1
|
Lautz LS, Jeddi MZ, Girolami F, Nebbia C, Dorne JLCM. Metabolism and pharmacokinetics of pharmaceuticals in cats (Felix sylvestris catus) and implications for the risk assessment of feed additives and contaminants. Toxicol Lett 2020; 338:114-127. [PMID: 33253781 DOI: 10.1016/j.toxlet.2020.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/25/2023]
Abstract
In animal health risk assessment, hazard characterisation of feed additives has been often using the default uncertainty factor (UF) of 100 to translate a no-observed-adverse-effect level in test species (rat, mouse, dog, rabbit) to a 'safe' level of chronic exposure in farm and companion animal species. Historically, both 10-fold factors have been further divided to include chemical-specific data in both dimensions when available. For cats (Felis Sylvestris catus), an extra default UF of 5 is applied due to the species' deficiency in particularly glucuronidation and glycine conjugation. This paper aims to assess the scientific basis and validity of the UF for inter-species differences in kinetics (4.0) and the extra UF applied for cats through a comparison of kinetic parameters between rats and cats for 30 substrates of phase I and phase II metabolism. When the parent compound undergoes glucuronidation the default factor of 4.0 is exceeded, with exceptions for zidovudine and S-carprofen. Compounds that were mainly renally excreted did not exceed the 4.0-fold default. Mixed results were obtained for chemicals which are metabolised by CYP3A in rats. When chemicals were administered intravenously the 4.0-fold default was not exceeded with the exception of clomipramine, lidocaine and alfentanil. The differences seen after oral administration might be due to differences in first-pass metabolism and bioavailability. Further work is needed to further characterise phase I, phase II enzymes and transporters in cats to support the development of databases and in silico models to support hazard characterisation of chemicals particularly for feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - M Z Jeddi
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - F Girolami
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - C Nebbia
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy.
| |
Collapse
|
2
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Darwish WS, Takiguchi M, Tanabe S, Ishizuka M. Tissue distribution and characterization of feline cytochrome P450 genes related to polychlorinated biphenyl exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108613. [PMID: 31487551 DOI: 10.1016/j.cbpc.2019.108613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
Cats have been known to be extremely sensitive to chemical exposures. To understand these model species' sensitivity to chemicals and their toxicities, the expression profiles of xenobiotic-metabolizing enzymes should be studied. Unfortunately, the characterization of cytochrome P450 (CYP), the dominant enzyme in phase I metabolism, in cats has not extensively been studied. Polychlorinated biphenyls (PCBs) are known as CYP inducers in animals, but the information regarding the PCB-induced CYP expression in cats is limited. Therefore, in the present study, we aimed to elucidate the mRNA expression of the CYP1-CYP3 families in the cat tissues and to investigate the CYP mRNA expression related to PCB exposure. In cats, the greatest abundance of CYP1-CYP3 (CYP1A2, CYP2A13, CYP2C41, CYP2D6, CYP2E1, CYP2E2, CYP2F2, CYP2F5, CYP2J2, CYP2U1, and CYP3A132) was expressed in the liver, but some extrahepatic isozymes were found in the kidney (CYP1A1), heart (CYP1B1), lung (CYP2B11 and CYP2S1) and small intestine (CYP3A131). In cats, CYP1A1, CYP1A2 and CYP1B1 were significantly upregulated in the liver as well as in several tissues exposed to PCBs, indicating that these CYPs were distinctly induced by PCBs. The strong correlations between 3,3',4,4'-tetrachlorobiphenyl (CB77) and CYP1A1 and CYP1B1 mRNA expressions were noted, demonstrating that CB77 could be a potent CYP1 inducer. In addition, these CYP isoforms could play an essential role in the PCBs biotransformation, particularly 3-4 Cl-PCBs, because a high hydroxylated metabolite level of 3-4 Cl-OH-PCBs was observed in the liver.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Wageh Sobhy Darwish
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0818, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
3
|
Ono Y, Sugiyama S, Matsushita M, Kitazawa T, Amano T, Uno Y, Ikushiro S, Teraoka H. Limited expression of functional cytochrome p450 2c subtypes in the liver and small intestine of domestic cats. Xenobiotica 2018; 49:627-635. [PMID: 29848168 DOI: 10.1080/00498254.2018.1483543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Compared to information for herbivores and omnivores, knowledge on xenobiotic metabolism in carnivores is limited. The cytochrome P450 2C (CYP2C) subfamily is recognized as one of the most important CYP groups in human and dog. We identified and characterized CYP2C isoforms and variants in cat, which is an obligate carnivore. 2. Quantitative RT-PCR and immunoblot analyses were carried out to evaluate the expression of CYP2C in the liver and small intestine. A functional CYP2C isoform was heterologously expressed in yeast microsomes to determine the enzymatic activity. 3. Cat had two CYP2C genes, 21 and 41, in the genome; however, CYP2C21P was a pseudogene that had many stop codons. Three splicing variants of CYP2C41 were identified (v1-v3), but only one of them (v1) showed a complete deduced amino acid sequence as CYP2C protein. Transcripts of feline CYP2C41v1 were detected but the amounts were negligible or very small in the liver and small intestine. Immunoreactivity to an antihuman CYP2C antibody was confirmed in the recombinant feline CYP2C41v1 but not in the feline liver. 4. Recombinant feline CYP2C41v1 metabolized several substrates, including dibenzylfluorescein that is specific to human CYP2C. 5. The results suggest a limited role of functional CYP2C isoforms in xenobiotic metabolism in cat.
Collapse
Affiliation(s)
- Yuka Ono
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Souta Sugiyama
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Mayu Matsushita
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Takio Kitazawa
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Tomoko Amano
- b College of Agriculture Food and Environment Sciences , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Yasuhiro Uno
- c Pharmacokinetics and Bioanalysis Center , Shin Nippon Biomedical Laboratories Ltd , Kainan , Wakayama , Japan
| | - Shinichi Ikushiro
- d Department of Biotechnology Faculty of Engineering , Toyama Prefectural University , Imizu , Toyama , Japan
| | - Hiroki Teraoka
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| |
Collapse
|
4
|
Okamatsu G, Kawakami K, Komatsu T, Kitazawa T, Uno Y, Teraoka H. Functional expression and comparative characterization of four feline P450 cytochromes using fluorescent substrates. Xenobiotica 2016; 47:951-961. [DOI: 10.1080/00498254.2016.1257172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Kei Kawakami
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd., Kainan, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| |
Collapse
|
5
|
Okamatsu G, Komatsu T, Kubota A, Onaga T, Uchide T, Endo D, Kirisawa R, Yin G, Inoue H, Kitazawa T, Uno Y, Teraoka H. Identification and functional characterization of novel feline cytochrome P450 2A. Xenobiotica 2014; 45:503-10. [PMID: 25547627 DOI: 10.3109/00498254.2014.998322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Cytochrome P450s are the major metabolizing enzymes for xenobiotics in humans and other mammals. Although the domestic cat Felis catus, an obligate carnivore, is the most common companion animal, the properties of cytochrome P450 subfamilies are largely unknown. 2. We newly identified the feline CYP2A13, which consists of 494 deduced amino acids, showing the highest identity to CYP2As of dogs, followed by those of pigs, cattle and humans. 3. The feline CYP2A13 transcript and protein were expressed almost exclusively in the liver without particular sex-dependent differences. 4. The feline CYP2A13 protein heterogeneously expressed in Escherichia coli showed metabolic activity similar to those of human and canine CYP2As for coumarin, 7-ethoxycoumarin and nicotine. 5. The results indicate the importance of CYP2A13 in systemic metabolism of xenobiotics in cats.
Collapse
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University , Ebetsu, Hokkaido , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kvaternick V, Kellermann M, Knaus M, Rehbein S, Rosentel J. Pharmacokinetics and metabolism of eprinomectin in cats when administered in a novel topical combination of fipronil, (S)-methoprene, eprinomectin and praziquantel. Vet Parasitol 2014; 202:2-9. [PMID: 24703069 DOI: 10.1016/j.vetpar.2014.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four studies were conducted to determine the pharmacokinetic characteristics and in vitro metabolism of eprinomectin, a semi-synthetic avermectin, in cats. Pharmacokinetic parameters including bioavailability of eprinomectin were determined in a parallel study design comprised of one group of eight cats which were treated once topically at 0.12 mL/kg bodyweight with BROADLINE(®), a novel combination product (fipronil 8.3% (w/v), (S)-methoprene 10% (w/v), eprinomectin 0.4% (w/v) and praziquantel 8.3% (w/v)), delivering a dose of 0.5mg eprinomectin per kg body weight, and a group of six cats which received 0.4% (w/v) eprinomectin at 0.4 mg/kg bodyweight once by intravenous injection. For cats treated by topical application, the average eprinomectin (B1a component) maximum plasma concentration (Cmax) was 20 ng/mL. The maximum concentrations were reached 24h after dosing in the majority of the animals (six of eight cats). The average terminal half-life was 114 h due to slow absorption ('flip-flop' kinetics). Following intravenous administration the average Cmax was 503 ng/mL at 5 min post-dose, and the mean elimination half-life was 23 h. Eprinomectin was widely distributed with a mean volume of distribution of 2,390 mL/kg, and the clearance rate was 81 mL/h/kg. Mean areas under the plasma concentration versus time curves extrapolated to infinity were 2,100 ngh/mL and 5,160 ngh/mL for the topical and intravenous doses, respectively. Topical eprinomectin was absorbed with an average absolute bioavailability of 31%. In a second parallel design study, the dose proportionality of eprinomectin after single topical administration of BROADLINE(®) was studied. Four groups of eight cats each were treated once topically with 0.5, 1, 2 or 5 times the minimum recommended dose of the combination, 0.12 mL/kg bodyweight. Based on comparison of areas under the plasma concentration versus time curves from the time of dosing to the last time point at which eprinomectin B1a was quantified, and Cmax, dose proportionality was established. In addition, the metabolic pathway of eprinomectin using cat liver microsomes, and plasma protein binding using cat, rat, and dog plasma were studied in vitro. Results of the analyses of eprinomectin B1a described here showed that it is metabolically stable and highly protein bound (>99%), and thus likely to be, as with other species, excreted mainly as unchanged parent drug in the feces of cats.
Collapse
Affiliation(s)
- Valerie Kvaternick
- Merial Limited, Pharmacokinetics and Drug Metabolism, North Brunswick, NJ 08902, USA.
| | | | - Martin Knaus
- Merial GmbH, Kathrinenhof Research Center, 83101 Rohrdorf, Germany
| | - Steffen Rehbein
- Merial GmbH, Kathrinenhof Research Center, 83101 Rohrdorf, Germany
| | - Joseph Rosentel
- Merial Limited, Pharmaceutical Research and Development, Duluth, GA 30096, USA
| |
Collapse
|
7
|
Legendre A, Baudoin R, Alberto G, Paullier P, Naudot M, Bricks T, Brocheton J, Jacques S, Cotton J, Leclerc E. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J Pharm Sci 2013; 102:3264-76. [PMID: 23423727 DOI: 10.1002/jps.23466] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 12/30/2022]
Abstract
The functionality of primary rat hepatocytes was assessed in an Integrated Dynamic Cell Cultures in Microsystem (IDCCM) device. We characterized the hepatocytes over 96 h of culture and evaluated the impact of dynamic cell culture on their viability, inducibility, and metabolic activity. Reverse Transcription quantitative Polymerase Chain Reaction (RTqPCR) was performed on selected genes: liver transcription factors (HNF4α and CEBP), nuclear receptors sensitive to xenobiotics (AhR, PXR, CAR, and FXR), cytochromes P450 (CYPs) (1A2, 3A2, 3A23/3A1, 7A1, 2B1, 2C6, 2C, 2D1, 2D2, and 2E1), phase II metabolism enzymes (GSTA2, SULT1A1, and UGT1A6), ABC transporters (ABCB1b and ABCC2), and oxidative stress related enzymes (HMOX1 and NQO1). Microperfused-cultured hepatocytes remained viable and differentiated with in vivo-like phenotype and genotype. In contrast with postadhesion gene levels, the first 48 h of perfusion enhanced the expression of xenosensors and their target CYPs. Furthermore, CYP3A1, CYP2B1, GSTA2, SULT1A1, UGT1A1, ABCB1b, and ABCC2 were upregulated in IDCCM and reached above postextraction levels all along the duration of culture. Metabolic activities were also confirmed with the detection of metabolism rate and induced mRNAs after exposure to several inducers: 3-methylcholanthrene, caffeine, phenacetin, paracetamol,, and midazolam. Finally, this metabolic characterization confirms that IDCCM is able to maintain rat hepatocytes functions to investigate drug metabolism.
Collapse
Affiliation(s)
- Audrey Legendre
- CNRS UMR 7338, Laboratoire de Biomécanique et Bio ingénierie, Université de Technologie de Compiègne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
EBNER T, SCHÄNZLE G, WEBER W, SENT U, ELLIOTT J. In vitroglucuronidation of the angiotensin II receptor antagonist telmisartan in the cat: a comparison with other species. J Vet Pharmacol Ther 2012; 36:154-60. [DOI: 10.1111/j.1365-2885.2012.01398.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Role of the cytochrome P450 enzyme system in veterinary pharmacokinetics: where are we now? Where are we going? Future Med Chem 2011; 3:855-79. [PMID: 21644832 DOI: 10.4155/fmc.11.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drug metabolism is a core determinant of the dose-effectiveness-toxicity relationship of many compounds. It is also critical to the human food safety assessment of drug residues in the edible tissues of food-producing animals. This article describes the current state of knowledge regarding the role of the cytochrome P450 superfamily of enzymes in determining the metabolic profile of compounds administered to companion animals (e.g., dog and cat) and to food-producing animal species (e.g., cattle, swine, chickens). In turn, this knowledge reflects the collection of insights derived from the recognized population variability observed in human drug metabolism, our general understanding of the kinetics of various drug-metabolism pathways, emerging tools that enable the role of pharmacogenetics to be studied and the characterization of drug metabolism in individual veterinary species. Ultimately, by increasing our insights with regard to factors that can influence drug metabolism, our knowledge of metabolic pathways, sources of within- and between-species variability in pharmacokinetics and the development of in silico models that can be used to predict pharmacokinetic profiles from these diverse sources of information. We will improve our ability to generate the population inferences needed to insure the target animal safety, product effectiveness and the human food safety of veterinary pharmaceuticals.
Collapse
|
10
|
Comparison of microbial hosts and expression systems for mammalian CYP1A1 catalysis. J Ind Microbiol Biotechnol 2011; 39:275-87. [PMID: 21863302 DOI: 10.1007/s10295-011-1026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Mammalian cytochrome P450 enzymes are of special interest as biocatalysts for fine chemical and drug metabolite synthesis. In this study, the potential of different recombinant microorganisms expressing rat and human cyp1a1 genes is evaluated for such applications. The maximum specific activity for 7-ethoxyresorufin O-deethylation and gene expression levels were used as parameters to judge biocatalyst performance. Under comparable conditions, E. coli is shown to be superior over the use of S. cerevisiae and P. putida as hosts for biocatalysis. Of all tested E. coli strains, E. coli DH5α and E. coli JM101 harboring rat CYP1A1 showed the highest activities (0.43 and 0.42 U g⁻¹(CDW), respectively). Detection of active CYP1A1 in cell-free E. coli extracts was found to be difficult and only for E. coli DH5α, expression levels could be determined (41 nmol g⁻¹(CDW)). The presented results show that efficient expression of mammalian cyp1a1 genes in recombinant microorganisms is troublesome and host-dependent and that enhancing expression levels is crucial in order to obtain more efficient biocatalysts. Specific activities currently obtained are not sufficient yet for fine chemical production, but are sufficient for preparative-scale drug metabolite synthesis.
Collapse
|
11
|
Honda K, Komatsu T, Koyama F, Kubota A, Kawakami K, Asakura H, Uno Y, Kitazawa T, Hiraga T, Teraoka H. Expression of two novel cytochrome P450 3A131 and 3A132 in liver and small intestine of domestic cats. J Vet Med Sci 2011; 73:1489-92. [PMID: 21712641 DOI: 10.1292/jvms.11-0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 3A (CYP3A) is the major subfamily of CYP, one of the most important metabolizing enzymes for drugs in humans and other mammals. We found two novel CYP3A genes, CYP3A131 and CYP3A132 in domestic cats (Felis catus). Both feline CYP3A proteins consist of 504 deduced amino acids and show high identity with canine CYP3A homologues and those of some artiodactyls. CYP3A131 transcripts were expressed predominantly in liver and small intestine, and to a negligible extent in other tissues, including brain, heart, kidney and lung. CYP3A132 expression was only detected in liver with much lesser amount. These results suggest the possible major role of CYP3A131 in xenobiotic metabolism including first-pass effects in domestic cats.
Collapse
Affiliation(s)
- Kouichi Honda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069–8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
KOMATSU T, HONDA K, KUBOTA A, KITAZAWA T, HIRAGA T, TERAOKA H. Molecular Cloning and Expression of Cytochrome P450 2D6 in the Livers of Domestic Cats. J Vet Med Sci 2010; 72:1633-6. [DOI: 10.1292/jvms.10-0150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Kouichi HONDA
- School of Veterinary Medicine, Rakuno Gakuen University
| | - Akira KUBOTA
- School of Veterinary Medicine, Rakuno Gakuen University
| | | | - Takeo HIRAGA
- School of Veterinary Medicine, Rakuno Gakuen University
| | | |
Collapse
|
13
|
Kubota A, Kim EY, Iwata H. Alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase activities by in vitro-expressed cytochrome P450 1A4 and 1A5 from common cormorant (Phalacrocorax carbo). Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:544-51. [PMID: 19135550 DOI: 10.1016/j.cbpc.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 12/08/2022]
Abstract
Here we report the inter-paralog comparison of cytochrome P4501A (CYP1A) catalytic function in common cormorant (Phalacrocorax carbo) using the recombinant proteins synthesized by yeast-based vector system. CYP1A4 and CYP1A5 proteins from common cormorant were heterologously expressed in yeast Saccaromyces cerevisiae. Kinetic analyses revealed that among alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase (AROD) activities V(max) value for ethoxyresorufin O-deethylase (EROD) activity was the highest for both enzymes, reaching 0.91+/-0.034 and 1.8+/-0.043 nmol/min/nmol CYP for CYP1A4 and CYP1A5, respectively. Similar results were obtained for the catalytic efficiencies represented as the ratios of V(max) to K(m) (V(max)/K(m)). Meanwhile, distinct substrate preferences were also observed; CYP1A4 had V(max) and V(max)/K(m) values for benzyloxyresorufin O-debenzylase (BROD) activity 12- and 46-fold greater than CYP1A5, respectively, while CYP1A5 was about 13- and 4.5-fold more efficient in methoxyresorufin O-demethylase (MROD) activity than CYP1A4. The K(m) values showed no significant change among MROD, EROD, pentoxyresorufin O-depenthylase (PROD) and BROD activities for both enzymes, except for significant differences between PROD and other three activities for CYP1A4. Comparing the results in the present study with previous studies addressing chicken and rat CYP1A enzymes, it is also clear that CYP1A orthologs have different catalytic preferences for AROD activities between cormorant and rat and even between cormorant and chicken. Variations in CYP1A catalytic function between cormorant CYP1A paralogs and between CYP1A orthologs from cormorant and other species indicate that enzymatic properties should be characterized on the basis not only of a limited model species such as chicken, but also of multiple species to further understand the mechanism underlying differences in substrate selectivity and the interaction with environmental contaminants in avian species.
Collapse
Affiliation(s)
- Akira Kubota
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | |
Collapse
|
14
|
Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds. Toxicol Appl Pharmacol 2009; 234:306-13. [DOI: 10.1016/j.taap.2008.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/21/2022]
|
15
|
Messina A, Chirulli V, Gervasi PG, Longo V. Purification, molecular cloning, heterologous expression and characterization of pig CYP1A2. Xenobiotica 2009; 38:1453-70. [PMID: 18949657 DOI: 10.1080/00498250802474437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Porcine cytochrome P450 (CYP) 1A2 was purified to electrophoretic homogeneity from the hepatic microsomes of beta-naphthoflavone-treated male pigs. In a reconstituted system, this enzyme showed a good catalytic activity towards caffeine, acetanilide, and methoxyresorufin, all known markers of mammalian CYP1A2. Using 3'- and 5'-rapid amplification of coding DNA (cDNA) ends (RACE), we amplified from the liver RNA of control pigs a full-length 1827 bp cDNA containing an open reading frame of 1548 bp which encoded a putative CYP1A2 protein of 516 amino acids and an estimated Mr of 58 380 Da. Reverse transcriptase-polymerase chain reaction (RT-PCR) experiments showed that the messenger RNA (mRNA) of CYP1A2 was expressed in liver, heart and nasal mucosa but not in lung, small intestine, kidney and brain. Using the pCW vector containing a N-terminal modified cDNA, pig CYP1A2 was expressed in Escherichia coli. 3-[(3-Chloroamidopropyl)dimethylmmonio]-1-propane-sulfonate (CHAPS)-solubilized E. coli preparations expressing CYP1A2 produced a functionally isoform which, in a reconstituted system, was catalytically active toward ethoxyresorufin and methoxyresorufin showing K(m)'s similar to those obtained with CYP1A2 purified from pig liver or human recombinant CYP1A2. Taken together, these results demonstrate that domestic pigs have a functionally active CYP1A2 gene well expressed in the liver with biochemical properties quite similar to those corresponding to the human enzyme.
Collapse
Affiliation(s)
- A Messina
- Istituto di Fisiologia Clinica, Area della Ricerca CNR, Pisa, Italy
| | | | | | | |
Collapse
|
16
|
Aidasani D, Zaya MJ, Malpas PB, Locuson CW. In vitro drug-drug interaction screens for canine veterinary medicines: evaluation of cytochrome P450 reversible inhibition. Drug Metab Dispos 2008; 36:1512-8. [PMID: 18448570 DOI: 10.1124/dmd.108.021196] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Little information regarding the metabolic pathways of pharmaceutical agents administered to dogs, or the inhibition of those metabolic pathways, is available. Without this information, it is difficult to assess how combinations of drugs, whether new or old or approved or nonapproved, may increase the risk for metabolic drug-drug interactions in dogs. Because mammalian xenobiotic metabolism pathways often involve the hepatic cytochrome P450 (P450) monooxgenases, canine liver microsome P450 inhibition screens were tested to evaluate the potential metabolic drug interaction risk of commonly used veterinary medicines. A probe substrate cocktail was developed for four of the five major hepatic canine P450s and used to evaluate their inhibition by 45 canine therapeutic agents in a single-point IC(50) screen. Moderate inhibitors (>25%) were further characterized with an automated ninepoint IC(50) assay that identified ketoconazole, clomipramine, and loperamide as submicromolar CYP2D15 inhibitors. Additional inhibitors belonged to the antiemetic, antimitotic, and anxiolytic therapeutic classes. According to the marker activities, the relative frequency of P450 inhibition by isoform followed the sequence CYP2D15 > CYP2B11 > CYP2C21/41 > CYP3A12/26 > CYP1A1/2. The findings presented suggest there is some overlap in canine and human P450 inhibition specificity. However, occasional differences may give human drugs used off-label in dogs unexpected P450 inhibition profiles and, therefore, cause an unexpected drug-drug interaction risk.
Collapse
Affiliation(s)
- Divesh Aidasani
- Washington State University, School of Molecular Biosciences, Pullman, Washington, USA
| | | | | | | |
Collapse
|
17
|
Implications of hepatic cytochrome P450-related biotransformation processes in veterinary sciences. Eur J Pharmacol 2008; 585:502-9. [DOI: 10.1016/j.ejphar.2008.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 02/07/2023]
|
18
|
Shah SS, Sanda S, Regmi NL, Sasaki K, Shimoda M. Characterization of cytochrome P450-mediated drug metabolism in cats. J Vet Pharmacol Ther 2007; 30:422-8. [PMID: 17803734 DOI: 10.1111/j.1365-2885.2007.00902.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we examined activities of cytochrome P450 (CYP)1A, 2C, 2D and 3A using hepatic microsomes from five male and five female cats. CYP1A, 2C, 2D and 3A activities were referred by ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation (TBH), bufuralol 1'-hydroxylation (BLH) and midazolam 1'- and 4-hydroxylation respectively. The anti-rat CYP1A2 and CYP3A2 serum significantly inhibited EROD and midazolam 1'- and 4-hydroxylation, suggesting that EROD and midazolam 1'- and 4-hydroxylation were catalysed by CYP1A and 3A in cats respectively. Quinidine inhibited BLH in cats microsomes at quite low concentrations, suggesting that BLH was catalysed by CYP2D in cats. Tolbutamide hydroxylation activities were negligible in hepatic microsomes from both male and female cats, suggesting CYP2C activities of cats are extremely low. This suggests that CYP2C substrates should be carefully administered to cats. Although there is no sexual difference in CYP1A activities, there are differences in CYP2D and 3A activities of cats. CYP2D activities were higher (3-fold), but CYP3A activities were lower (one-fifth) in female cats. These results might suggest that CYP2D and 3A substrates should be prescribed for male and female cats using different dosage regimen.
Collapse
Affiliation(s)
- S S Shah
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Mathivadhani P, Shanthi P, Sachdanandam P. Effect of Semecarpus anacardium Linn. nut extract on mammary and hepatic expression of xenobiotic enzymes in DMBA-induced mammary carcinoma. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 23:328-334. [PMID: 21783776 DOI: 10.1016/j.etap.2006.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 12/01/2006] [Accepted: 12/07/2006] [Indexed: 05/28/2023]
Abstract
Breast cancer is the major cause of cancer death in women worldwide. Environmental risk factors particularly genotoxic chemicals such as polycyclic aromatic hydrocarbons (PAH) are likely to account for a much higher mortality. Xenobiotic metabolising enzymes in breast tissue are potentially important determinants in both the susceptibility to the mutagenic effects of chemical carcinogens and in the response of breast tumors to chemotherapy. The well known carcinogen 7,12-dimethylbenz(a)anthrazene of PAH family was given (25mg/ml) orally by gastric intubation to induce mammary carcinoma in Sprague-Dawley rats. Increased level of cytochromes (P(450), B(5)), EROD, PROD activities, Phase I biotransformation enzymes (NADPH-cytochrome (P(450)) reductase, NADPH-cytochrome (b(5)) reductase, epoxide hydrolase) and expression of CYP1A1, CYP1A2 and CYP1B1 in liver and breast tissue microsome were documented in DMBA treated group. Phase II enzyme activities (glutathione-S-transferase, gluthatione peroxidase, gluatathione reductase, UDP-glucuronyl transferease) were decreased markedly in cancerous rats. The nut extract of Semecarpus anacardium was administered orally (200mg/kg body wt/day) to the mammary carcinoma rats for 14 days. Drug treatment restored back the altered Phase I and II biotransformation enzymes thus achieving complete detoxification of the carcinogen. These findings suggest that S. anacardium can effectively modulate the catabolism of xenobiotics in rats.
Collapse
Affiliation(s)
- P Mathivadhani
- Department of Medical Biochemistry, Dr. A.L.M. Post-Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | |
Collapse
|