1
|
Singh VP, Gorelick FS. Has a Hundred Years of Pursuing Proteases Helped to Palliate Pain in Chronic Pancreatitis More Than Placebo? Gastroenterology 2024; 166:559-561. [PMID: 38311123 DOI: 10.1053/j.gastro.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Affiliation(s)
- Vijay P Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona.
| | - Fred S Gorelick
- Department of Medicine, Section of Digestive Diseases, and Cell Biology, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut, West Haven, Connecticut
| |
Collapse
|
2
|
Hekmat H, Rasooli A, Siami Z, Rutajengwa KA, Vahabi Z, Mirzadeh FA. A Review of Antibiotic Efficacy in COVID-19 Control. J Immunol Res 2023; 2023:6687437. [PMID: 37854054 PMCID: PMC10581857 DOI: 10.1155/2023/6687437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Severe acute respiratory disease is associated with chronic secondary infections that exacerbate symptoms and mortality. So far, many drugs have been introduced to treat this disease, none of which effectively control the coronavirus. Numerous studies have shown that mitochondria, as the center of cell biogenesis, are vulnerable to drugs, especially antibiotics. Antibiotics were widely prescribed during the early phase of the pandemic. We performed a literature review to assess the reasons, evidence, and practices on the use of antibiotics in coronavirus disease 2019 (COVID-19) in- and outpatients. The current research found widespread usage of antibiotics, mostly in an empirical context, among COVID-19 hospitalized patients. The effectiveness of this approach has not been established. Given the high death rate linked with secondary infections in COVID-19 patients and the developing antimicrobial resistance, further study is urgently needed to identify the most appropriate rationale for antibiotic therapy in these patients.
Collapse
Affiliation(s)
- Hamidreza Hekmat
- Cardiology Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Rasooli
- Department of Emergency Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Siami
- Department of Infectious Disease, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kauthar Amir Rutajengwa
- Medical School Department, Ziaeian Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Geriatric Department, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Division, Psychiatry Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Futagami S, Wakabayashi M. Pancreatic dysfunction and duodenal inflammatory responses coordinate with refractory epigastric pain including functional dyspepsia "A narrative review". J NIPPON MED SCH 2022; 89:255-262. [DOI: 10.1272/jnms.jnms.2022_89-311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhan MX, Tang L, Lu YF, Wu HH, Guo ZB, Shi ZM, Yang CL, Zou YQ, Yang F, Chen GZ. Ulinastatin Exhibits Antinociception in Rat Models of Acute Somatic and Visceral Pain Through Inhibiting the Local and Central Inflammation. J Pain Res 2021; 14:1201-1214. [PMID: 33976570 PMCID: PMC8106509 DOI: 10.2147/jpr.s303595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Ulinastatin, a broad-spectrum serine protease inhibitor, has been widely used to treat various diseases clinically. However, so far, the antinociceptive effect of ulinastatin remains less studied experimentally and the underlying mechanisms of ulinastatin for pain relief remain unclear. This study aimed to find evidence of the analgesic effect of ulinastatin on acute somatic and visceral pain. Methods The analgesic effect of ulinastatin on acute somatic and visceral pain was evaluated by using formalin and acetic acid-induced writhing test. The analgesic mechanism of ulinastatin was verified by detecting the peripheral inflammatory cell infiltration and spinal glial activation with hematoxylin-eosin (H&E) and immunohistochemistry staining. Results We found that both of intraperitoneal (i.p.) pre-administration and post-administration of ulinastatin could reduce the total number of flinching and the licking duration following intraplantar formalin injection in a dose-related manner. However, the inhibitory effect of ulinastatin existed only in the second phase (Phase 2) of formalin-induced spontaneous pain response, with no effect in the first phase (Phase 1). The formalin-induced edema and ulcer were also improved by i.p. administration of ulinastatin. Moreover, i.p. administration of ulinastatin was also able to delay the occurrence of acetic acid-induced writhing and reduced the total number of writhes dose-dependently. We further demonstrated that ulinastatin significantly decreased the local inflammatory cell infiltration in injured paw and peritoneum tissue under formalin and acetic acid test separately. The microglial and astrocytic activation in the spinal dorsal horn induced by intraplantar formalin and i.p. acetic acid injection were also dramatically inhibited by i.p. administration of ulinastatin. Conclusion Our results for the first time provided a new line of evidence showing that ulinastatin could attenuate acute somatic and visceral pain by inhibiting the peripheral and spinal inflammatory reaction.
Collapse
Affiliation(s)
- Mei-Xiang Zhan
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yun-Fei Lu
- Department of Anesthesiology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Huang-Hui Wu
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhi-Bin Guo
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Chen-Long Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China.,Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| |
Collapse
|
5
|
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020; 46:467-488. [PMID: 32468014 PMCID: PMC7307820 DOI: 10.3892/ijmm.2020.4608] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The major impact produced by the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) focused many researchers attention to find treatments that can suppress transmission or ameliorate the disease. Despite the very fast and large flow of scientific data on possible treatment solutions, none have yet demonstrated unequivocal clinical utility against coronavirus disease 2019 (COVID‑19). This work represents an exhaustive and critical review of all available data on potential treatments for COVID‑19, highlighting their mechanistic characteristics and the strategy development rationale. Drug repurposing, also known as drug repositioning, and target based methods are the most used strategies to advance therapeutic solutions into clinical practice. Current in silico, in vitro and in vivo evidence regarding proposed treatments are summarized providing strong support for future research efforts.
Collapse
Affiliation(s)
| | - Horia Paunescu
- Faculty of Medicine, ′Carol Davila′ University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Sterghios A. Moschos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University
- PulmoBioMed Ltd., Newcastle-Upon-Tyne NE1 8ST, UK
| | | | | | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | |
Collapse
|
6
|
Luo Z, Ang MJY, Chan SY, Yi Z, Goh YY, Yan S, Tao J, Liu K, Li X, Zhang H, Huang W, Liu X. Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6925296. [PMID: 32607499 PMCID: PMC7315394 DOI: 10.34133/2020/6925296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
The World Health Organization (WHO) has declared the outbreak of 2019 novel coronavirus, known as 2019-nCoV, a pandemic, as the coronavirus has now infected over 2.6 million people globally and caused more than 185,000 fatalities as of April 23, 2020. Coronavirus disease 2019 (COVID-19) causes a respiratory illness with symptoms such as dry cough, fever, sudden loss of smell, and, in more severe cases, difficulty breathing. To date, there is no specific vaccine or treatment proven effective against this viral disease. Early and accurate diagnosis of COVID-19 is thus critical to curbing its spread and improving health outcomes. Reverse transcription-polymerase chain reaction (RT-PCR) is commonly used to detect the presence of COVID-19. Other techniques, such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and microfluidics, have allowed better disease diagnosis. Here, as part of the effort to expand screening capacity, we review advances and challenges in the rapid detection of COVID-19 by targeting nucleic acids, antigens, or antibodies. We also summarize potential treatments and vaccines against COVID-19 and discuss ongoing clinical trials of interventions to reduce viral progression.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Shuangqian Yan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Tao
- Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaosong Li
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China
| |
Collapse
|
7
|
Bardou O, Menou A, François C, Duitman JW, von der Thüsen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Königshoff M, Crestani B, Borensztajn KS. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. Am J Respir Crit Care Med 2016; 193:847-60. [PMID: 26599507 DOI: 10.1164/rccm.201502-0299oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. OBJECTIVES To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. METHODS Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. MEASUREMENTS AND MAIN RESULTS Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. CONCLUSIONS These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.
Collapse
Affiliation(s)
- Olivier Bardou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Awen Menou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Charlène François
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Jan Willem Duitman
- 3 Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Raphaël Borie
- 2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Katiuchia Uzzun Sales
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,7 Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Kathrin Mutze
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Yves Castier
- 9 Assistance Publique-Hôpitaux de Paris, Department of Vascular and Thoracic Surgery, Bichat-Claude Bernard University Hospital, Denis Diderot University and Medical School Paris VII, France
| | - Edouard Sage
- 10 Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch, Suresnes, France; and
| | - Ligong Liu
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas H Bugge
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David P Fairlie
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Königshoff
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Bruno Crestani
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Keren S Borensztajn
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| |
Collapse
|
8
|
Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice. Pharmacol Res 2016; 105:84-92. [PMID: 26804251 DOI: 10.1016/j.phrs.2016.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents.
Collapse
|
9
|
Abstract
More than half of all cancer patients have significant pain during the course of their disease. The strategic localization of TMPRSS2, a membrane-bound serine protease, on the cancer cell surface may allow it to mediate signal transduction between the cancer cell and its extracellular environment. We show that TMPRSS2 expression is not only dramatically increased in the primary cancers of patients but TMPRSS2 immunopositivity is also directly correlated with cancer pain severity in these patients. TMPRSS2 induced proteolytic activity, activated trigeminal neurons, and produced marked mechanical hyperalgesia when administered into the hind paw of wild-type mice but not PAR2-deficient mice. Coculture of human cancer cells with murine trigeminal neurons demonstrated colocalization of TMPRSS2 with PAR2. These results point to a novel role for a cell membrane-anchored mediator in cancer pain, as well as pain in general.
Collapse
Affiliation(s)
- David K. Lam
- Discipline of Oral and Maxillofacial Surgery, University of Toronto, 124 Edward Street, Room 143, Toronto, ON, Canada M5G 1G6
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON Canada M5G 1X5
| | - Dongmin Dang
- Department of Oral and Maxillofacial Surgery, New York University
| | | | | | - Brian L. Schmidt
- Department of Oral and Maxillofacial Surgery, New York University
- Bluestone Center for Clinical Research, New York University
| |
Collapse
|
10
|
Ueda M, Uchimura K, Narita Y, Miyasato Y, Mizumoto T, Morinaga J, Hayata M, Kakizoe Y, Adachi M, Miyoshi T, Shiraishi N, Kadowaki D, Sakai Y, Mukoyama M, Kitamura K. The serine protease inhibitor camostat mesilate attenuates the progression of chronic kidney disease through its antioxidant effects. Nephron Clin Pract 2015; 129:223-32. [PMID: 25766432 DOI: 10.1159/000375308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We have so far demonstrated the renoprotective effect of camostat mesilate (CM) in 5/6 nephrectomized rats at least partly through its antioxidant effect. However, precise mechanisms were not fully clarified. Therefore, we now examined the renoprotective and antioxidant mechanisms of CM by using the adenine-induced chronic kidney disease (CKD) rat model. METHODS In protocol 1, we analyzed the effect of CM on CKD. Rats were fed on a 0.75% adenine diet for 3 weeks to induce CKD followed by the experimental period with vehicle, CM, or hydralazine (HYD) treatment for 5 weeks. In protocol 2, we examined the safety of CM and HYD on the normal rats. In addition, we explored free radical scavenging activities of CM and its metabolites in vitro using electron paramagnetic resonance (EPR) spectroscopy. RESULTS CM, but not HYD, significantly reduced the serum creatinine levels, although both treatments showed similar reduction in the blood pressure. CM decreased mRNA expression and protein levels of fibrotic markers, the severity of renal fibrosis, the accumulation of oxidative stress, and the expression of NADPH oxidase components in the kidney. In the protocol 2, there were no statistically significant differences in general parameters except for the systolic blood pressure in HYD group. EPR study revealed that CM and its metabolites have potent hydroxyl radical scavenging activities in vitro. CONCLUSION Our findings indicate that CM significantly ameliorates the progression of CKD partly through its antioxidant effect independently from its blood pressure-lowering effect. Our results suggest the possibility that CM could be a new therapeutic agent that could arrest the progression of CKD.
Collapse
Affiliation(s)
- Miki Ueda
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 2014; 20:176-95. [PMID: 24284415 DOI: 10.1097/01.mib.0000437499.52922.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain frequently accompanies inflammatory disorders of the gastrointestinal tract (GIT), and animal models of GIT inflammation have been developed to explore the role of the central nervous system (CNS) in this process. Here, we summarize the evidence from animal studies for CNS plasticity following GIT inflammation. METHODS A systematic review was conducted to identify studies that: (1) used inflammation of GIT organs, (2) assessed pain or visceral hypersensitivity, and (3) presented evidence of CNS involvement. Two hundred and eight articles were identified, and 79 were eligible for analysis. RESULTS Rats were most widely used (76%). Most studies used adult animals (42%) with a bias toward males (74%). Colitis was the most frequently used model (78%) and 2,4,6-trinitrobenzenesulfonic acid the preferred inflammatory agent (33%). Behavioral (58%), anatomical/molecular (44%), and physiological (24%) approaches were used alone or in combination to assess CNS involvement during or after GIT inflammation. Measurement times varied widely (<1 h-> 2 wk after inflammation). Blinded outcomes were used in 42% studies, randomization in 10%, and evidence of visceral inflammation in 54%. Only 3 studies fulfilled our criteria for high methodological quality, and no study reported sample size calculations. CONCLUSIONS The included studies provide strong evidence for CNS plasticity following GIT inflammation, specifically in the spinal cord dorsal horn. This evidence includes altered visceromotor responses and indices of referred pain, elevated neural activation and peptide content, and increased neuronal excitability. This evidence supports continued use of this approach for preclinical studies; however, there is substantial scope to improve study design.
Collapse
|
12
|
Chung H, Ramachandran R, Hollenberg MD, Muruve DA. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis. J Biol Chem 2013; 288:37319-31. [PMID: 24253040 DOI: 10.1074/jbc.m113.492793] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.
Collapse
|
13
|
Agarwal A, Boettcher A, Kneuer R, Sari-Sarraf F, Donovan A, Woelcke J, Simic O, Brandl T, Krucker T. In vivo imaging with fluorescent smart probes to assess treatment strategies for acute pancreatitis. PLoS One 2013; 8:e55959. [PMID: 23409095 PMCID: PMC3569412 DOI: 10.1371/journal.pone.0055959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS Endoprotease activation is a key step in acute pancreatitis and early inhibition of these enzymes may protect from organ damage. In vivo models commonly used to evaluate protease inhibitors require animal sacrifice and therefore limit the assessment of dynamic processes. Here, we established a non-invasive fluorescence imaging-based biomarker assay to assess real-time protease inhibition and disease progression in a preclinical model of experimental pancreatitis. METHODS Edema development and trypsin activation were imaged in a rat caerulein-injection pancreatitis model. A fluorescent "smart" probe, selectively activated by trypsin, was synthesized by labeling with Cy5.5 of a pegylated poly-L-lysine copolymer. Following injection of the probe, trypsin activation was monitored in the presence or absence of inhibitors by in vivo and ex vivo imaging. RESULTS We established the trypsin-selectivity of the fluorescent probe in vitro using a panel of endopeptidases and specific inhibitor. In vivo, the probe accumulated in the liver and a region attributed to the pancreas by necropsy. A dose dependent decrease of total pancreatic fluorescence signal occurred upon administration of known trypsin inhibitors. The fluorescence-based method was a better predictor of trypsin inhibition than pancreatic to body weight ratio. CONCLUSIONS We established a fluorescence imaging assay to access trypsin inhibition in real-time in vivo. This method is more sensitive and dynamic than classic tissue sample readouts and could be applied to preclinically optimize trypsin inhibitors towards intrapancreatic target inhibition.
Collapse
Affiliation(s)
- Abhiruchi Agarwal
- Novartis Institute of BioMedical Research, Cambridge, Massachusetts, United States of America
| | | | - Rainer Kneuer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Farid Sari-Sarraf
- Novartis Institute of BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Adriana Donovan
- Novartis Institute of BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Julian Woelcke
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Oliver Simic
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Trixi Brandl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Krucker
- Novartis Institute of BioMedical Research, Cambridge, Massachusetts, United States of America
- Novartis Institutes of BioMedical Research, Emeryville, California, United States of America
| |
Collapse
|
14
|
Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, Kawabata A. Contribution of TRPA1 as a Downstream Signal of Proteinase-Activated Receptor-2 to Pancreatic Pain. J Pharmacol Sci 2013; 123:284-7. [DOI: 10.1254/jphs.13128sc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
Lee YT, Wei J, Chuang YC, Chang CY, Chen IC, Weng CF, Schmid-Schönbein GW. Successful treatment with continuous enteral protease inhibitor in a patient with severe septic shock. Transplant Proc 2012; 44:817-9. [PMID: 22483504 DOI: 10.1016/j.transproceed.2012.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The mortality rate among patients with septic shock is high despite current therapy. We present a case of Fournier's gangrene and septic shock at 4 years post-heart transplantation that was reversed by "continuous enteral feeding" of the digestive enzyme inhibitor, gabexate mesilate. Recently, powerful pancreatic digestive proteases in the lumen of the intestine have been identified as initiators of the systemic inflammatory response. Intraluminal inhibitions of the proteases significantly attenuates intestinal damage, system inflammation, and multiorgan failure in experimental forms of shock but it has not been tested in man. METHODS AND RESULTS Gabexate mesilate, a synthetic digestive protease inhibitor, was continuously administered in two liters of crystalloid solution to a patient by enteral feeding during septic shock. The condition and markers for shock due to sepsis reversed in a few days. CONCLUSION This case suggested that "enteral" digestive protease inhibition may decrease and even reverse the sequelae of shock and sepsis.
Collapse
Affiliation(s)
- Y-T Lee
- Heart Center, Cheng Hsin General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Camargol EA, Zanonil CI, Toyamal MH, Muscaral MN, Dochertyl RJ, Costal SK. Abdominal hyperalgesia in secretory phospholipase A2-induced rat pancreatitis: Distinct roles of NK1receptors. Eur J Pain 2012; 15:900-6. [DOI: 10.1016/j.ejpain.2011.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/19/2011] [Accepted: 04/05/2011] [Indexed: 11/28/2022]
|
17
|
Ceppa EP, Lyo V, Grady EF, Knecht W, Grahn S, Peterson A, Bunnett NW, Kirkwood KS, Cattaruzza F. Serine proteases mediate inflammatory pain in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1033-42. [PMID: 21436316 PMCID: PMC3774216 DOI: 10.1152/ajpgi.00305.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute pancreatitis is a life-threatening inflammatory disease characterized by abdominal pain of unknown etiology. Trypsin, a key mediator of pancreatitis, causes inflammation and pain by activating protease-activated receptor 2 (PAR(2)), but the isoforms of trypsin that cause pancreatitis and pancreatic pain are unknown. We hypothesized that human trypsin IV and rat P23, which activate PAR(2) and are resistant to pancreatic trypsin inhibitors, contribute to pancreatic inflammation and pain. Injections of a subinflammatory dose of exogenous trypsin increased c-Fos immunoreactivity, indicative of spinal nociceptive activation, but did not cause inflammation, as assessed by measuring serum amylase and myeloperoxidase activity and by histology. The same dose of trypsin IV and P23 increased some inflammatory end points and caused a more robust effect on nociception, which was blocked by melagatran, a trypsin inhibitor that also inhibits polypeptide-resistant trypsin isoforms. To determine the contribution of endogenous activation of trypsin and its minor isoforms, recombinant enterokinase (ENK), which activates trypsins in the duodenum, was administered into the pancreas. Intraductal ENK caused nociception and inflammation that were diminished by polypeptide inhibitors, including soybean trypsin inhibitor and a specific trypsin inhibitor (type I-P), and by melagatran. Finally, the secretagogue cerulein induced pancreatic nociceptive activation and nocifensive behavior that were reversed by melagatran. Thus trypsin and its minor isoforms mediate pancreatic pain and inflammation. In particular, the inhibitor-resistant isoforms trypsin IV and P23 may be important in mediating prolonged pancreatic inflammatory pain in pancreatitis. Our results suggest that inhibitors of these isoforms could be novel therapies for pancreatitis pain.
Collapse
Affiliation(s)
- Eugene P. Ceppa
- 1Department of Surgery, Duke University Medical Center, Durham, North Carolina;
| | | | | | - Wolfgang Knecht
- 4Molecular Pharmacology and Lead Generation, AstraZeneca Research and Development, Mölndal, Sweden
| | | | - Anders Peterson
- 4Molecular Pharmacology and Lead Generation, AstraZeneca Research and Development, Mölndal, Sweden
| | - Nigel W. Bunnett
- Departments of 2Surgery and ,3Physiology, University of California, San Francisco, San Francisco, California; and
| | | | | |
Collapse
|
18
|
Zhao J, Wang J, Dong L, Shi H, Wang Z, Ding H, Shi H, Lu X. A protease inhibitor against acute stress-induced visceral hypersensitivity and paracellular permeability in rats. Eur J Pharmacol 2011; 654:289-94. [PMID: 21237151 DOI: 10.1016/j.ejphar.2010.12.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/30/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022]
Abstract
In the present study, we investigated the effects of camostat mesilate (CM), a synthetic protease inhibitor, on visceral sensitivity and paracellular permeability induced by the acute restraint stress. We also explored the possible mechanisms underlying these effects. The acute restraint stress was induced by wrapping the fore shoulders, upper forelimbs and thoracic trunk of Sprague-Dawley rats for 2h. Either CM (30, 100 and 300mg/kg) or saline was intragastrically administrated to the rats 30min before the acute restraint stress. Visceral perception was quantified as visceral motor response with an electromyography in a subset of rats. Paracellular permeability was determined in another subset of rats. We found that the visceral sensitivity and paracellular permeability were significantly reduced in the CM-treated rats. Moreover, the fecal protease activity was decreased in the CM-treated rats. The ZO-1 protein expression was markedly reduced by the stress treatment, but this decrease was suppressed by CM administration. Our data indicated that CM could efficiently inhibit visceral sensitivity and paracellular permeability induced by the acute restraint stress in rats. Therefore, CM might be an effective drug for the treatment of irritable bowel syndrome.
Collapse
Affiliation(s)
- Juhui Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nishimura S, Ishikura H, Matsunami M, Shinozaki Y, Sekiguchi F, Naruse M, Kitamura T, Akashi R, Matsumura K, Kawabata A. The proteinase/proteinase-activated receptor-2/transient receptor potential vanilloid-1 cascade impacts pancreatic pain in mice. Life Sci 2010; 87:643-50. [PMID: 20932849 DOI: 10.1016/j.lfs.2010.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/29/2010] [Accepted: 09/28/2010] [Indexed: 01/12/2023]
Abstract
AIMS Proteinase-activated receptor-2 (PAR2) and transient receptor potential vanilloid-1 (TRPV1) are co-localized in the primary afferents, and the trans-activation of TRPV1 by PAR2 activation is involved in processing of somatic pain. Given evidence for contribution of PAR2 to pancreatic pain, the present study aimed at clarifying the involvement of TRPV1 in processing of pancreatic pain by the proteinase/PAR2 pathway in mice. MAIN METHODS Acute pancreatitis was created by repeated administration of cerulein in conscious mice, and the referred allodynia/hyperalgesia was assessed using von Frey filaments. Injection of PAR2 agonists into the pancreatic duct was achieved in anesthetized mice, and expression of Fos in the spinal cord was determined by immunohistochemistry. KEY FINDINGS The established referred allodynia/hyperalgesia following cerulein treatment was abolished by post-treatment with nafamostat mesilate, a proteinase inhibitor, and with capsazepine, a TRPV1 antagonist, in mice. Injection of trypsin, an endogenous PAR2 agonist, or SLIGRL-NH(2), a PAR2-activating peptide, into the pancreatic duct caused expression of Fos protein in the spinal superficial layers at T8-T10 levels in the mice. The spinal Fos expression caused by trypsin and by SLIGRL-NH(2) was partially blocked by capsazepine, the former effect abolished by nafamostat mesilate. SIGNIFICANCE Our data thus suggest that the proteinase/PAR2/TRPV1 cascade might impact pancreatic pain, in addition to somatic pain, and play a role in the maintenance of pancreatitis-related pain in mice.
Collapse
Affiliation(s)
- Sachiyo Nishimura
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fukushima O, Nishimura S, Matsunami M, Aoki Y, Nishikawa H, Ishikura H, Kawabata A. Phosphorylation of ERK in the spinal dorsal horn following pancreatic pronociceptive stimuli with proteinase-activated receptor-2 agonists and hydrogen sulfide in rats: Evidence for involvement of distinct mechanisms. J Neurosci Res 2010; 88:3198-205. [DOI: 10.1002/jnr.22480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Lam DK, Schmidt BL. Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway. Pain 2010; 149:263-272. [PMID: 20189717 PMCID: PMC2861734 DOI: 10.1016/j.pain.2010.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Mediators involved in the generation of pain in patients with cancer are poorly understood. Using a combined molecular, pharmacologic, behavioral, and genetic approach, we have identified a novel mechanism of cancer-dependent allodynia induced by protease-activated receptor 2 (PAR2). Here we show that human head and neck carcinoma cells have increased levels of proteolytic activity compared to normal human cell controls. Supernatant from human carcinoma cells, but not controls, caused marked and prolonged mechanical allodynia in mice, when administered into the hindpaw. This nociceptive effect was abolished by serine protease inhibition, diminished by mast cell depletion and absent in PAR2-deficient mice. In addition, non-contact co-culture of trigeminal ganglion neurons with human head and neck carcinoma cells increased the proportion of neurons that exhibited PAR2-immunoreactivity. Our results point to a direct role for serine proteases and their receptor in the pathogenesis of cancer pain. This previously unrecognized cancer pain pathway has important therapeutic implications wherein serine protease inhibitors and PAR2 antagonists may be useful for the treatment of cancer pain.
Collapse
Affiliation(s)
- D K Lam
- Department of Oral and Maxillofacial Surgery, University of California - San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
22
|
Bao R, Zhou CZ, Jiang C, Lin SX, Chi CW, Chen Y. The ternary structure of the double-headed arrowhead protease inhibitor API-A complexed with two trypsins reveals a novel reactive site conformation. J Biol Chem 2009; 284:26676-84. [PMID: 19640842 PMCID: PMC2785355 DOI: 10.1074/jbc.m109.022095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 07/13/2009] [Indexed: 11/06/2022] Open
Abstract
The double-headed arrowhead protease inhibitors API-A and -B from the tubers of Sagittaria sagittifolia (Linn) feature two distinct reactive sites, unlike other members of their family. Although the two inhibitors have been extensively characterized, the identities of the two P1 residues in both API-A and -B remain controversial. The crystal structure of a ternary complex at 2.48 A resolution revealed that the two trypsins bind on opposite sides of API-A and are 34 A apart. The overall fold of API-A belongs to the beta-trefoil fold and resembles that of the soybean Kunitz-type trypsin inhibitors. The two P1 residues were unambiguously assigned as Leu(87) and Lys(145), and their identities were further confirmed by site-directed mutagenesis. Reactive site 1, composed of residues P5 Met(83) to P5' Ala(92), adopts a novel conformation with the Leu(87) completely embedded in the S1 pocket even though it is an unfavorable P1 residue for trypsin. Reactive site 2, consisting of residues P5 Cys(141) to P5' Glu(150), binds trypsin in the classic mode by employing a two-disulfide-bonded loop. Analysis of the two binding interfaces sheds light on atomic details of the inhibitor specificity and also promises potential improvements in enzyme activity by engineering of the reactive sites.
Collapse
Affiliation(s)
- Rui Bao
- From the Institute of Protein Research, Tongji University, Shanghai 200092
| | - Cong-Zhao Zhou
- the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, and
| | - Chunhui Jiang
- From the Institute of Protein Research, Tongji University, Shanghai 200092
| | - Sheng-Xiang Lin
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng-Wu Chi
- From the Institute of Protein Research, Tongji University, Shanghai 200092
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxing Chen
- the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, and
| |
Collapse
|
23
|
Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol 2007; 153 Suppl 1:S230-40. [PMID: 17994114 DOI: 10.1038/sj.bjp.0707491] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It has been almost a decade since the molecular cloning of all four members of the proteinase-activated receptor (PAR) family was completed. This unique family of G protein-coupled receptors (GPCRs) mediates specific cellular actions of various endogenous proteinases including thrombin, trypsin, tryptase, etc. and also certain exogenous enzymes. Increasing evidence has been clarifying the emerging roles played by PARs in health and disease. PARs, particularly PAR1 and PAR2, are distributed throughout the gastrointestinal (GI) tract, modulating various GI functions. One of the most important GI functions of PARs is regulation of exocrine secretion in the salivary glands, pancreas and GI mucosal epithelium. PARs also modulate motility of GI smooth muscle, involving multiple mechanisms. PAR2 appears to play dual roles in pancreatitis and related pain, being pro-inflammatory/pro-nociceptive and anti-inflammatory/anti-nociceptive. Similarly, dual roles for PAR1 and PAR2 have been demonstrated in mucosal inflammation/damage throughout the GI tract. There is also fundamental and clinical evidence for involvement of PAR2 in colonic pain. PARs are thus considered key molecules in regulation of GI functions and targets for development of drugs for treatment of various GI diseases.
Collapse
Affiliation(s)
- A Kawabata
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan.
| | | | | |
Collapse
|