1
|
Feng H, Liu J, Jia H, Bu X, Yang W, Su P. Cancer-associated fibroblasts-derived exosomal ZNF250 promotes the proliferation, migration, invasion, and immune escape of hepatocellular carcinoma cells by transcriptionally activating PD-L1. J Biochem Mol Toxicol 2024; 38:e23778. [PMID: 39252517 DOI: 10.1002/jbt.23778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 09/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal form of liver cancer, and the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays a critical role in its progression. This study aimed to elucidate the mechanism by which CAF-derived exosomes regulate the development of HCC. The study employed quantitative real-time polymerase chain reaction for mRNA expression analysis and western blot analysis for protein expression detection. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to investigate the relationship between zinc finger protein 250 (ZNF250) and programmed cell death 1 ligand 1 (PD-L1). Transmission electron microscopy and western blot analysis were used to characterize the isolated exosomes. The transferability of CAF-derived exosomes and normal fibroblasts (NFs)-derived exosomes into HCC cells was analyzed using a green fluorescent labeling dye PKH67. Cell proliferation was assessed via a 5-Ethynyl-2'-deoxyuridine assay, while Transwell assays were conducted to evaluate cell migration and invasion. Flow cytometry was performed to measure cell apoptosis, while enzyme-linked immunosorbent assays were used to assess the levels of tumor necrosis factor-α and perforin. Finally, a xenograft mouse model was constructed to examine the effects of exosomes derived from ZNF250-deficient CAFs on the tumor properties of HCC cells. The study revealed increased expression of ZNF250 in HCC tissues and cells, with ZNF250 transcriptionally activating PD-L1 in HCC cells. ZNF250 expression was associated with HbsAg, clinical stage and tumor size of HCC patients. CAF-derived exosomal ZNF250 can regulate PD-L1 expression in HCC cells. Furthermore, exosomes derived from ZNF250-deficient CAFs inhibited the proliferation, migration, invasion, and immune escape of HCC cells by downregulating PD-L1 expression. Moreover, CAF-derived exosomal ZNF250 promoted tumor formation in vivo. These findings provide insights into the role of CAF-derived exosomes in the suppression of HCC development, highlighting the significance of ZNF250 and PD-L1 regulation in tumor progression.
Collapse
Affiliation(s)
- Huizhi Feng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingmei Liu
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Scientific Research, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoqian Bu
- Department of Digestive System Cancer Center, Shanxi Bethune Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Su
- Department of Medical Service, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Role of the WNT/β-catenin/ZKSCAN3 Pathway in Regulating Chromosomal Instability in Colon Cancer Cell lines and Tissues. Int J Mol Sci 2022; 23:ijms23169302. [PMID: 36012568 PMCID: PMC9409321 DOI: 10.3390/ijms23169302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) acts as an oncogenic transcription factor in human malignant tumors, including colon and prostate cancer. However, most of the ZKSCAN3-induced carcinogenic mechanisms remain unknown. In this study, we identified ZKSCAN3 as a downstream effector of the oncogenic Wnt/β-catenin signaling pathway, using RNA sequencing and ChIP analyses. Activation of the Wnt pathway by recombinant Wnt gene family proteins or the GSK inhibitor, CHIR 99021 upregulated ZKSCAN3 expression in a β-catenin-dependent manner. Furthermore, ZKSCAN3 upregulation suppressed the expression of the mitotic spindle checkpoint protein, Mitotic Arrest Deficient 2 Like 2 (MAD2L2) by inhibiting its promoter activity and eventually inducing chromosomal instability in colon cancer cells. Conversely, deletion or knockdown of ZKSCAN3 increased MAD2L2 expression and delayed cell cycle progression. In addition, ZKSCAN3 upregulation by oncogenic WNT/β-catenin signaling is an early event of the adenoma–carcinoma sequence in colon cancer development. Specifically, immunohistochemical studies (IHC) were performed using normal (NM), hyperplastic polyps (HPP), adenomas (AD), and adenocarcinomas (AC). Their IHC scores were considerably different (61.4 in NM; 88.4 in HPP; 189.6 in AD; 246.9 in AC). In conclusion, ZKSCAN3 could be responsible for WNT/β-catenin-induced chromosomal instability in colon cancer cells through the suppression of MAD2L2 expression.
Collapse
|
3
|
Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, Liu X, Yan K, Hu J, Jing Y, Wang S, Zhang W, Liu GH, Qu J. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 2020; 48:6001-6018. [PMID: 32427330 PMCID: PMC7293006 DOI: 10.1093/nar/gkaa425] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has long been known as a master transcriptional repressor of autophagy. Here, we identify a novel role for ZKSCAN3 in alleviating senescence that is independent of its autophagy-related activity. Downregulation of ZKSCAN3 is observed in aged human mesenchymal stem cells (hMSCs) and depletion of ZKSCAN3 accelerates senescence of these cells. Mechanistically, ZKSCAN3 maintains heterochromatin stability via interaction with heterochromatin-associated proteins and nuclear lamina proteins. Further study shows that ZKSCAN3 deficiency results in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, loss of heterochromatin, a more accessible chromatin status and consequently, aberrant transcription of repetitive sequences. Overexpression of ZKSCAN3 not only rescues premature senescence phenotypes in ZKSCAN3-deficient hMSCs but also rejuvenates physiologically and pathologically senescent hMSCs. Together, these data reveal for the first time that ZKSCAN3 functions as an epigenetic modulator to maintain heterochromatin organization and thereby attenuate cellular senescence. Our findings establish a new functional link among ZKSCAN3, epigenetic regulation, and stem cell aging.
Collapse
Affiliation(s)
- Huifang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ferritin: A potential serum marker for lymph node metastasis in head and neck squamous cell carcinoma. Oncol Lett 2018; 17:314-322. [PMID: 30655769 PMCID: PMC6313208 DOI: 10.3892/ol.2018.9642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world, yet current treatment options are associated with limited success. The aim of the present study was to investigate the expression of ferritin in HNSCC and clarify whether it may serve as a biomarker for predicting HNSCC metastasis. The chemiluminescent immunoassay method was used to investigate the differences in the serum ferritin (SF) levels between patients with and without tumors, and between HNSCC with and without lymph node metastasis. The iron content and expression levels of ferritin were detected to verify the differences between tumor and normal tissues, and between HNSCC without and with lymph node metastasis. Data from the Gene Expression Omnibus (GEO) dataset was used to support the aforementioned results. No statistically significant difference in the SF level was observed between patients with and without tumors. Iron content and expression levels of ferritin heavy chain (FTH) and ferritin light chain (FTL) were higher in tumor tissues compared with normal tissues. The iron content and expression levels of SF, FTH and FTL were increased in HNSCC with metastasis compared with HNSCC without metastasis. The GEO dataset further verified the results and reported that the expression level of FTH was correlated with the prognosis of patients with HNSCC. Ferritin may not be a biomarker for the early diagnosis of HNSCC. However, an association exists between the expression level of ferritin and HNSCC cervical metastasis. SF may be a potential biomarker for predicting cervical lymph node metastasis in patients with HNSCC.
Collapse
|
5
|
Peterson YK, Nasarre P, Bonilla IV, Hilliard E, Samples J, Morinelli TA, Hill EG, Klauber-DeMore N. Frizzled-5: a high affinity receptor for secreted frizzled-related protein-2 activation of nuclear factor of activated T-cells c3 signaling to promote angiogenesis. Angiogenesis 2017; 20:615-628. [PMID: 28840375 DOI: 10.1007/s10456-017-9574-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022]
Abstract
Secreted frizzled-related protein 2 (SFRP2) is a pro-angiogenic factor expressed in the vasculature of a wide variety of human tumors, and modulates angiogenesis via the calcineurin-dependent nuclear factor of activated T-cells cytoplasmic 3 (NFATc3) pathway in endothelial cells. However, until now, SFRP2 receptor for this pathway was unknown. In the present study, we first used amino acid alignments and molecular modeling to demonstrate that SFRP2 interaction with frizzled-5 (FZD5) is typical of Wnt/FZD family members. To confirm this interaction, we performed co-immunofluorescence, co-immunoprecipitation, and ELISA binding assays, which demonstrated SFRP2/FZD5 binding. Functional knock-down studies further revealed that FZD5 is necessary for SFRP2-induced tube formation and intracellular calcium flux in endothelial cells. Using protein analysis on endothelial cell nuclear extracts, we also discovered that FZD5 is required for SFRP2-induced activation of NFATc3. Our novel findings reveal that FZD5 is a receptor for SFRP2 and mediates SFRP2-induced angiogenesis via calcineurin/NFATc3 pathway in endothelial cells.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ingrid V Bonilla
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer Samples
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas A Morinelli
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth G Hill
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
Rex EB, Shukla N, Gu S, Bredt D, DiSepio D. A Genome-Wide Arrayed cDNA Screen to Identify Functional Modulators of α7 Nicotinic Acetylcholine Receptors. SLAS DISCOVERY 2016; 22:155-165. [PMID: 27789755 DOI: 10.1177/1087057116676086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular signaling is in part regulated by the composition and subcellular localization of a series of protein interactions that collectively form a signaling complex. Using the α7 nicotinic acetylcholine receptor (α7nAChR) as a proof-of-concept target, we developed a platform to identify functional modulators (or auxiliary proteins) of α7nAChR signaling. The Broad cDNA library was transiently cotransfected with α7nAChR cDNA in HEK293T cells in a high-throughput fashion. Using this approach in combination with a functional assay, we identified positive modulators of α7nAChR activity. We identified known positive modulators/auxiliary proteins present in the cDNA library that regulate α7nAChR signaling, in addition to identifying novel modulators of α7nAChR signaling. These included NACHO, SPDYE11, TCF4, and ZC3H12A, all of which increased PNU-120596-mediated nicotine-dependent calcium flux. Importantly, these auxiliary proteins did not modulate GluR1(o)-mediated Ca flux. To elucidate a possible mechanism of action, we employed an α7nAChR-HA surface staining assay. NACHO enhanced α7nAChR surface expression; however, the mechanism responsible for the SPDYE11-, TCF4-, and ZC3H12A-dependent modulation of α7nAChR has yet to be defined. This report describes the development and validation of a high-throughput, genome-wide cDNA screening platform coupled to FLIPR functional assays in order to identify functional modulators of α7nAChR signaling.
Collapse
Affiliation(s)
- Elizabeth B Rex
- 1 Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Nikhil Shukla
- 1 Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Shenyan Gu
- 2 Neuroscience, Janssen Research and Development LLC, La Jolla, CA, USA
| | - David Bredt
- 2 Neuroscience, Janssen Research and Development LLC, La Jolla, CA, USA
| | - Daniel DiSepio
- 1 Discovery Sciences, Janssen Research and Development LLC, La Jolla, CA, USA
| |
Collapse
|
7
|
Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 2016; 214:653-64. [PMID: 27621362 PMCID: PMC5021098 DOI: 10.1083/jcb.201607005] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation.
Collapse
Affiliation(s)
- Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
8
|
Shi Z, Jiao S, Zhou Z. STRIPAK complexes in cell signaling and cancer. Oncogene 2016; 35:4549-57. [PMID: 26876214 DOI: 10.1038/onc.2016.9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de)phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer.
Collapse
Affiliation(s)
- Z Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - S Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
9
|
Peng S, Wang K, Gu Y, Chen Y, Nan X, Xing J, Cui Q, Chen Y, Ge Q, Zhao H. TRAF3IP3, a novel autophagy up-regulated gene, is involved in marginal zone B lymphocyte development and survival. Clin Exp Immunol 2015; 182:57-68. [PMID: 26011558 DOI: 10.1111/cei.12658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 12/26/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 3 (TRAF3) interacting protein 3 (TRAF3IP3; also known as T3JAM) is expressed specifically in immune organs and tissues. To investigate the impact of TRAF3IP3 on immunity, we generated Traf3ip3 knock-out (KO) mice. Interestingly, these mice exhibited a significant reduction in the number of common lymphoid progenitors (CLPs) and inhibition of B cell development in the bone marrow. Furthermore, Traf3ip3 KO mice lacked marginal zone (MZ) B cells in the spleen. Traf3ip3 KO mice also exhibited a reduced amount of serum natural antibodies and impaired T cell-independent type II (TI-II) responses to trinitrophenol (TNP)-Ficoll antigen. Additionally, our results showed that Traf3ip3 promotes autophagy via an ATG16L1-binding motif, and MZ B cells isolated from mutant mice showed a diminished level of autophagy and a high rate of apoptosis. These results suggest that TRAF3IP3 contributes to MZ B cell survival by up-regulating autophagy, thereby promoting the TI-II immune response.
Collapse
Affiliation(s)
- S Peng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Human Disease Genomics Center, Peking University, Beijing, China
| | - K Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Y Gu
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Y Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Human Disease Genomics Center, Peking University, Beijing, China
| | - X Nan
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - J Xing
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q Cui
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Y Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - H Zhao
- Human Disease Genomics Center, Peking University, Beijing, China.,Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Golden-Mason L, McMahan RH, Strong M, Reisdorph R, Mahaffey S, Palmer BE, Cheng L, Kulesza C, Hirashima M, Niki T, Rosen HR. Galectin-9 functionally impairs natural killer cells in humans and mice. J Virol 2013; 87:4835-45. [PMID: 23408620 PMCID: PMC3624298 DOI: 10.1128/jvi.01085-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
Galectin-9 is a pleiotropic immune modulator affecting numerous cell types of innate and adaptive immunity. Patients with chronic infection with either hepatitis C virus (HCV) or HIV have elevated circulating levels. Limited data exist on the regulation of natural killer (NK) cell function through interaction with galectin-9. We found that galectin-9 ligation downregulates multiple immune-activating genes, including eight involved in the NK cell-mediated cytotoxicity pathway, impairs lymphokine-activated killing, and decreases the proportion of gamma interferon (IFN-γ)-producing NK cells that had been stimulated with interleukin-12 (IL-12)/IL-15. We demonstrate that the transcriptional and functional changes induced by galectin-9 are independent of Tim-3. Consistent with these results for humans, we find that the genetic absence of galectin-9 in mice is associated with greater IFN-γ production by NK cells and enhanced degranulation. We also show that in the setting of a short-term (4-day) murine cytomegalovirus infection, terminally differentiated NKs accumulate in the livers of galectin-9 knockout mice, and that hepatic NKs spontaneously produce significantly more IFN-γ in this setting. Taken together, our results indicate that galectin-9 engagement impairs the function of NK cells, including cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver (UCD), Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, Boyd DD. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 2013; 50:16-28. [PMID: 23434374 DOI: 10.1016/j.molcel.2013.01.024] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/05/2012] [Accepted: 01/18/2013] [Indexed: 12/31/2022]
Abstract
Autophagy constitutes a major cell-protective mechanism that eliminates damaged components and maintains energy homeostasis via recycling nutrients under normal/stressed conditions. Although the core components of autophagy have been well studied, regulation of autophagy at the transcriptional level is poorly understood. Herein, we establish ZKSCAN3, a zinc finger family DNA-binding protein, as a transcriptional repressor of autophagy. Silencing of ZKSCAN3 induced autophagy and increased lysosome biogenesis. Importantly, we show that ZKSCAN3 represses transcription of a large gene set (>60) integral to, or regulatory for, autophagy and lysosome biogenesis/function and that a subset of these genes, including Map1lC3b and Wipi2, represent direct targets. Interestingly, ZKSCAN3 and TFEB are oppositely regulated by starvation and in turn oppositely regulate lysosomal biogenesis and autophagy, suggesting that they act in conjunction. Altogether, our study uncovers an autophagy master switch regulating the expression of a transcriptional network of genes integral to autophagy and lysosome biogenesis/function.
Collapse
Affiliation(s)
- Santosh Chauhan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Hao D, Gao P, Liu P, Zhao J, Wang Y, Yang W, Lu Y, Shi T, Zhang X. AC3-33, a novel secretory protein, inhibits Elk1 transcriptional activity via ERK pathway. Mol Biol Rep 2010; 38:1375-82. [PMID: 20680465 DOI: 10.1007/s11033-010-0240-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
The transcription factor AP-1 plays an important role in cellular proliferation, transformation and death. In this study, we report a novel human gene, AC3-33 (GenBank name: c3orf33, FLJ31139), which encodes a secretory protein that can inhibit Elk1 transcriptional activity via ERK1/2 pathway. The AC3-33 mRNA encodes a protein of 251 amino acids, which is a classical secretory protein. Functional investigation reveals that overexpression of AC3-33 significantly inhibit AP-1 activity and DNA-binding ability. Further investigation indicated that overexpression of AC3-33 significantly inhibit transcriptional activity of Elk1 and c-jun, but not c-fos. As for the upstream of signaling pathway of Elk-1, our study demonstrated that overexpression of AC3-33 significantly down-regulates phosphorylation of ERK1/2, but not JNK/SAPK or p38 MAPK. These results clearly indicate that AC3-33 is a novel member of the secretory family and inhibits Elk1 transcriptional activity via ERK1/2 MAPK.
Collapse
Affiliation(s)
- Dongxia Hao
- Department of Biology, Northchina Coal Medical College, No. 57 JianShe South Road, Tangshan, 063000, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lorenz P, Dietmann S, Wilhelm T, Koczan D, Autran S, Gad S, Wen G, Ding G, Li Y, Rousseau-Merck MF, Thiesen HJ. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues. BMC Genomics 2010; 11:206. [PMID: 20346131 PMCID: PMC2865497 DOI: 10.1186/1471-2164-11-206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/26/2010] [Indexed: 11/17/2022] Open
Abstract
Background Expansion of multi-C2H2 domain zinc finger (ZNF) genes, including the Krüppel-associated box (KRAB) subfamily, paralleled the evolution of tetrapodes, particularly in mammalian lineages. Advances in their cataloging and characterization suggest that the functions of the KRAB-ZNF gene family contributed to mammalian speciation. Results Here, we characterized the human 8q24.3 ZNF cluster on the genomic, the phylogenetic, the structural and the transcriptome level. Six (ZNF7, ZNF34, ZNF250, ZNF251, ZNF252, ZNF517) of the seven locus members contain exons encoding KRAB domains, one (ZNF16) does not. They form a paralog group in which the encoded KRAB and ZNF protein domains generally share more similarities with each other than with other members of the human ZNF superfamily. The closest relatives with respect to their DNA-binding domain were ZNF7 and ZNF251. The analysis of orthologs in therian mammalian species revealed strong conservation and purifying selection of the KRAB-A and zinc finger domains. These findings underscore structural/functional constraints during evolution. Gene losses in the murine lineage (ZNF16, ZNF34, ZNF252, ZNF517) and potential protein truncations in primates (ZNF252) illustrate ongoing speciation processes. Tissue expression profiling by quantitative real-time PCR showed similar but distinct patterns for all tested ZNF genes with the most prominent expression in fetal brain. Based on accompanying expression signatures in twenty-six other human tissues ZNF34 and ZNF250 revealed the closest expression profiles. Together, the 8q24.3 ZNF genes can be assigned to a cerebellum, a testis or a prostate/thyroid subgroup. These results are consistent with potential functions of the ZNF genes in morphogenesis and differentiation. Promoter regions of the seven 8q24.3 ZNF genes display common characteristics like missing TATA-box, CpG island-association and transcription factor binding site (TFBS) modules. Common TFBS modules partly explain the observed expression pattern similarities. Conclusions The ZNF genes at human 8q24.3 form a relatively old mammalian paralog group conserved in eutherian mammals for at least 130 million years. The members persisted after initial duplications by undergoing subfunctionalizations in their expression patterns and target site recognition. KRAB-ZNF mediated repression of transcription might have shaped organogenesis in mammalian ontogeny.
Collapse
Affiliation(s)
- Peter Lorenz
- Institute of Immunology, University of Rostock, Schillingallee 70, 18055 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang P, Sun B, Hao D, Zhang X, Shi T, Ma D. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation. Biochem Biophys Res Commun 2010; 394:993-9. [PMID: 20331980 DOI: 10.1016/j.bbrc.2010.03.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174DeltaTM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.
Collapse
Affiliation(s)
- Pingzhang Wang
- Chinese National Human Genome Center, #3-707 North YongChang Road BDA, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Zhang H, Ma X, Shi T, Song Q, Zhao H, Ma D. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle. Biochem Biophys Res Commun 2009; 391:651-8. [PMID: 19932687 DOI: 10.1016/j.bbrc.2009.11.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.
Collapse
Affiliation(s)
- Heyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, No 38 Xueyuan Road, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Yang L, Zhang L, Wu Q, Boyd DD. Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin beta 4 and vascular endothelial growth factor as downstream targets. J Biol Chem 2008; 283:35295-304. [PMID: 18940803 DOI: 10.1074/jbc.m806965200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously described the novel zinc finger protein ZKSCAN3 as a new "driver" of colon cancer progression. To investigate the underlying mechanism and because the predicted structural features (tandem zinc fingers) are often present in transcription factors, we hypothesized that ZKSCAN3 regulates the expression of a gene(s) favoring tumor progression. We employed unbiased screening to identify a DNA binding motif and candidate downstream genes. Cyclic amplification and selection of targets using a random oligonucleotide library and ZKSCAN3 protein identified KRDGGG as the DNA recognition motif. In expression profiling, 204 genes were induced 2-29-fold, and 76 genes reduced 2-5-fold by ZKSCAN3. To enrich for direct targets, we eliminated genes under-represented (<3) for the ZKSCAN3 binding motif (identified by CAST-ing) in 2 kilobases of regulatory sequence. Up-regulated putative downstream targets included genes contributing to growth (c-Met-related tyrosine kinase (MST1R), MEK2; the guanine nucleotide exchanger RasGRP2, insulin-like growth factor-2, integrin beta 4), cell migration (MST1R), angiogenesis (vascular endothelial growth factor), and proteolysis (MMP26; cathepsin D; PRSS3 (protease serine 3)). We pursued integrin beta 4 (induced up to 6-fold) as a candidate target because it promotes breast cancer tumorigenicity and stimulates phosphatidyl 3-kinase implicated in colorectal cancer progression. ZKSCAN3 overexpression/silencing modulated integrin beta 4 expression, confirming the array analysis. Moreover, ZKSCAN3 bound to the integrin beta 4 promoter in vitro and in vivo, and the integrin beta 4-derived ZKSCAN3 motif fused upstream of a tk-Luc reporter conferred ZKSCAN3 sensitivity. Integrin beta 4 knockdown by short hairpin RNA countered ZKSCAN3-augmented anchorage-independent colony formation. We also demonstrate vascular endothelial growth factor as a direct ZKSCAN3 target. Thus, ZKSCAN3 regulates the expression of several genes favoring tumor progression including integrin beta 4.
Collapse
Affiliation(s)
- Lin Yang
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
17
|
High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling. BMC Genomics 2008; 9:476. [PMID: 18847501 PMCID: PMC2577665 DOI: 10.1186/1471-2164-9-476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 10/11/2008] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Estrogen receptor alpha (ERalpha) is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERalpha, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE) with a reporter gene. This allowed the cellular activity of ERalpha, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. RESULTS From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131) as a repressor of ERalpha mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERalpha in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERalpha interrupts or prevents ERalpha binding to the estrogen response element (ERE). In addition, ZNF131 was able to suppress the expression of pS2, an ERalpha target gene. CONCLUSION We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERalpha-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERalpha regulation in mammalian cells.
Collapse
|