheets comprising 7 β-strands. Site-directed mutagenesis analysis confirmed that residues W44, W49, K83, R87, and W93 are indispensable for the interaction of FvCBM99 with porphyran. The work delivers the first structural insights into the CBM99 family, which can guide the practical applications of FvCBM99 and promote the future discovery and characterization of porphyran-binding proteins.
Collapse
Affiliation(s)
- Xuanwei Mei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
2
|
Mei X, Liu G, Chen G, Zhang Y, Xue C, Chang Y. Characterization and structural identification of a family 16 carbohydrate-binding module (CBM): First structural insights into porphyran-binding CBM. Int J Biol Macromol 2024; 265:131041. [PMID: 38518929 DOI: 10.1016/j.ijbiomac.2024.131041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Porphyran is a favorable functional polysaccharide widely distributed in Porphyra. It displays a linear structure majorly constituted by alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G) units. Carbohydrate-binding modules (CBMs) are desired tools for the investigation and application of polysaccharides, including in situ visualization, on site and specific assay, and functionalization of biomaterials. However, only one porphyran-binding CBM has been hitherto reported, and its structural knowledge is lacking. Herein, a novel CBM16 family domain from a marine bacterium Aquimarina sp. BL5 was discovered and expressed. The recombinant protein AmCBM16 exhibited the desired specificity for porphyran. Bio-layer interferometry assay revealed that the protein binds to porphyran tetrasaccharide (L6S-G)2 with an association constant of 1.3 × 103 M-1. The structure of AmCBM16 was resolved by the X-ray crystallography, which displays a β-sandwich fold with two antiparallel β-sheets constituted by 10 β-strands. Site-directed mutagenesis analysis demonstrated that the residues Gly-30, Trp-31, Lys-88, Lys-123, Phe-125, and Phe-127 play dominant roles in AmCBM16 binding. This study provides the first structural insights into porphyran-binding CBM.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| |
Collapse
|
3
|
Mei X, Zhang Y, Liu G, Shen J, Han J, Xue C, Xiao H, Chang Y. Characterization of a novel carbohydrate-binding module specifically binding to the major structural units of porphyran. Int J Biol Macromol 2023; 253:127106. [PMID: 37769778 DOI: 10.1016/j.ijbiomac.2023.127106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Porphyran is a promising bioactive polysaccharide majorly composed of 4-linked α-l-galactopyranose-6-sulfate (L6S) and 3-linked β-d-galactopyranose (G) disaccharide repeating units. Carbohydrate-binding modules (CBMs) have been verified to be essential tools for investigating polysaccharides. However, no confirmed CBM binding to porphyran has been hitherto reported. In this study, an unknown domain with a predicted β-sandwich fold from a potential GH86 porphyranase was discovered, and further recombinantly expressed. The CBM protein (named FvCBM99) presented a desired specificity for porphyran tetrasaccharide with an affinity constant of 1.9 × 10-4 M, while it could not bind to agarose tetrasaccharide. The sequence novelty and well-defined function of FvCBM99 and its homologs reveal a new CBM family, CBM99. Besides, the application potential of FvCBM99 in in situ visualization of porphyran was demonstrated. The discovery of FvCBM99 provides a favorable tool for future studies of porphyran.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jin Han
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| |
Collapse
|
4
|
Li J, Wang YF, Shen ZC, Zou Q, Lin XF, Wang XY. Recent developments on natural polysaccharides as potential anti-gastric cancer substance: Structural feature and bioactivity. Int J Biol Macromol 2023; 232:123390. [PMID: 36706878 DOI: 10.1016/j.ijbiomac.2023.123390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Gastric cancer (GC) is being a serious threat to human health. Seeking safer and more effective ingredients for anti-GC is of significance. Increasing natural polysaccharides (NPs) have been demonstrated to possess anti-GC activity. However, the information on anti-GC NPs is scattered. For well-understanding the potential of NPs as anti-GC substances, the recent developments on structure, bioactivity and mechanism of anti-GC NPs were comprehensively reviewed in this article. Meanwhile, the structure-activity relationship was discussed. Recent studies indicated that anti-GC NPs could be mainly divided into glucan and heteropolysaccharide, whose structures affected by sources and protocols of extraction and purification. NPs exhibited anti-GC activities in cell and animal experiments as well as clinical trials, and the mechanisms might be anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, inducing autophagy, boosting immunity, anti-angiogenesis, reducing drug resistance, anti-angiogenesis, improving antioxidant level and changing metabolites. Moreover, structural features included molecular weight, functional groups, uronic acid and monosaccharide composition, glycosidic linkage type, and degree of branching and conformation might influence the activities. Otherwise, modifications could enhance the anti-GC activity of NPs, and anti-GC NPs could be combinedly used with chemotherapeutic drugs. This review supports the applications of NPs in anti-GC and provides theoretical basis for future study.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15030715. [PMID: 36765670 PMCID: PMC9913163 DOI: 10.3390/cancers15030715] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Seaweed-derived bioactive compounds are regularly employed to treat human diseases. Sulfated polysaccharides are potent chemotherapeutic or chemopreventive medications since it has been discovered. They have exhibited anti-cancer properties by enhancing immunity and driving apoptosis. Through dynamic modulation of critical intracellular signalling pathways, such as control of ROS generation and preservation of essential cell survival and death processes, sulfated polysaccharides' antioxidant and immunomodulatory potentials contribute to their disease-preventive effectiveness. Sulfated polysaccharides provide low cytotoxicity and good efficacy therapeutic outcomes via dynamic modulation of apoptosis in cancer. Understanding how sulfated polysaccharides affect human cancer cells and their molecular involvement in cell death pathways will showcase a new way of chemoprevention. In this review, the significance of apoptosis and autophagy-modulating sulfated polysaccharides has been emphasized, as well as the future direction of enhanced nano-formulation for greater clinical efficacy. Moreover, this review focuses on the recent findings about the possible mechanisms of chemotherapeutic use of sulfated polysaccharides, their potential as anti-cancer drugs, and proposed mechanisms of action to drive apoptosis in diverse malignancies. Because of their unique physicochemical and biological properties, sulfated polysaccharides are ideal for their bioactive ingredients, which can improve function and application in disease. However, there is a gap in the literature regarding the physicochemical properties and functionalities of sulfated polysaccharides and the use of sulfated polysaccharide-based delivery systems in functional cancer. Furthermore, the preclinical and clinical trials will reveal the drug's efficacy in cancer.
Collapse
|
6
|
Immunomodulatory and anti-inflammatory and anticancer activities of porphyran, a sulfated galactan. Carbohydr Polym 2022; 301:120326. [DOI: 10.1016/j.carbpol.2022.120326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
7
|
Chen L, He C, Zhou M, Long J, Li L. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules 2022; 27:5828. [PMID: 36144560 PMCID: PMC9501385 DOI: 10.3390/molecules27185828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a common type of cancer that poses a serious threat to human health. Polysaccharides are important functional phytochemicals, and research shows that polysaccharides have good anti-gastric cancer effects. We collated all relevant literature published from 2000 to 2020 and found that more than 60 natural polysaccharides demonstrate anti-gastric cancer activity. At the present, the sources of these polysaccharides include fungi, algae, tea, Astragalus membranaceus, Caulis Dendrobii, and other foods and Chinese herbal medicines. By regulating various signaling pathways, including the PI3K/AKT, MAPK, Fas/FasL, Wnt/β-catenin, IGF-IR, and TGF-β signaling pathways, polysaccharides induce gastric cancer cell apoptosis, cause cell cycle arrest, and inhibit migration and invasion. In addition, polysaccharides can enhance the immune system and killing activity of immune cells in gastric cancer patients and rats. This comprehensive review covers the extraction, purification, structural characterization, and mechanism of plant and fungal polysaccharides against gastric cancer. We hope this review is helpful for researchers to design, research, and develop plant and fungal polysaccharides.
Collapse
Affiliation(s)
- Liping Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Min Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaying Long
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
8
|
Fermentation optimization, purification and biochemical characterization of a porphyran degrading enzyme with funoran side-activity from Zobellia uliginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2021; 36:761-777. [PMID: 34962325 DOI: 10.1002/ptr.7348] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
A significant rise in the occurrence and severity of adverse reactions to several synthetic drugs has fueled considerable interest in natural product-based therapeutics. In humans and animals, polysaccharides from marine microalgae and seaweeds have immunomodulatory effects. In addition, these polysaccharides may possess antiviral, anticancer, hypoglycemic, anticoagulant, and antioxidant properties. During inflammatory diseases, such as autoimmune diseases and sepsis, immunosuppressive molecules can serve as therapeutic agents. Similarly, molecules that participate in immune activation can induce immune responses against cancer and infectious diseases. We aim to discuss the chemical composition of the algal polysaccharides, namely alginate, fucoidan, ascophyllan, and porphyran. We also summarize their applications in the treatment of cancer, infectious disease, and inflammation. Recent applications of nanoparticles that are based on algal polysaccharides for the treatment of cancer and inflammatory diseases have also been addressed. In conclusion, these applications of marine algal polysaccharides could provide novel therapeutic alternatives for several diseases.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Peter Cw Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
11
|
Misra SK, Pathak K. Naturally occurring heterocyclic anticancer compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
12
|
Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar Drugs 2021; 19:md19100552. [PMID: 34677451 PMCID: PMC8539943 DOI: 10.3390/md19100552] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The interest in seaweeds for cosmetic, cosmeceutics, and nutricosmetics is increasing based on the demand for natural ingredients. Seaweeds offer advantages in relation to their renewable character, wide distribution, and the richness and versatility of their valuable bioactive compounds, which can be used as ingredients, as additives, and as active agents in the formulation of skin care products. Bioactive compounds, such as polyphenols, polysaccharides, proteins, peptides, amino acids, lipids, vitamins, and minerals, are responsible for the biological properties associated with seaweeds. Seaweed fractions can also offer technical features, such as thickening, gelling, emulsifying, texturizing, or moistening to develop cohesive matrices. Furthermore, the possibility of valorizing industrial waste streams and algal blooms makes them an attractive, low cost, raw and renewable material. This review presents an updated summary of the activities of different seaweed compounds and fractions based on scientific and patent literature.
Collapse
|
13
|
Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021; 13:v13091817. [PMID: 34578399 PMCID: PMC8473461 DOI: 10.3390/v13091817] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.
Collapse
|
14
|
Jiang Z, He P, Wu L, Yu G, Zhu Y, Li L, Ni H, Oda T, Li Q. Structural characterization and pro-angiogenic property of a polysaccharide isolated from red seaweed Bangia fusco-purpurea. Int J Biol Macromol 2021; 181:705-717. [PMID: 33774072 DOI: 10.1016/j.ijbiomac.2021.03.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
In this study, we evaluated the structural characteristics and novel biological activity of polysaccharide purified from red seaweed Bangia fusco-purpurea (BFP). Methylation, GC/MS, and NMR analyses suggested that the proposal repeating structure of BFP was →3)-β-D-Galp-(1→, →3)-β-D-Galp6S-(1 → 4)-α-D-Galp-(1→, →4)-α-D-Galp-(1 → 4)-α-L-AnGalp-(1 → 3)-β-D-Galp-(1→, and →4)-α-D-Galp-(1 → at a molar ratio of 13: 1: 1: 1. Interestingly, BFP exhibited significant cell migration- and tube formation-promoting activities toward human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner via increasing the N-cadherin expression and decreasing the E-cadherin expression. Furthermore, ERK and p38 mitogen-activated protein kinase (MAPK) specific inhibitors exhibited potent inhibitory effects on BFP-induced cell migration but not JNK MAPK inhibitor, suggesting ERK and p38 MAPK signaling pathways were mainly involved in BFP-induced cell migration. Moreover, vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor significantly inhibited BFP-induced cell migration and tube formation in HUVECs, suggesting VEGF receptors of HUVECs were involved in the pro-angiogenesis activity of BFP. This is the first report that a sulfated polysaccharide possessing a pro-angiogenic effect was obtained from red seaweed. Our findings are expected to promote the practical use of red seaweed B. fusco-purpurea and its polysaccharide in the development of the in vitro and ex vivo vascular endothelial cell-based cell therapy products.
Collapse
Affiliation(s)
- Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Pingping He
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Ling Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Gang Yu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
15
|
Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349:129209. [PMID: 33588184 DOI: 10.1016/j.foodchem.2021.129209] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.
Collapse
|
16
|
Kurakake M, Itakura K, Nakano M. Functional Properties of Nori Seaweed ( Pyropia yezoensis) with Different Quality and Ulva sp. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1868642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Masahiro Kurakake
- Department of Marine Bio-Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Keisuke Itakura
- Department of Marine Bio-Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Mayuko Nakano
- Department of Marine Bio-Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
17
|
Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020; 18:E560. [PMID: 33207613 PMCID: PMC7697577 DOI: 10.3390/md18110560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.
Collapse
Affiliation(s)
- Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Glacio Souza Araújo
- Federal Institute of Education, Science and Technology of Ceará–IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceará, Brazil;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Rui Gaspar
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - João M. Neto
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| |
Collapse
|
18
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Khora SS, Navya P. Bioactive Polysaccharides from Marine Macroalgae. ENCYCLOPEDIA OF MARINE BIOTECHNOLOGY 2020:121-145. [DOI: 10.1002/9781119143802.ch6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, Fendri I, Abdelkafi S, Michaud P. Bioactive Polysaccharides from Seaweeds. Molecules 2020; 25:E3152. [PMID: 32660153 PMCID: PMC7397078 DOI: 10.3390/molecules25143152] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
Bioactive compounds with diverse chemical structures play a significant role in disease prevention and maintenance of physiological functions. Due to the increase in industrial demand for new biosourced molecules, several types of biomasses are being exploited for the identification of bioactive metabolites and techno-functional biomolecules that are suitable for the subsequent uses in cosmetic, food and pharmaceutical fields. Among the various biomasses available, macroalgae are gaining popularity because of their potential nutraceutical and health benefits. Such health effects are delivered by specific diterpenes, pigments (fucoxanthin, phycocyanin, and carotenoids), bioactive peptides and polysaccharides. Abundant and recent studies have identified valuable biological activities of native algae polysaccharides, but also of their derivatives, including oligosaccharides and (bio)chemically modified polysaccharides. However, only a few of them can be industrially developed and open up new markets of active molecules, extracts or ingredients. In this respect, the health and nutraceutical claims associated with marine algal bioactive polysaccharides are summarized and comprehensively discussed in this review.
Collapse
Affiliation(s)
- Faiez Hentati
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Latifa Tounsi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 46 Maroua, Cameroon;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Alina Violeta Ursu
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| |
Collapse
|
21
|
Zhang Y, Chang Y, Shen J, Mei X, Xue C. Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7032-7039. [PMID: 32520542 DOI: 10.1021/acs.jafc.0c02404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porphyran is the major polysaccharide of laver and mainly composed of 3-linked β-d-galactopyranose (G) and 4-linked α-l-galactopyranose-6-sulfate (L6S) units. Structural heterogeneity of porphyran highly originates from the natural methylation on the O-6 position of G units (GMe). Here, a GH16 porphyranase Por16C_Wf was cloned from a porphyran-related polysaccharide utilization locus of Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It hydrolyzed porphyran in a random endo-acting manner. Using a glycomics strategy combining liquid chromatography-mass spectrometry and glycoinformatics, the subsite specificity was clarified. Por16C_Wf accommodated both G and GMe at subsites -1 and +2. This is the first report on the sequence of porphyranases hydrolyzing consecutive methyl-porphyranobiose moieties, which shed light on the diversity in subsite specificity of porphyranases. Por16C_Wf was the first characterized enzyme in subfamily 14 of the GH16 family. The defined and novel activity of Por16C_Wf implied that it could serve as a favorable tool in the full degradation and structural investigation of porphyran.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
22
|
Yu G, Chen Y, Bao Q, Jiang Z, Zhu Y, Ni H, Li Q, Oda T. A low-molecular-weight ascophyllan prepared from Ascophyllum nodosum: Optimization, analysis and biological activities. Int J Biol Macromol 2020; 153:107-117. [PMID: 32135255 DOI: 10.1016/j.ijbiomac.2020.02.334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/04/2023]
Abstract
In this study, a low-molecular-weight saccharide fragment (LMWAs-L) was prepared from alginate lyase (EC 4.2.2.3) hydrolyzed ascophyllan by ultra-filtration separation method. LMWAs-L was a homogeneous saccharide fraction with an average molecular weight of 6.96 kDa. Enzymolysis process optimization experiments revealed that the optimum process parameters for preparing LMWAs-L were the enzyme concentration 0.02 U/mL, initial pH 6.8, and enzymolysis temperature 43 °C. After optimization, the yield of LMWAs-L was increased to 9.74% higher than that without optimization. Interestingly, LMWAs-L exhibited stronger enhancing activities on the proliferation and migration of human skin fibroblasts cells in vitro and better antibacterial activities as compared to native ascophyllan at the same mass concentration. Our study establishes a simple way to prepare low-molecular-weight saccharide with beneficial bioactivities from ascophyllan efficiently. This is the first report to reveal that ascophyllan and its low-molecular-weight saccharide have the potentials to be developed as natural biological dressing and antibacterial agents.
Collapse
Affiliation(s)
- Gang Yu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yanhong Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingyun Bao
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
23
|
Ha Y, Lee WH, Jeong J, Park M, Ko JY, Kwon OW, Lee J, Kim YJ. Pyropia yezoensis Extract Suppresses IFN-Gamma- and TNF-Alpha-Induced Proinflammatory Chemokine Production in HaCaT Cells via the Down-Regulation of NF-κB. Nutrients 2020; 12:nu12051238. [PMID: 32349358 PMCID: PMC7285056 DOI: 10.3390/nu12051238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.
Collapse
Affiliation(s)
- Yuna Ha
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Won-Hwi Lee
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
| | - JaeWoo Jeong
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
| | - Mira Park
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Ju-Young Ko
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Oh Wook Kwon
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 164-19, Gyunggi Do, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| | - Youn-Jung Kim
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea; (Y.H.); (W.-H.L.); (J.J.); (M.P.); (J.-Y.K.); (O.W.K.)
- Department of Cosmetic Science and Management, Graduate School, Incheon National University, Incheon 22012, Korea
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.L); (Y.-J.K.); Tel.: +82-32-835-8861 (Y.-J.K.)
| |
Collapse
|
24
|
Wang Y, Hwang J, Yadav D, Oda T, Lee PCW, Jin JO. Inhibitory effect of porphyran on lipopolysaccharide-induced activation of human immune cells. Carbohydr Polym 2020; 232:115811. [DOI: 10.1016/j.carbpol.2019.115811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
25
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
26
|
Geng L, Wang J, Zhang Z, Yue Y, Zhang Q. Structure and Bioactivities of Porphyrans and Oligoporphyrans. Curr Pharm Des 2020; 25:1163-1171. [PMID: 31208306 DOI: 10.2174/1381612825666190430111725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pyropia (Porphyra), commonly known as nori or laver, is an important food source in many parts of the world. Edible dried Pyropia contains numerous nutrients and biofunctional components, including proteins, vitamins, eicosapentaenoic acid, minerals, carotenoids, mycosporine-like amino acids, and carbohydrate, and one of the compounds which we are interested in is porphyran, a sulfated polysaccharide comprising the hot-water-soluble portion of Pyropia cell walls. Researchers have performed a large number of in-depth studies on the biological activity and potential therapeutic applications of porphyrans and oligoporphyrans. METHODS This mini review aims to provide comprehensive and update overview on the source, extraction, structure, biological activities and structure-activity relationships of porphyrans and oligoporphyrans based on the studies in the past 30 years which were included in Web of Science. RESULTS The structure of porphyran has been basically determined given that its straight chain is relatively simple, and the skeleton structure has been described. The extraction methods were simplified continuously, but different extraction methods and post- processing methods still had great influence on the structure and composition of porphyran, so there was no standardized extraction process which can achieve quality control until now. In order to obtain oligoporphyrans, there are a variety of degradation methods, including chemical method, physical method and enzymatic method, but it is worth mentioning that specific degradation enzyme is still unavailable. Studies on the biological and pharmacology properties include antioxidant, anti-tumor, anti-inflammatory, immunomodulation, anti-cardiovascular and cerebrovascular diseases and drug delivery. CONCLUSION Owing to the therapeutic potential and drug delivery applications, porphyran and oligoporphyrans are expected to be further developed as a medicine against human diseases, as well as a supplement in cosmetics and health products.
Collapse
Affiliation(s)
- Lihua Geng
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jing Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhongshan Zhang
- Department of Pharmacology, Huzhou University, Huzhou 313000, China
| | - Yang Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Quanbin Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
27
|
Cho TJ, Rhee MS. Health Functionality and Quality Control of Laver ( Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar Drugs 2019; 18:E14. [PMID: 31877971 PMCID: PMC7024182 DOI: 10.3390/md18010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
The growing interest in laver as a food product and as a source of substances beneficial to health has led to global consumer demand for laver produced in a limited area of northeastern Asia. Here we review research into the benefits of laver consumption and discuss future perspectives on the improvement of laver product quality. Variation in nutritional/functional values among product types (raw and processed (dried, roasted, or seasoned) laver) makes product-specific nutritional analysis a prerequisite for accurate prediction of health benefits. The effects of drying, roasting, and seasoning on the contents of both beneficial and harmful substances highlight the importance of managing laver processing conditions. Most research into health benefits has focused on substances present at high concentrations in laver (porphyran, Vitamin B12, taurine), with assessment of the expected effects of laver consumption. Mitigation of chemical/microbiological risks and the adoption of novel technologies to exploit under-reported biochemical characteristics of lavers are suggested as key strategies for the further improvement of laver product quality. Comprehensive analysis of the literature regarding laver as a food product and as a source of biomedical compounds highlights the possibilities and challenges for application of laver products.
Collapse
Affiliation(s)
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
28
|
Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, Sun X. Anti-Cancer Activity of Porphyran and Carrageenan from Red Seaweeds. Molecules 2019; 24:molecules24234286. [PMID: 31775255 PMCID: PMC6930528 DOI: 10.3390/molecules24234286] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022] Open
Abstract
Seaweeds are some of the largest producers of biomass in the marine environment and are rich in bioactive compounds that are often used for human and animal health. Porphyran and carrageenan are natural compounds derived from red seaweeds. The former is a characteristic polysaccharide of Porphyra, while the latter is well known from Chondrus, Gigartina, and various Eucheuma species, all in Rhodophyceae. The two polysaccharides have been found to have anti-cancer activity by improving immunity and targeting key apoptotic molecules and therefore deemed as potential chemotherapeutic or chemopreventive agents. This review attempts to review the current study of anti-cancer activity and the possible mechanisms of porphyran and carrageenan derived from red seaweeds to various cancers, and their cooperative actions with other anti-cancer chemotherapeutic agents is also discussed.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing 210017, China;
| | - Ying Yang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China;
| | - Fanxin Meng
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
| | - Fengping Zhan
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China;
- Correspondence: (Q.J.); (X.S.); Tel.: +86-25-86618250 (Q.J.); +86-756-7626350 (X.S.)
| | - Xian Sun
- School of Pharmacy and Food Sciences, Zhuhai College of Jilin University, Zhuhai 519041, China; (Z.L.); (F.M.); (F.Z.)
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (Q.J.); (X.S.); Tel.: +86-25-86618250 (Q.J.); +86-756-7626350 (X.S.)
| |
Collapse
|
29
|
Wang Y, Hwang JY, Park HB, Yadav D, Oda T, Jin JO. Porphyran isolated from Pyropia yezoensis inhibits lipopolysaccharide-induced activation of dendritic cells in mice. Carbohydr Polym 2019; 229:115457. [PMID: 31826423 DOI: 10.1016/j.carbpol.2019.115457] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that porphyran, a sulfated polysaccharide extracted from Pyropia yezoensis, shows protective effects on LPS-induced septic shock in the mouse. However, the immune cell-mediated inhibitory effect of porphyran in LPS-induced activation of immune cells has not been well investigated. In this study, we found that treatment of porphyran suppressed LPS-induced upregulation of costimulatory molecule and C-C chemokine receptor type 7 (CCR7) expression in bone marrow-derived dendritic cells (BMDCs) in vitro and spleen DCs in vivo. Moreover, the LPS-induced expression of IL-6, IL-12, and TNF-α in the culture medium of BMDCs and serum dose-dependently decreased by porphyran treatment, which contributed to the inhibition of the intracellular cytokine production in spleen DCs. In addition, LPS-induced differentiation of helper T1 (Th1) and cytotoxic T1 (Tc1) cells was effectively suppressed by porphyran treatment in mice. The inhibitory effect of porphyran in LPS-induced immune activation was mediated by competitive binding of porphyran with LPS in spleen DCs. Thus, these results suggest that porphyran is a promising potential therapeutic agent in endotoxin-mediated inflammatory disease and septic shock.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ju-Young Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hae-Bin Park
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
30
|
Zhang Y, Chang Y, Shen J, Xue C. Expression and Characterization of a Novel β-Porphyranase from Marine Bacterium Wenyingzhuangia fucanilytica: A Biotechnological Tool for Degrading Porphyran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9307-9313. [PMID: 31352784 DOI: 10.1021/acs.jafc.9b02941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Porphyra is one of the most consumed types of red algae. Porphyran is the major polysaccharide extracted from Porphyra, and it is composed of alternating 4-linked α-l-galactopyranose-6-sulfate (L6S) and 3-linked β-d-galactopyranose (G) residues. β-Porphyranases are promising tools for degrading porphyran; however, few enzymes have been reported, and the biochemical properties of porphyranases are still unclear. Here, a novel GH16 β-porphyranase, designated as Por16A_Wf, was cloned from Wenyingzhuangia fucanilytica and expressed in Escherichia coli. Its biochemical properties and hydrolysis pattern were characterized. Por16A_Wf exhibited stable activity on a wide pH scale from 3.5 to 11.0. Glycomics analysis using LC-MS revealed that Por16A_Wf specifically hydrolyzed the glycosidic linkage of G-L6S, whereas it tolerated 3,6-anhydro-α-l-galactopyranose and methyl-d-galactose in -2 and +2 subsites, respectively. Por16A_Wf could be applied as a biotechnological tool for tailoring porphyran, which would serve in directional preparation of its disaccharide, producing products with various molecular weights and facilitating investigation of the structural heterogeneity of Porphyra polysaccharides.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Yaoguang Chang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Jingjing Shen
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| |
Collapse
|
31
|
Seong H, Bae JH, Seo JS, Kim SA, Kim TJ, Han NS. Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Pereira V, Marques A, Gaivão I, Rego A, Abreu H, Pereira R, Santos MA, Guilherme S, Pacheco M. Marine macroalgae as a dietary source of genoprotection in gilthead seabream (Sparus aurata) against endogenous and exogenous challenges. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:12-24. [PMID: 30721760 DOI: 10.1016/j.cbpc.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
DNA integrity and stability are essential to organisms' health and survival. However, it has been neglected in what concerns to fish farming, disregarding the potential impact of endogenous/ exogenous factors. As marine macroalgae constitute a source of natural compounds with a large spectrum of biological activities, this study, situated in the interface of nutritional-genetic research and development of algae practical applications, aimed to evaluate the genoprotective properties of a macroalgae-enriched diet (total percentage of 5%, incorporating equal percentages of Ulva rigida, Gracilaria gracilis and Fucus vesiculosus) in gilthead seabream (Sparus aurata). Protection was assessed in relation to a basal genome integrity and against an exogenous genotoxic challenge (cyclophosphamide; CP). Fish were reared for 30 days with the supplemented diet, being then injected with CP and sampled at days 3 and 10 post-injection (p.i.). To evaluate whether the favorable effects remain after the end of supplementation, a fish subgroup previously fed with algae-enriched diet was submitted to a diet reversion at day 3 p.i., being thereafter fed with the standard diet. Genetic damage was evaluated through the erythrocytic nuclear abnormalities (ENA) and comet assays and complemented by the assessment of the antioxidant system. Results pointed out that algae-enriched feed exhibits anti-genotoxic properties, mostly expressed in relation to the exogenous pressure, manifest in relation to DNA strand breaks and chromosomal lesions, also reducing oxidative DNA damage. Nonetheless, blood antioxidants were only punctually altered by the supplemented diet (e.g. catalase and glutathione-S-transferase). Analyzing the effect persistence, it was perceived that 7 days without algae uptake was enough to partially reduce the protection efficacy. Overall, these findings are promising towards the benefits of macroalgae inclusion in fish diet, and thus, to invigorate mariculture activity and the commercial use of algae, also providing new insights on the DNA protection mechanisms.
Collapse
Affiliation(s)
- Vitória Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Marques
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Gaivão
- CECAV and Department of Genetics and Biotechnology, Trás-os-Montes and Alto Douro University, 5001-801 Vila Real, Portugal
| | - Andreia Rego
- ALGAplus Lda., Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Helena Abreu
- ALGAplus Lda., Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Rui Pereira
- ALGAplus Lda., Travessa Alexandre da Conceição s/n, 3830-196 Ílhavo, Portugal
| | - Maria Ana Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sofia Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Venkatraman KL, Mehta A. Health Benefits and Pharmacological Effects of Porphyra Species. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:10-17. [PMID: 30543042 DOI: 10.1007/s11130-018-0707-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porphyra, one of the most cultured red algae has gained economic importance across the globe for its nutritional benefits. Porphyra is being cultivated, harvested, dried, processed and consumed in large quantities in south eastern countries. It contains relatively high amounts of proteins, carbohydrates, and micronutrients. Exploitation of its fundamental attributes led to the discovery of various biologically active compounds like polysaccharides, phycobiliproteins and peptides with effective pharmacological applications. In this review, a systematic account of the research accomplished in the past decade and up-to-date overview of various bioactive compounds and its pharmacological implications has been compiled. This review summarizes the bioactivities like antioxidative, immunomodulatory, antihypertensive, anticoagulant and anticancer properties of the bioactive compounds from Porphyra.
Collapse
Affiliation(s)
- Kalkooru L Venkatraman
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Alka Mehta
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
34
|
Geskovski N, Sazdovska SD, Goracinova K. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Curr Pharm Des 2019; 25:1265-1289. [PMID: 31020934 DOI: 10.2174/1381612825666190423155116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | | |
Collapse
|
35
|
Yanagido A, Ueno M, Jiang Z, Cho K, Yamaguchi K, Kim D, Oda T. Increase in anti-inflammatory activities of radical-degraded porphyrans isolated from discolored nori (Pyropia yezoensis). Int J Biol Macromol 2018; 117:78-86. [DOI: 10.1016/j.ijbiomac.2018.05.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022]
|
36
|
Large-scale preparation of sulfated polysaccharides with anti-angionenic and anti-inflammatory properties from Antrodia cinnamomia. Int J Biol Macromol 2018; 113:1198-1205. [PMID: 29550427 DOI: 10.1016/j.ijbiomac.2018.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 01/04/2023]
|
37
|
Anand J, Sathuvan M, Babu GV, Sakthivel M, Palani P, Nagaraj S. Bioactive potential and composition analysis of sulfated polysaccharide from Acanthophora spicifera (Vahl) Borgeson. Int J Biol Macromol 2018; 111:1238-1244. [DOI: 10.1016/j.ijbiomac.2018.01.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/16/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022]
|
38
|
Al-Enazi NM, Awaad AS, Zain ME, Alqasoumi SI. Antimicrobial, antioxidant and anticancer activities of Laurencia catarinensis, Laurencia majuscula and Padina pavonica extracts. Saudi Pharm J 2018; 26:44-52. [PMID: 29379332 PMCID: PMC5783824 DOI: 10.1016/j.jsps.2017.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/05/2017] [Indexed: 12/04/2022] Open
Abstract
The antimicrobial, antioxidant, and anticancer activities of ethanolic extract of Laurencia catarinensis, L. majuscula and Padina pavonica were determined. The highest antibacterial activity; 23.40 ± 0.58 mm (00.98 µg/ml) and 22.60 ± 2.10 mm (03.90 µg/ml) were obtained against Klebsiella pneumonia by Laurencia catarinensis and Padina pavonica, respectively. However, Padina pavonica showed excellent antibacterial activity against Bacillus subtilis (21.7 ± 1.5 mm; 1.95 µg/ml), Staphylococcus aureus (21.7 ± 0.58 mm; 1.95 µg/ml), Streptococcus pyogenes (20.7 ± 1.2 mm; 1.95 µg/ml) and Acinetobacter baumannii (20.1 ± 1.2 mm; 3.9 µg/ml). Moreover, the highest antifungal activity; 24.7 ± 2.0 mm (0.98 µg/ml), 23.7 ± 1.5 mm (0.98 µg/ml), 23.6 ± 1.5 mm (0.98 µg/ml) was obtained by Padina pavonica against Candida tropicalis, C. albicans and Aspergillus fumigatus, respectively. The algal extracts showed DPPH radical scavenging activity in a concentration-dependent manner with maximum scavenging activity (77.6%, IC50 = 5.59 µg/ml and 77.07%, IC50 = 14.3 µg/ml) was provided by Padina pavonica and Laurenica majuscula, respectively. The in vitro antitumor activity revealed that the IC50 values of Padina pavonica were 58.9, 115.0, 54.5, 59.0, 101.0, 101.0, and 97.6 µg/ml; Laurencia catarinensis were 55.2, 96.8, 104.0, 78.7, 117.0, 217.0, 169.0 µg/ml; and Laurencia. majuscula were 115.0, 221.0, 225.0, 200.0, 338.0, 242.0, and 189.0 µg/ml; respectively against A-549 (Lung carcinoma), Caco-2 (Intestinal carcinoma), HCT-116 (Colon carcinoma), Hela (Cervical carcinoma), HEp-2 (Larynx carcinoma), HepG-2 (Hepatocellular carcinoma), and MCF-7 (Breast carcinoma) cell lines.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Amani S. Awaad
- Pharmacognosy Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed E. Zain
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Saleh I. Alqasoumi
- Pharmacognosy Department, College of Pharmacy, King Saud University, Saudi Arabia
| |
Collapse
|
39
|
Bito T, Teng F, Watanabe F. Bioactive Compounds of Edible Purple Laver Porphyra sp. (Nori). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10685-10692. [PMID: 29161815 DOI: 10.1021/acs.jafc.7b04688] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyra sp. (nori) is widely cultivated as an important marine crop. Dried nori contains numerous nutrients, including vitamin B12, which is the only vitamin absent from plant-derived food sources. Vegetarian diets are low in iron and vitamin B12; depletion of both causes severe anemia. Nori also contains large amounts of iron compared with other plant-derived foods and eicosapentaenoic acid, which is an important fatty acid found in fish oils. In nori, there are also many bioactive compounds that exhibit various pharmacological activities, such as immunomodulation, anticancer, antihyperlipidemic, and antioxidative activities, indicating that consumption of nori is beneficial to human health. However, Porphyra sp. contains toxic metals (arsenic and cadmiun) and/or amphipod allergens, the levels of which vary significantly among nori products. Further evidence from human studies of such beneficial or adverse effects of nori consumption is required.
Collapse
Affiliation(s)
- Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University , Tottori 680-8553, Japan
| | - Fei Teng
- Department of Food Quality and Safety, College of Food Science, Northeast Agricultural University , Harbin 150030, China
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University , Tottori 680-8553, Japan
| |
Collapse
|
40
|
Ueno M, Cho K, Isaka S, Nishiguchi T, Yamaguchi K, Kim D, Oda T. Inhibitory effect of sulphated polysaccharide porphyran (isolated from Porphyra yezoensis)
on RANKL-induced differentiation of RAW264.7 cells into osteoclasts. Phytother Res 2017; 32:452-458. [DOI: 10.1002/ptr.5988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Mikinori Ueno
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Kichul Cho
- Cell Factory Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| | - Shogo Isaka
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Tomoki Nishiguchi
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Kenichi Yamaguchi
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Daekyung Kim
- Daegu Center, Korea Basic Science Institute (KBSI); Kyungpook National University; Daegu Republic of Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| |
Collapse
|
41
|
Park JE, Lee JH, Han JS. Sargassum yezoense Extract Inhibits Carbohydrate Digestive Enzymes In Vitro and Alleviates Postprandial Hyperglycemia in Diabetic Mice. Prev Nutr Food Sci 2017; 22:166-171. [PMID: 29043213 PMCID: PMC5642797 DOI: 10.3746/pnf.2017.22.3.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated whether Sargassum yezoense extract (SYE) could inhibit α-glucosidase and α-amylase activities, and alleviate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Freeze-dried S. yezoense was extracted with 80% ethanol and concentrated for use in this study. The hypoglycemic effect was determined by evaluating the inhibitory activities of SYE against α-glucosidase and α-amylase as well as its ability to decrease postprandial blood glucose levels. The half-maximal inhibitory concentrations of SYE against α-glucosidase and α-amylase were 0.078±0.004 and 0.212±0.064 mg/mL, respectively. SYE was a more effective inhibitor of α-glucosidase and α-amylase activities than the positive control, acarbose. The increase in postprandial blood glucose levels was significantly alleviated in the SYE group compared with that in the control group of STZ-induced diabetic mice. Furthermore, the area under the curves significantly decreased with SYE administration in STZ-induced diabetic mice. These results suggest that SYE is a potent inhibitor of α-glucosidase and α-amylase activities and alleviates postprandial hyperglycemia caused by dietary carbohydrates.
Collapse
Affiliation(s)
- Jae-Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Ji-Hee Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| |
Collapse
|
42
|
Manivasagan P, Bharathiraja S, Moorthy MS, Oh YO, Seo H, Oh J. Marine Biopolymer-Based Nanomaterials as a Novel Platform for Theranostic Applications. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1311914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | | | - Madhappan Santha Moorthy
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yun-Ok Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Hansu Seo
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
43
|
Kim CR, Kim YM, Lee MK, Kim IH, Choi YH, Nam TJ. Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27. Int J Mol Med 2017; 39:31-38. [PMID: 27878236 PMCID: PMC5179186 DOI: 10.3892/ijmm.2016.2807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/11/2016] [Indexed: 11/06/2022] Open
Abstract
Pyropia yezoensis (P. yezoensis) is a marine algae that exhibits antioxidant, anti-inflammatory, antitumor and anti-aging activities. In this study, we investigated the effects of the P. yezoensis peptide, PYP1‑5, on collagen synthesis in the human dermal fibroblast cell line Hs27. Skin aging is related to reduced collagen production and the activities of multiple enzymes, including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis, and tissue inhibitor of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. While collagen synthesis is associated with a number of signaling pathways, we examined the increased collagen synthesis via the upregulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Using MTS assay, we found that PYP1‑5 did not affect cell viability. Moreover, we confirmed that PYP1‑5 increased type 1 collagen expression using enzyme-linked immunosorbent assay (ELISA), western blot analysis and quantitative PCR. In addition, we identified changes in various enzymes, as well as the mechanisms behind the PYP1‑5-induced collagen synthesis. PYP1‑5 decreased the MMP-1 protein and mRNA levels, and increased the TIMP-1 and TIMP-2 protein and mRNA levels. In addition, PYP1‑5 activated the TGF-β/Smad signaling pathway, which increased TGF-β1, p-Smad2 and p-Smad3 expression, while inhibiting Smad7, an inhibitor of the TGF-β/Smad pathway. Furthermore, PYP1‑5 upregulated transcription factor specificity protein 1 (Sp1) expression, which is reportedly involved in type 1 collagen expression. These findings indicate that PYP1‑5 activates the TGF-β/Smad signaling pathway, which subsequently induces collagen synthesis in Hs27 cells.
Collapse
Affiliation(s)
- Cho-Rong Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513
| | - Young-Min Kim
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513
| | - In-Hye Kim
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
44
|
Protective effect of porphyran isolated from discolored nori ( Porphyra yezoensis ) on lipopolysaccharide-induced endotoxin shock in mice. Int J Biol Macromol 2016; 93:1273-1278. [DOI: 10.1016/j.ijbiomac.2016.09.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
|
45
|
Van Doan H, Tapingkae W, Moonmanee T, Seepai A. Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2016; 55:186-194. [PMID: 27238426 DOI: 10.1016/j.fsi.2016.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
Present study was carried out to evaluate the effects of low molecular weight sodium alginate (LMWSA) as potential prebiotic source on growth performance, innate immunity and disease resistance of tilapia, Oreochromis niloticus. Three hundred twenty fish were divided into four treatments and fed following diets 0 (T1- Control), 10 (T2), 20 (T3) and 30 (T4) g kg(-1) LMWSA for period of 60 days. A Completely Randomized Design with four replications was applied. At the end of experiment, fish in each replication were weighed and specific growth rate (SGR) and feed conversion ratio (FCR) were calculated. Five randomly selected fish were used for innate immune response measurement. Another ten fish were randomly selected for challenge test against Streptococcus agalactiae for a period of 18 days. The lysozyme, complement, phagocytosis, and respiratory burst activities were detected after 60 days of feeding trial and after challenge test. The results indicated that fish fed diet 10 g kg(-1) LMWSA significantly improved SGR and FCR after 60 days of feeding trial. The lysozyme, phagocytosis, respiratory burst, and complement activities were significantly higher in fish fed LMWSA diets compared to control. Fish fed 10 g kg(-1) LMWSA had greatest values compared to fish fed 20 and 30 g kg(-1) LMWSA. The survival rate of O. niloticus was significantly improved in fish fed LMWSA diets after challenge with S. agalactiae for 18 days. However, no significant difference in survival rate was observed among LMWSA supplemented diets. It is indicated that fish fed 10, 20 and 30 g kg(-1) LMWSA diets can stimulate growth performance, innate immunity and disease resistance in tilapia against S. agalactiae.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichart Seepai
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
46
|
Mohibbullah M, Bhuiyan MMH, Hannan MA, Getachew P, Hong YK, Choi JS, Choi IS, Moon IS. The Edible Red Alga Porphyra yezoensis Promotes Neuronal Survival and Cytoarchitecture in Primary Hippocampal Neurons. Cell Mol Neurobiol 2016; 36:669-82. [PMID: 26259718 PMCID: PMC11482408 DOI: 10.1007/s10571-015-0247-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
The edible red alga Porphyra yezoensis is among the most popular marine algae and is of economic and medicinal importance. In the present study, the neurotrophic and neuroprotective activities of the ethanol extract of P. yezoensis (PYE) were investigated in primary cultures of hippocampal neurons. Results revealed that PYE significantly increased neurite outgrowth at an optimal concentration of 15 µg/mL. PYE dose-dependently increased viable cells, significantly accelerated the rate of neuronal differentiation in cultures, promoted axodendritic arborization, and eventually induced synaptogenesis. In addition to morphological development, PYE also promoted functional maturation as indicated by the staining of live cultures with FM 1-43. Moreover, PYE increased neuronal survivability, which was attributed to reduced apoptosis and its ROS scavenging activity. Taurine, a major organic acid in PYE (2.584/100 mg of dry PYE) promoted neurite outgrowth in a dose-dependent manner, and this promotion was suppressed by the taurine antagonist isethionic acid. The study indicates that PYE and its active component, taurine, facilitate neuronal development and maturation and have a neuroprotective effect.
Collapse
Affiliation(s)
- Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | | | - Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Paulos Getachew
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
- Department of Biological Science, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 780-714, Republic of Korea.
| |
Collapse
|
47
|
Collins KG, Fitzgerald GF, Stanton C, Ross RP. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar Drugs 2016; 14:E60. [PMID: 26999166 PMCID: PMC4820313 DOI: 10.3390/md14030060] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a "westernised lifestyle" characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Catherine Stanton
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - R Paul Ross
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
48
|
Cao J, Wang J, Wang S, Xu X. Porphyra Species: A Mini-Review of Its Pharmacological and Nutritional Properties. J Med Food 2016; 19:111-9. [DOI: 10.1089/jmf.2015.3426] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jin Cao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jianping Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Shicheng Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
49
|
Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 2015; 82:315-27. [PMID: 26523336 DOI: 10.1016/j.ijbiomac.2015.10.081] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022]
Abstract
Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications.
Collapse
|
50
|
de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13:2967-3028. [PMID: 25988519 PMCID: PMC4446615 DOI: 10.3390/md13052967] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.
Collapse
Affiliation(s)
- Maria Filomena de Jesus Raposo
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Alcina Maria Bernardo de Morais
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Rui Manuel Santos Costa de Morais
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|