1
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
2
|
Rezqaoui A, Boumlah S, El Hessni A, El Brouzi MY, El Hamzaoui A, Ibouzine-Dine L, Benkirane S, Adnani M, Mesfioui A. Evaluating the Protective Effects of Melatonin Against Chronic Iron Administration in Male Wistar Rats: a Comparative Analysis of Affective, Cognitive, and Oxidative Stress with EDTA Chelator. Biol Trace Elem Res 2024; 202:4531-4546. [PMID: 38146034 DOI: 10.1007/s12011-023-04006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Iron is the dominant metal in the brain and is distributed widely. However, it can lead to various neuropathological and neurobehavioral abnormalities as well as oxidative stress. On the other hand, melatonin, a pineal hormone, is known for its neuroprotective properties, as well as its ability to act as a natural chelator against oxidative stress. It has also been used as an antidepressant and anxiolytic. The study investigated the potential of melatonin and EDTA treatment to prevent anxiety, depressive behavior, and memory impairment in male rats induced by chronic iron administration, and its connection to oxidative stress regulation in the hippocampus and prefrontal cortex. The rats were divided into six groups and intraperitoneally injected for 8 weeks with NaCl solution (control), iron sulfate (1 mg/kg), melatonin (4 mg/kg), EDTA (4 mg/kg), 1 mg/kg of iron + 4 mg/kg of melatonin, or 1 mg/kg of iron + 4 mg/kg of EDTA. In this study, we performed a neurobehavioral assessment and biochemical determinations of oxidative stress levels in the hippocampus and prefrontal cortex of each animal. The results indicate that chronic exposure to iron sulfate induced anxiety-like depressive behavior, and cognitive impairment also increased the levels of lipid peroxidation and nitric oxide, and reduced the activity of catalase in the hippocampus and prefrontal cortex in male Wistar rats, suggesting the induction of oxidative stress. In contrast, these alterations were reversed by melatonin better than EDTA. The results of this study show that melatonin protects against the neurobehavioral changes caused by iron, which may be associated with decreasing oxidative stress in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Ayoub Rezqaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco.
| | - Soufiane Boumlah
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Laila Ibouzine-Dine
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Samir Benkirane
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Manal Adnani
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P 242, Kenitra, Morocco
| |
Collapse
|
3
|
Mahmoud DSE, Kamel MA, El-Sayed IET, Binsuwaidan R, Elmongy EI, Razzaq MK, Abd Eldaim MA, Ahmed ESAM, Shaker SA. Astaxanthin ameliorated isoproterenol induced myocardial infarction via improving the mitochondrial function and antioxidant activity in rats. J Biochem Mol Toxicol 2024; 38:e23804. [PMID: 39132813 DOI: 10.1002/jbt.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.
Collapse
Affiliation(s)
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohand Kareem Razzaq
- Department of Biochemistry, College of Medicine, University of Sumer, Thi-Qar, Iraq
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt
| | | | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Baradwan S, Gari A, Sabban H, Alshahrani MS, Khadawardi K, Bukhari IA, Alyousef A, Abu-Zaid A. The effect of antioxidant supplementation on dysmenorrhea and endometriosis-associated painful symptoms: a systematic review and meta-analysis of randomized clinical trials. Obstet Gynecol Sci 2024; 67:186-198. [PMID: 38221738 PMCID: PMC10948216 DOI: 10.5468/ogs.23210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024] Open
Abstract
This study aimed to review randomized controlled trials (RCTs) investigating the effects of dietary antioxidant supplements on the severity of endometriosis-related pain symptoms. The PubMed/Medline, Scopus, and Web of Science databases were searched until April 2022. Additionally, we manually searched the reference lists. Endpoints were summarized as standardized mean difference (SMD) with 95% confidence intervals (CIs) in a random-effects model. The I2 statistic was used to assess heterogeneity. Ten RCTs were included in this meta-analysis. Overall, 10 studies were related to dysmenorrhea, four to dyspareunia, and four to pelvic pain. Antioxidants significantly reduced dysmenorrhea (SMD, -0.48; 95% CI, -0.82 to -0.13; I2=75.14%). In a subgroup analysis, a significant reduction of dysmenorrhea was observed only in a subset of trials that administered vitamin D (SMD, -0.59; 95% CI, -1.13 to -0.06; I2=69.59%) and melatonin (SMD, -1.40; 95% CI, -2.47 to -0.32; I2=79.15%). Meta-analysis results also suggested that antioxidant supplementation significantly improved pelvic pain (SMD, -1.51; 95% CI, -2.74 to -0.29; I2=93.96%), although they seem not to have a significant beneficial impact on the severity of dyspareunia. Dietary antioxidant supplementation seems to beneficially impact the severity of endometriosis-related dysmenorrhea (with an emphasis on vitamin D and melatonin) and pelvic pain. However, due to the relatively small sample size and high heterogeneity, the findings should be interpreted cautiously, and the importance of further well-designed clinical studies cannot be overstated.
Collapse
Affiliation(s)
- Saeed Baradwan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Jeddah,
Saudi Arabia
| | - Abdulrahim Gari
- Department of Obstetrics and Gynecology, College of Medicine, Umm Al-Qura University, Makkah,
Saudi Arabia
- Department of Obstetrics and Gynecology, Al Salama Hospital, Jeddah,
Saudi Arabia
| | - Hussein Sabban
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Jeddah,
Saudi Arabia
- Department of Obstetrics and Gynecology, Faculty of Medicine at Rabigh, King Abdulaziz University, Rabigh,
Saudi Arabia
| | - Majed Saeed Alshahrani
- Department of Obstetrics and Gynecology, Faculty of Medicine, Najran University, Najran,
Saudi Arabia
| | - Khalid Khadawardi
- Department of Obstetrics and Gynecology, College of Medicine, Umm Al-Qura University, Makkah,
Saudi Arabia
| | - Ibtihal Abdulaziz Bukhari
- Department of Obstetrics and Gynecology, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia
| | - Abdullah Alyousef
- Department of Obstetrics and Gynecology, King Abdullah bin Abdulaziz University Hospital, Riyadh,
Saudi Arabia
| | - Ahmed Abu-Zaid
- Department of Obstetrics and Gynecology, College of Medicine, Alfaisal University, Riyadh,
Saudi Arabia
| |
Collapse
|
5
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
6
|
Faggiano A, Gherbesi E, Avagimyan A, Ruscica M, Donisi L, Fedele MA, Cipolla CM, Vicenzi M, Carugo S, Cardinale D. Melatonin mitigates oxidative damage induced by anthracycline: a systematic-review and meta-analysis of murine models. Front Cardiovasc Med 2023; 10:1289384. [PMID: 38075951 PMCID: PMC10701532 DOI: 10.3389/fcvm.2023.1289384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Oxidative stress induced by the excessive production of reactive oxygen species is one of the primary mechanisms implicated in anthracycline (ANT)-induced cardiotoxicity. There is a strong clinical need for a molecule capable of effectively preventing and reducing the oxidative damage caused by ANT. In vitro and in vivo studies conducted in mice have shown that melatonin stimulates the expression of antioxidative agents and reduces lipid peroxidation induced by ANT. METHODS We investigated this issue through a meta-analysis of murine model studies. The outcome of the meta-analysis was to compare oxidative damage, estimated by products of lipid peroxidation (MDA = Malondialdehyde) and markers of oxidative stress (SOD = Superoxide Dismutase, GSH = Glutathione), along with a marker of cardiac damage (CK-MB = creatine kinase-myocardial band), assessed by measurements in heart and/or blood samples in mice undergoing ANT chemotherapy and assuming melatonin vs. controls. The PubMed, OVID-MEDLINE and Cochrane library databases were analysed to search English-language review papers published from the inception up to August 1st, 2023. Studies were identified by using Me-SH terms and crossing the following terms: "melatonin", "oxidative stress", "lipid peroxidation", "anthracycline", "cardiotoxicity". RESULTS The metanalysis included 153 mice administered melatonin before, during or immediately after ANT and 153 controls from 13 studies. Compared with controls, the levels of all oxidative stress markers were significantly better in the pooled melatonin group, with standardized mean differences (SMD) for MDA, GSH and SOD being -8.03 ± 1.2 (CI: -10.43/-5.64, p < 0.001), 7.95 ± 1.8 (CI: 4.41/11.5, p < 0.001) and 3.94 ± 1.6 (CI: 0.77/7.12, p = 0.015) respectively. Similarly, compared with controls, CK-MB levels reflecting myocardial damage were significantly lower in the pooled melatonin group, with an SMD of -4.90 ± 0.5 (CI: -5.82/-3.98, p < 0.001). CONCLUSION Melatonin mitigates the oxidative damage induced by ANT in mouse model. High-quality human clinical studies are needed to further evaluate the use of melatonin as a preventative/treatment strategy for ANT-induced cardiotoxicity.
Collapse
Affiliation(s)
- Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Gherbesi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ashot Avagimyan
- Department of Anatomical Pathology and Clinical Morphology, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| | - Luca Donisi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maria Antonia Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Marco Vicenzi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
7
|
Ren C, Tan P, Gao L, Zeng Y, Hu S, Chen C, Tang N, Chen Y, Zhang W, Qin Y, Zhang X, Du S. Melatonin reduces radiation-induced ferroptosis in hippocampal neurons by activating the PKM2/NRF2/GPX4 signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110777. [PMID: 37100272 DOI: 10.1016/j.pnpbp.2023.110777] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ferroptosis is a type of regulated cell death that is dependent on iron and reactive oxygen species (ROS). Melatonin (N-acetyl-5-methoxytryptamine) reduces hypoxic-ischemic brain damage via mechanisms that involve free radical scavenging. How melatonin regulates radiation-induced ferroptosis of hippocampal neurons is yet to be elucidated. In this study, the mouse hippocampal neuronal cell line HT-22 was treated with 20μM melatonin before being stimulated with a combination of irradiation and 100 μM FeCl3. Furthermore, in vivo experiments were performed in mice treated with melatonin via intraperitoneal injection, which was followed by radiation exposure. A series of functional assays, including CCK-8, DCFH-DA kit, flow cytometry, TUNEL staining, iron estimations, and transmission electron microscopy, were performed on cells as well as hippocampal tissues. The interactions between PKM2 and NRF2 proteins were detected using a coimmunoprecipitation (Co-IP) assay. Moreover, chromatin immunoprecipitation (ChIP), a luciferase reporter assay, and an electrophoretic mobility shift assay (EMSA) were performed to explore the mechanism by which PKM2 regulates the NRF2/GPX4 signaling pathway. The spatial memory of mice was evaluated using the Morris Water Maze test. Hematoxylin-eosin and Nissl staining were performed for histological examination. The results revealed that melatonin protected HT-22 neuronal cells from radiation-induced ferroptosis, as inferred from increased cell viability, decreased ROS production, reduced number of apoptotic cells, and less cristae, higher electron density in mitochondria. In addition, melatonin induced PKM2 nuclear transference, while PKM2 inhibition reversed the effects of melatonin. Further experiments demonstrated that PKM2 bound to and induced the nuclear translocation of NRF2, which regulated GPX4 transcription. Ferroptosis enhanced by PKM2 inhibition was also converted by NRF2 overexpression. In vivo experiments indicated that melatonin alleviated radiation-induced neurological dysfunction and injury in mice. In conclusion, melatonin suppressed ferroptosis to decrease radiation-induced hippocampal neuronal injury by activating the PKM2/NRF2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Chen Ren
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingying Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shushu Hu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Chen Chen
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Nan Tang
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
8
|
Hsieh TY, Sung WW, Chang YC, Yu CY, Lu LY, Dong C, Lee TH, Chen SL. Melatonin induces cell cycle arrest and suppresses tumor invasion in urinary bladder urothelial carcinoma. Aging (Albany NY) 2023; 15:3107-3119. [PMID: 37086261 PMCID: PMC10188331 DOI: 10.18632/aging.204673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Urinary bladder urothelial carcinoma (UBUC) encompasses about 90% of all bladder cancer cases, and the mainstream treatment is the transurethral resection of the bladder tumor followed by intravesical instillation. High rates of mortality, recurrence, and progression in bladder cancer have stimulated the search for alternative adjuvant therapies. The aim of this study was to investigate the potential of melatonin as adjuvant therapy in bladder cancer. Cell viability and clonogenic ability were assessed by an MTT assay and colony formation. Cell cycle and apoptosis analysis were performed by flow cytometry and Hoechst 33342 staining, while cell metastasis capacity was measured by wound healing and transwell assays. Potential mechanisms were investigated by an oncology array and verified via western blotting. The melatonin treatment significantly reduced T24 and UMUC3 bladder cancer cell proliferation and clonogenic ability. G1 arrest and sub-G1 accumulation in the T24 and UMUC3 cells led to cell proliferation suppression and cell death, and Hoechst 33342 staining further verified the apoptosis induction directly by melatonin. Moreover, melatonin weakened cell motility and invasiveness. Based on the oncology array results, we demonstrated that melatonin exerts its anti-cancer effect by down-regulating the HIF-1α and NF-κB pathways and downstream pathways, including Bcl-2, leading to cell cycle arrest and apoptosis induction in the UBUC cells. Overall, these findings support the potential of melatonin as adjuvant therapy in bladder cancer.
Collapse
Affiliation(s)
- Tzuo-Yi Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Yu Lu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chen Dong
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University, Taichung, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Sung-Lang Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Hanna M, Seddiek H, Aboulhoda BE, Morcos GNB, Akabawy AMA, Elbaset MA, Ibrahim AA, Khalifa MM, Khalifah IM, Fadel MS, Shoukry T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front Physiol 2022; 13:1050598. [PMID: 36531171 PMCID: PMC9748574 DOI: 10.3389/fphys.2022.1050598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/08/2023] Open
Abstract
Ferritinophagy is one of the most recent molecular mechanisms affecting cardiac function. In addition, it is one of the pathways by which doxorubicin, one of the anticancer drugs commonly used, negatively impacts the cardiac muscle, leading to cardiac function impairment. This side effect limits the use of doxorubicin. Iron chelators play an important role in hindering ferritinophagy. Antioxidants can also impact ferritinophagy by improving oxidative stress. In this study, it was assumed that the antioxidant function of melatonin could promote the action of deferoxamine, an iron chelator, at the level of ferritinophagy. A total of 42 male Wistar rats (150-200 g) were divided into seven groups (n = 6) which consisted of group I: control normal, group II: doxorubicin (Dox), group III: melatonin (Mel), group IV: deferoxamine (Des), group V: Mel + Dox, group VI: Des + Dox, and group VII: Mel + Des + Dox. Groups III, V and VII were orally pretreated with melatonin 20 mg/kg/day for 7 days. Groups IV, VI and VII were treated with deferoxamine at a 250 mg/kg/dose once on D4 before Dox was given. Doxorubicin was given at a 20 mg/kg ip single dose. On the 8th day, the rats were lightly anaesthetized for electrocardiography analysis and echocardiography. Serum samples were collected and then sacrificed for tissue sampling. The following biochemical assessments were carried out: PCR of NCOA4, IREB2, FTH1, SLC7A11, and GPX4; and ELISA for serum cTnI, serum transferrin, tissue GSH, and malondialdehyde. In addition, histopathological assessment of heart injury; immunostaining of caspase-3, Bax, and Bcl2; and physiological function assessment by ECG and ECHO were carried out. Doxorubicin-induced acute significant cardiac injury with increased ferritinophagy and apoptosis responded to single and combined prophylactic treatment, in which the combined treatment showed mostly the best results. In conclusion, using melatonin as an antioxidant with an iron chelator, deferoxamine, could hinder the hazardous cardiotoxic effect of doxorubicin. However, further studies are needed to detect the impact of higher doses of melatonin and deferoxamine with a prolonged treatment period.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Hanan Seddiek
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - George N. B. Morcos
- Department of Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | | | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Ibtesam Mahmoud Khalifah
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Sciences, Faculty of Medicine, Fakeeh College for Medical Sciences, Riyadh, Saudi Arabia
| | - Mostafa Said Fadel
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Tarek Shoukry
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| |
Collapse
|
10
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Park WR, Choi B, Kim YJ, Kim YH, Park MJ, Kim DI, Choi HS, Kim DK. Melatonin Regulates Iron Homeostasis by Inducing Hepcidin Expression in Hepatocytes. Int J Mol Sci 2022; 23:ijms23073593. [PMID: 35408955 PMCID: PMC8998539 DOI: 10.3390/ijms23073593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.
Collapse
Affiliation(s)
- Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
| | - Byungyoon Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Min-Jung Park
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (M.-J.P.); (D.-I.K.)
| | - Dong-Il Kim
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (M.-J.P.); (D.-I.K.)
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
- Correspondence: ; Tel.: +82-62-530-2166; Fax: +82-62-530-2160
| |
Collapse
|
12
|
Petronek MS, Stolwijk JM, Murray SD, Steinbach EJ, Zakharia Y, Buettner GR, Spitz DR, Allen BG. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol 2021; 42:101864. [PMID: 33485837 PMCID: PMC8113052 DOI: 10.1016/j.redox.2021.101864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
There is a rapidly growing body of literature supporting the notion that differential oxidative metabolism in cancer versus normal cells represents a metabolic frailty that can be exploited to open a therapeutic window into cancer therapy. These cancer cell-specific metabolic frailties may be amenable to manipulation with non-toxic small molecule redox active compounds traditionally thought to be antioxidants. In this review we describe the potential mechanisms and clinical applicability in cancer therapy of four small molecule redox active agents: melatonin, vitamin E, selenium, and vitamin C. Each has shown the potential to have pro-oxidant effects in cancer cells while retaining antioxidant activity in normal cells. This dichotomy can be exploited to improve responses to radiation and chemotherapy by opening a therapeutic window based on a testable biochemical rationale amenable to confirmation with biomarker studies during clinical trials. Thus, the unique pro-oxidant/antioxidant properties of melatonin, vitamin E, selenium, and vitamin C have the potential to act as effective adjuvants to traditional cancer therapies, thereby improving cancer patient outcomes.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - S D Murray
- Department of Cancer Biology, University of Iowa, Iowa City, IA, USA
| | - E J Steinbach
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Y Zakharia
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Seshadri VD. Cardioprotective properties of natural medicine in isoproterenol induced myocardial damage in the male Albino rats. Saudi J Biol Sci 2021; 28:3169-3175. [PMID: 34121851 PMCID: PMC8176003 DOI: 10.1016/j.sjbs.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
The main aim of this study is to investigate cardioprotective properties of natural medicine inmyocardial damage induced male Albino rats. The aqueous extractof Allium sativumwas used for the determination of phenolic compounds and flavonoids. The amount of phenol (1.39 ± 0.37 GAE/g dry weight) and flavonoids (49.1 ± 2.79 QE/g dry weight) were high in aqueous extract. A. sativumextract and showed 68.39 ± 3.6% DPPHscavenging activity. Isoproterenol was used to induce myocardial injury in Albino rats in vivo by subcutaneous injection (100 mg/kg body weight). To achieve this, experimental animals were categorized into six groups (n = 4), namely, positive, negative control, only isoproterenol administered groups, and garlic extract administered group at 100-300 mg extract/kg body weight. Oxidative stress marker and cardiac markers were assayed to analyze the cardioprotective properties of garlic extract. At 300 mg/kg doseof garlic extract, rat was recovered from various altered factors such as, aspartate aminotransferase, alkaline transminase and alkaline phosphatase. The rats treated with 300 mggarlic extract/kg body weight decreased the level of asparate aminotransferase (126 ± 6.4 IU/L) than other lower doses (100 mg extract/kg and 200 mg extract/kg). Alkaline transaminase level of rat serum level was 81 ± 4.34 IU/L. In the isoproterenol treated rats elevated level was observed (152 ± 4.42 IU/L enzyme activity). Pre-treatment of Albino rat with A. sativum extract reduced cardiac damage. Isoproterenol exposed animal showed 207.6 ± 1.2 mg/dL triglyceride and the garlic administered rat (300 mgextract/kg) reduced LDL-cholesterol level (61.3 ± 1.3 mg/dL) significantly (p < 0.05). Creatinine kinase -MB level was 269.5 ± 12.5 IU/L in the control animal and stress induced animal showed elevated level (572.3 ± 19.4 IU/L). Garlic treated experimental animal (300 µg/kg bw) decreased CK-MB level. To conclude, the aqueous extract of A. sativumshowed cardio protective properties against myocardial injury.
Collapse
Affiliation(s)
- Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
14
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Caffeic acid phenethyl ester counteracts doxorubicin-induced chemobrain in Sprague-Dawley rats: Emphasis on the modulation of oxidative stress and neuroinflammation. Neuropharmacology 2020; 181:108334. [PMID: 33011199 DOI: 10.1016/j.neuropharm.2020.108334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced cognitive dysfunction (chemobrain) is one of the major complaints for cancer patients treated with chemotherapy such as Doxorubicin (DOX). The induction of oxidative stress and neuroinflammation were identified as major contributors to such adverse effect. Caffeic acid phenethyl ester (CAPE) is a natural polyphenolic compound, that exhibits unique context-dependent antioxidant activity. It exhibits pro-oxidant effects in cancer cells, while it is a potent antioxidant and cytoprotective in normal cells. The present study was designed to investigate the potential neuroprotective effects of CAPE against DOX-induced cognitive impairment. Chemobrain was induced in Sprague Dawley rats via systemic DOX administration once per week for 4 weeks (2 mg/kg/week, i.p.). CAPE was administered at 10 or 20 μmol/kg/day, i.p., 5 days per week for 4 weeks. Morris water maze (MWM) and passive avoidance tests were used to assess learning and memory functions. Oxidative stress was evaluated via the colorimetric determination of GSH and MDA levels in both hippocampal and prefrontal cortex brain regions. However, inflammatory markers, acetylcholine levels, and neuronal cell apoptosis were assessed in the same brain areas using immunoassays including either ELISA, western blotting or immunohistochemistry. DOX produced significant impairment in learning and memory as indicated by the data generated from MWM and step-through passive avoidance tests. Additionally DOX-triggered oxidative stress as evidenced from the reduction in GSH levels and increased lipid peroxidation. Treatment with DOX resulted in neuroinflammation as indicated by the increase in NF-kB (p65) nuclear translocation in addition to boosting the levels of pro-inflammatory mediators (COX-II/TNF-α) along with the increased levels of glial fibrillary acid protein (GFAP) in the tested tissues. Moreover, DOX reduced acetylcholine levels and augmented neuronal cell apoptosis as supported by the increased active caspase-3 levels. Co-treatment with CAPE significantly counteracted DOX-induced behavioral and molecular abnormalities in rat brain tissues. Our results provide the first preclinical evidence for CAPE promising neuroprotective activity against DOX-induced neurodegeneration and memory deficits.
Collapse
|
16
|
Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6841581. [PMID: 32566095 PMCID: PMC7260648 DOI: 10.1155/2020/6841581] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.
Collapse
|
17
|
Role of nitric oxide in mediating the cardioprotective effect of agomelatine against isoproterenol-induced myocardial injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1809-1823. [DOI: 10.1007/s00210-020-01860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
|
18
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
19
|
Bozkurt M, Sezgic M, Karakol P, Uslu C, Balikci T. The Effect of Antioxidants on Ischemia-Reperfusion Injury in Flap Surgery. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.85500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Taskin E, Guven C, Kaya ST, Sahin L, Kocahan S, Degirmencioglu AZ, Gur FM, Sevgiler Y. The role of toll-like receptors in the protective effect of melatonin against doxorubicin-induced pancreatic beta cell toxicity. Life Sci 2019; 233:116704. [DOI: 10.1016/j.lfs.2019.116704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
|
21
|
Amin AH, El-Missiry MA, Othman AI, Ali DA, Gouida MS, Ismail AH. Ameliorative effects of melatonin against solid Ehrlich carcinoma progression in female mice. J Pineal Res 2019; 67:e12585. [PMID: 31066091 DOI: 10.1111/jpi.12585] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
The current work estimated the antitumour efficacy of melatonin (MLT) on the growth of Ehrlich ascites carcinoma cells inoculated intramuscularly into the hind limbs of female BALB/c mice and to compare its effects with those of adriamycin (ADR). After solid tumours developed, the animals were divided into the three following groups: the tumour-bearing control, MLT-treated (20 mg/kg body weight) and ADR-treated (10 mg/kg body weight) groups. The results showed a significant reduction in the tumour masses of the treated animals in comparison with those of the control group. There were a significant decrease in the malondialdehyde level and a significant elevation of the glutathione concentration and the superoxide dismutase and catalase activities in the MLT and ADR groups. The current study indicated the increased expression levels of P53, caspase-3 and caspase-9 and the decreased expression levels of the rRNA and Bcl2. The MLT and ADR treatments resulted in histological changes, such as a marked degenerative area, the necrosis of neoplastic cells, the appearance of different forms of apoptotic cells and giant cells with condensed chromatin, and a deeply eosinophilic cytoplasm. The MLT and ADR treatments also significantly decreased the Ki-67 protein and vascular endothelial growth factor (VEGF) expression levels in the tumour masses. In conclusion, similar to ADR-treated tumour-bearing mice, MLT suppressed the growth and proliferation of tumour by inducing apoptosis and by inhibiting tumour vascularization. The current data recommend MLT as a safe natural chemotherapeutic adjuvant to overcome cancer progression after a clinical trial validates these results.
Collapse
Affiliation(s)
- Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Doaa A Ali
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mona S Gouida
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed H Ismail
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
22
|
El-Maddawy ZK, Abd El Naby WSH. Protective effects of zinc oxide nanoparticles against doxorubicin induced testicular toxicity and DNA damage in male rats. Toxicol Res (Camb) 2019; 8:654-662. [PMID: 31588342 PMCID: PMC6762007 DOI: 10.1039/c9tx00052f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
The present study aims to investigate the protective effects of zinc oxide nanoparticles (ZnO NPs) on doxorubicin-induced testicular injury. Forty mature male rats were randomly allocated into four equal groups: G1 (control), G2 (3 mg per kg BW of zinc oxide nanoparticles was administered), G3 (6 mg per kg BW of doxorubicin was intraperitoneally injected), and G4 (doxorubicin + ZnO NPs). Some fertility parameters, antioxidant status, genotoxicity assay, and a histopathological examination were used for this investigation. The doxorubicin-treated group showed a significant decrease in the index weight of reproductive organs, epididymal sperm count, motility%, and live sperm% and a significant increase in sperm abnormalities. Moreover, GSH and CAT activities were significantly decreased, and MDA content was significantly increased in the doxorubicin-treated group. Interestingly, co-administration of ZnO NPs significantly reduced the doxorubicin-induced changes in the investigated parameters. In addition, ZnO NPs alone did not show any undesirable effects on the sperm parameters, testis or DNA. However, its administration improves the reproductive parameters and significantly increases the testosterone level. We concluded that the administration of ZnO NPs at 3 mg per kg BW ameliorated the testicular toxicity and genotoxicity caused by doxorubicin through its antioxidant and androgenic activity.
Collapse
Affiliation(s)
| | - Walaa Slouma Hamouda Abd El Naby
- Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development , Faculty of Veterinary Medicine , Alexandria University , Egypt .
| |
Collapse
|
23
|
Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Mol Pharmacol 2019; 96:219-232. [PMID: 31164387 DOI: 10.1124/mol.119.115725] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin (DOX) is one of the most effective anticancer drugs to treat various forms of cancers; however, its therapeutic utility is severely limited by its associated cardiotoxicity. Despite the enormous amount of research conducted in this area, the exact molecular mechanisms underlying DOX toxic effects on the heart are still an area that warrants further investigations. In this study, we reviewed literature to gather the best-known molecular pathways related to DOX-induced cardiotoxicity (DIC). They include mechanisms dependent on mitochondrial dysfunction such as DOX influence on the mitochondrial electron transport chain, redox cycling, oxidative stress, calcium dysregulation, and apoptosis pathways. Furthermore, we discuss the existing strategies to prevent and/or alleviate DIC along with various techniques available for therapeutic drug monitoring (TDM) in cancer patients treated with DOX. Finally, we propose a stepwise flowchart for TDM of DOX and present our perspective at curtailing this deleterious side effect of DOX.
Collapse
Affiliation(s)
- Nadine Wenningmann
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Merle Knapp
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| |
Collapse
|
24
|
Shabanah OA, Ahmed LA, Qunebet RA, Yousuf WA, Mustafa R, Rejaie SA. Losartan and/or Naringenin Ameliorates Doxorubicin Induced Cardiac, Hepatic and Renal Toxicities in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.675.685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Bertoli S, Paubelle E, Bérard E, Saland E, Thomas X, Tavitian S, Larcher M, Vergez F, Delabesse E, Sarry A, Huguet F, Larrue C, Bosc C, Farge T, Sarry JE, Michallet M, Récher C. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol 2018; 102:131-142. [DOI: 10.1111/ejh.13183] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Emilie Bérard
- Service d'Epidémiologie Centre Hospitalier Universitaire de Toulouse Toulouse France
- UMR 1027 INSERM‐Université de Toulouse III Toulouse France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | | | - François Vergez
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Jean Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| |
Collapse
|
26
|
Gül SS, Aygün H. Cardioprotective effect of vitamin D and melatonin on doxorubicin-induced cardiotoxicity in rat model: an electrocardiographic, scintigraphic and biochemical study. ACTA ACUST UNITED AC 2018. [DOI: 10.18621/eurj.410029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Navarro-Alarcon M, Villalón M, Jiménez C, Quesada-Granados J, Agil A. Melatonin increases magnesium concentrations in white adipose tissue and pancreas of diabetic obese rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
28
|
Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, Clair DKS, Butterfield DA. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"). Oncotarget 2018; 9:30324-30339. [PMID: 30100992 PMCID: PMC6084398 DOI: 10.18632/oncotarget.25718] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice both with and without MESNA. MESNA ameliorated Dox-induced oxidative protein damage in plasma, confirming our prior studies, and in a new finding led to decreased oxidative stress in brain. This study also provides further functional and biochemical evidence of the mechanisms of CICI. Using novel object recognition (NOR), we demonstrated the Dox administration resulted in memory deficits, an effect that was rescued by MESNA. Using hydrogen magnetic resonance imaging spectroscopy (H1-MRS) techniques, we demonstrated that Dox administration led to a dramatic decrease in choline-containing compounds assessed by (Cho)/creatine ratios in the hippocampus in mice. To better elucidate a potential mechanism for this MRS observation, we tested the activities of the phospholipase enzymes known to act on phosphatidylcholine (PtdCho), a key component of phospholipid membranes and a source of choline for the neurotransmitter, acetylcholine (ACh). The activities of both phosphatidylcholine-specific phospholipase C (PC-PLC) and phospholipase D were severely diminished following Dox administration. The activity of PC-PLC was preserved when MESNA was co-administered with Dox; however, PLD activity was not protected. This study is the first to demonstrate the protective effects of MESNA on Dox-related protein oxidation, cognitive decline, phosphocholine (PCho) levels, and PC-PLC activity in brain and suggests novel potential therapeutic targets and strategies to mitigate CICI.
Collapse
Affiliation(s)
| | - Xiaojia Ren
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Govind Warrier
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Teresa Noel
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - David K. Powell
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Jennifer M. Brelsfoard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40502, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40502, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40502, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
29
|
Martínez-Castillo M, Pacheco-Yepez J, Flores-Huerta N, Guzmán-Téllez P, Jarillo-Luna RA, Cárdenas-Jaramillo LM, Campos-Rodríguez R, Shibayama M. Flavonoids as a Natural Treatment Against Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:209. [PMID: 29988403 PMCID: PMC6024094 DOI: 10.3389/fcimb.2018.00209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Over the past 20 years, gastrointestinal infections in developing countries have been a serious health problem and are the second leading cause of morbidity among all age groups. Among pathogenic protozoans that cause diarrheal disease, the parasite Entamoeba histolytica produces amebic colitis as well as the most frequent extra-intestinal lesion, an amebic liver abscess (ALA). Usually, intestinal amebiasis and ALA are treated with synthetic chemical compounds (iodoquinol, paromomycin, diloxanide furoate, and nitroimidazoles). Metronidazole is the most common treatment for amebiasis. Although the efficacy of nitroimidazoles in killing amebas is known, the potential resistance of E. histolytica to this treatment is a concern. In addition, controversial studies have reported that metronidazole could induce mutagenic effects and cerebral toxicity. Therefore, natural and safe alternative drugs against this parasite are needed. Flavonoids are natural polyphenolic compounds. Flavonoids depend on malonyl-CoA and phenylalanine to be synthesized. Several flavonoids have anti-oxidant and anti-microbial properties. Since the 1990s, several works have focused on the identification and purification of different flavonoids with amebicidal effects, such as, -(-)epicatechin, kaempferol, and quercetin. In this review, we investigated the effects of flavonoids that have potential amebicidal activity and that can be used as complementary and/or specific therapeutic strategies against E. histolytica trophozoites. Interestingly, it was found that these natural compounds can induce morphological changes in the amebas, such as chromatin condensation and cytoskeletal protein re-organization, as well as the upregulation and downregulation of fructose-1,6-bisphosphate aldolase, glyceraldehyde-phosphate dehydrogenase, and pyruvate:ferredoxin oxidoreductase (enzymes of the glycolytic pathway). Although the specific molecular targets, bioavailability, route of administration, and doses of some of these natural compounds need to be determined, flavonoids represent a very promising and innocuous strategy that should be considered for use against E. histolytica in the era of microbial drug resistance.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Judith Pacheco-Yepez
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Nadia Flores-Huerta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Paula Guzmán-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rosa A. Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Luz M. Cárdenas-Jaramillo
- Coordinación de Morfología, Departamento de Formación Básica Disciplinaria, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
30
|
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 2018; 63:68-78. [PMID: 28822266 DOI: 10.1016/j.advms.2017.05.005] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 02/08/2023]
Abstract
The exposure of cells, tissues and extracellular matrix to harmful reactive species causes a cascade of reactions and induces activation of multiple internal defence mechanisms (enzymatic or non-enzymatic) that provide removal of reactive species and their derivatives. The non-enzymatic antioxidants are represented by molecules characterized by the ability to rapidly inactivate radicals and oxidants. This paper focuses on the major intrinsic non-enzymatic antioxidants, including metal binding proteins (MBPs), glutathione (GSH), uric acid (UA), melatonin (MEL), bilirubin (BIL) and polyamines (PAs).
Collapse
|
31
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
32
|
Gutha R, Yarrappagaari S, Thopireddy L, Reddy KS, Saddala RR. Effect of abiotic and biotic stress factors analysis using machine learning methods in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:62-72. [PMID: 29156228 DOI: 10.1016/j.cbd.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022]
Abstract
In order to understand the mechanisms underlying stress responses, meta-analysis of transcriptome is made to identify differentially expressed genes (DEGs) and their biological, molecular and cellular mechanisms in response to stressors. The present study is aimed at identifying the effect of abiotic and biotic stress factors, and it is found that several stress responsive genes are common for both abiotic and biotic stress factors in zebrafish. The meta-analysis of micro-array studies revealed that almost 4.7% i.e., 108 common DEGs are differentially regulated between abiotic and biotic stresses. This shows that there is a global coordination and fine-tuning of gene regulation in response to these two types of challenges. We also performed dimension reduction methods, principal component analysis, and partial least squares discriminant analysis which are able to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of DEGs. Beside these methods, the random forests decision tree model classified five out of 8 stress conditions with high accuracy. Finally, Functional enrichment analysis revealed the different gene ontology terms, transcription factors and miRNAs factors in the regulation of stress responses.
Collapse
Affiliation(s)
- Rajasekar Gutha
- Division of Animal Biotechnology, Dept of Biotechnology, School of Herbal Studies and Naturo Sciences, Dravidian University, Kuppam, 517426 A.P., India
| | - Suresh Yarrappagaari
- Division of Animal Biotechnology, Dept of Biotechnology, School of Herbal Studies and Naturo Sciences, Dravidian University, Kuppam, 517426 A.P., India
| | | | | | - Rajeswara Reddy Saddala
- Division of Animal Biotechnology, Dept of Biotechnology, School of Herbal Studies and Naturo Sciences, Dravidian University, Kuppam, 517426 A.P., India.
| |
Collapse
|
33
|
Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition. Nutrients 2017; 9:nu9060593. [PMID: 28604593 PMCID: PMC5490572 DOI: 10.3390/nu9060593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1, and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1. The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 (p-ASK1) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.
Collapse
|
34
|
Othman AI, Edrees GM, El-Missiry MA, Ali DA, Aboel-Nour M, Dabdoub BR. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol Ind Health 2016; 32:1537-49. [DOI: 10.1177/0748233714561286] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological reports have indicated a correlation between the increasing bisphenol A (BPA) levels in the environment and the incidence of male infertility. In this study, the protective effects of melatonin on BPA-induced oxidative stress and apoptosis were investigated in the rat testes and epididymal sperm. Melatonin (10 mg/kg body weight (bw)) was injected concurrently with BPA (50 mg/kg bw) for 3 and 6 weeks. The administration of BPA significantly increased oxidative stress in the testes and epididymal sperm. This was associated with a decrease in the serum testosterone level as well as sperm quality, chromatin condensation/de-condensation level, and the percentage of haploid germ cells in the semen. BPA administration caused a significant increase in apoptosis accompanied by a decrease in the expression of the antiapoptotic proteins Bcl-2 in the testes and epididymal sperm. The concurrent administration of melatonin decreased oxidative stress by modulating the levels of glutathione, superoxide dismutase, and catalase as well as the malondialdehyde and hydrogen peroxide concentrations in the testes and sperm. Melatonin sustained Bcl-2 expression and controlled apoptosis. Furthermore, melatonin maintained the testosterone levels, ameliorated histopathological changes, increased the percentages of seminal haploid germ cells, and protected sperm chromatin condensation process, indicating appropriate spermatogenesis with production of functional sperm. In conclusion, melatonin protected against BPA-induced apoptosis by controlling Bcl-2 expression and ameliorating oxidative stress in the testes and sperm. Thus, melatonin is a promising pharmacological agent for preventing the potential reproductive toxicity of BPA following occupational or environmental exposures.
Collapse
Affiliation(s)
- Azza I Othman
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Gamal M Edrees
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Doaa A Ali
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Aboel-Nour
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Banan R Dabdoub
- Department of Biology, Faculty of Education, Mosul University, Mosul, Iraq
| |
Collapse
|
35
|
Esteban-Zubero E, Alatorre-Jiménez MA, López-Pingarrón L, Reyes-Gonzales MC, Almeida-Souza P, Cantín-Golet A, Ruiz-Ruiz FJ, Tan DX, García JJ, Reiter RJ. Melatonin's role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res 2016; 105:108-120. [PMID: 26808084 DOI: 10.1016/j.phrs.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
Abstract
The liver is a central organ in detoxifying molecules and would otherwise cause molecular damage throughout the organism. Numerous toxic agents including aflatoxin, heavy metals, nicotine, carbon tetrachloride, thioacetamide, and toxins derived during septic processes, generate reactive oxygen species followed by molecular damage to lipids, proteins and DNA, which culminates in hepatic cell death. As a result, the identification of protective agents capable of ameliorating the damage at the cellular level is an urgent need. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other organs and many studies confirm its benefits against oxidative stress including lipid peroxidation, protein mutilation and molecular degeneration in various organs, including the liver. Recent studies confirm the benefits of melatonin in reducing the cellular damage generated as a result of the metabolism of toxic agents. These protective effects are apparent when melatonin is given as a sole therapy or in conjunction with other potentially protective agents. This review summarizes the published reports that document melatonin's ability to protect hepatocytes from molecular damage due to a wide variety of substances (aflatoxin, heavy metals, nicotine, carbon tetrachloride, chemotherapeutics, and endotoxins involved in the septic process), and explains the potential mechanisms by which melatonin provides these benefits. Melatonin is an endogenously-produced molecule which has a very high safety profile that should find utility as a protective molecule against a host of agents that are known to cause molecular mutilation at the level of the liver.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009. Zaragoza, Spain
| | - Marcos César Reyes-Gonzales
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Priscilla Almeida-Souza
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Amparo Cantín-Golet
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009. Zaragoza, Spain
| | - Francisco José Ruiz-Ruiz
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009. Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
36
|
Korean red ginseng protects against doxorubicin-induced testicular damage: An experimental study in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Agil A, Elmahallawy EK, Rodríguez-Ferrer JM, Adem A, Bastaki SM, Al-Abbadi I, Fino Solano YA, Navarro-Alarcón M. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats. Food Funct 2015; 6:2671-8. [PMID: 26134826 DOI: 10.1039/c5fo00590f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melatonin, a widespread substance with antioxidant and anti-inflammatory properties, has been found to act as an antidiabetic agent in animal models, regulating the release and action of insulin. However, the molecular bases of this antidiabetic action are unknown, limiting its application in humans. Several studies have recently shown that melatonin can modify calcium (Ca(2+)) in diabetic animals, and Ca(2+) has been reported to be involved in glucose homeostasis. The objective of the present study was to assess whether the antidiabetic effect of chronic melatonin at pharmacological doses is established via Ca(2+) regulation in different tissues in an animal model of obesity-related type 2 diabetes, using Zücker diabetic fatty (ZDF) rats and their lean littermates, Zücker lean (ZL) rats. After the treatments, flame atomic absorption spectrometry was used to determine Ca(2+) levels in the liver, muscle, main types of internal white adipose tissue, subcutaneous lumbar fat, pancreas, brain, and plasma. This study reports for the first time that chronic melatonin administration (10 mg per kg body weight per day for 6 weeks) increases Ca(2+) levels in muscle, liver, different adipose tissues, and pancreas in ZDF rats, although there were no significant changes in their brain or plasma Ca(2+) levels. We propose that this additional peripheral dual action mechanism underlies the improvement in insulin sensitivity and secretion previously documented in samples from the same animals. According to these results, indoleamine may be a potential candidate for the treatment of type 2 diabetes mellitus associated with obesity.
Collapse
Affiliation(s)
- A Agil
- Department of Pharmacology and Neurosciences Institute (CIBM), School of Medicine, University of Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci 2014; 347:251-6. [DOI: 10.1016/j.jns.2014.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/28/2023]
|
39
|
Navarro-Alarcón M, Ruiz-Ojeda FJ, Blanca-Herrera RM, A-Serrano MM, Acuña-Castroviejo D, Fernández-Vázquez G, Agil A. Melatonin and metabolic regulation: a review. Food Funct 2014; 5:2806-32. [DOI: 10.1039/c4fo00317a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Barman NR, Nandy S, Datta R, Kar PK. Cardioprotective effect of ethanolic extract of Urtica parviflora Roxb. against isoproterenol induced myocardial infarction in rats. Indian J Pharmacol 2014; 45:513-6. [PMID: 24130389 PMCID: PMC3793525 DOI: 10.4103/0253-7613.117782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/23/2012] [Accepted: 06/30/2013] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The objective of this study is to evaluate the effect of ethanolic extract of Urtica parviflora Roxb. in isoproterenol (ISO) induced myocardial infarction (MI) in rats. MATERIALS AND METHODS U. parviflora Roxb. (350 mg/kg and 500 mg/kg, p.o) was administered for 15 days in rats. MI was induced with a single dose of ISO (200 mg/kg, s.c.) on the 14(th) and 15(th) day. At the end of the experimental period (i.e., on the day 16), serum and heart tissues were collected and total cholesterol (TC), high density lipoprotein, triglyceride and malondialdehyde, superoxide dismutase, catalase (CAT), reduced glutathione (GSH) and body weight were determined. RESULTS Administration of ISO in control rats showed a significant (P < 0.001) increase serum cholesterol alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and low density lipoprotein (LDL). There was a significant increase (P < 0.01) in the levels of heart tissues as compared with respective control groups. Rats treated with U. parviflora significantly (P < 0.01) decreased ALT, AST, ALP, LDL and TC. Moreover, there was an increased CAT and GSH levels in rat treated with U. parviflora Roxb. as compared with the control group. CONCLUSION U. parviflora (350 and 500 mg/kg p.o.) is effective in controlling serum LDL levels and reduced cardiac complication in experimentally induced MI in rats.
Collapse
|
41
|
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 2014; 56:343-70. [PMID: 24628077 DOI: 10.1111/jpi.12132] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
Abstract
Metal exposure is associated with several toxic effects; herein, we review the toxicity mechanisms of cadmium, mercury, arsenic, lead, aluminum, chromium, iron, copper, nickel, cobalt, vanadium, and molybdenum as these processes relate to free radical generation. Free radicals can be generated in cells due to a wide variety of exogenous and endogenous processes, causing modifications in DNA bases, enhancing lipid peroxidation, and altering calcium and sulfhydryl homeostasis. Melatonin, an ubiquitous and pleiotropic molecule, exerts efficient protection against oxidative stress and ameliorates oxidative/nitrosative damage by a variety of mechanisms. Also, melatonin has a chelating property which may contribute in reducing metal-induced toxicity as we postulate here. The aim of this review was to highlight the protective role of melatonin in counteracting metal-induced free radical generation. Understanding the physicochemical insights of melatonin related to the free radical scavenging activity and the stimulation of antioxidative enzymes is of critical importance for the development of novel therapeutic strategies against the toxic action of these metals.
Collapse
Affiliation(s)
- Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Dias C, Fagundes D, Gouveia Junior A, Silanes M, Oliveira J. Luz, Melatonina e Estresse Oxidativo na Piscicultura. BIOTA AMAZÔNIA 2013. [DOI: 10.18561/2179-5746/biotaamazonia.v3n3p169-176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
43
|
Lee IC, Kim SH, Baek HS, Moon C, Bae CS, Kim SH, Yun WK, Nam KH, Kim HC, Kim JC. Melatonin improves adriamycin-induced hepatic oxidative damage in rats. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0033-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Navarro-Alarcon M, Ruiz-Ojeda FJ, Blanca-Herrera RM, Agil A. Antioxidant activity of melatonin in diabetes in relation to the regulation and levels of plasma Cu, Zn, Fe, Mn, and Se in Zucker diabetic fatty rats. Nutrition 2013; 29:785-9. [PMID: 23352467 DOI: 10.1016/j.nut.2012.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/02/2012] [Accepted: 11/08/2012] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To study the antioxidant activity of melatonin in diabetes in relation to the regulation and levels of plasma copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), and selenium (Se) in Zucker diabetic fatty (ZDF) and lean (ZL) rats. METHODS At 6 wk of age, both ZDF (n = 30) and ZL (n = 30) animals were subdivided into three groups: control (C) (n = 10), vehicle (V) (n = 10), and melatonin-treated (M) (10 mg/kg/d; n = 10) rats for a 6-wk period. At the end of treatment period, plasma mineral levels were measured by flame (Cu, Zn, and Fe), electrothermal (Mn), and hydride generation (Se) atomic absorption spectrometry. RESULTS ZDF rats had significantly higher Cu, Fe, and Mn plasma levels than did ZL rats (P < 0.05). No significant differences were found between control and vehicle groups (P > 0.05). Melatonin treatment did not influence plasma levels of these antioxidant minerals (Cu, Zn, Fe, and Mn) in ZDF groups (M-ZDF versus C-ZDF group) and ZL (M-ZL versus C-ZL group) rats with the exception of Zn, whose mean plasma level was lower in the M-ZL versus C-ZL group. However, plasma Se levels increased significantly (P < 0.05) after melatonin supplementation in both groups (M-ZDF and M-ZL). CONCLUSION The higher mean plasma Cu, Fe, and Mn levels in the ZDF group are related to the enhanced oxidative stress in diabetes and obesity. Melatonin administration significantly enhanced plasma Se levels in both groups (M-ZDF and M-ZL). This is the first study to report that melatonin treatment increases plasma Se levels.
Collapse
Affiliation(s)
- Miguel Navarro-Alarcon
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, Granada, Spain.
| | | | | | | |
Collapse
|
45
|
Alghasham AA. Comparative Assessment of Melatonin-Afforded Protection in Liver, Kidney and Heart of Male Mice against Doxorubicin Induced Toxicity. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.48085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Brilhante O, Okada FK, Sasso-Cerri E, Stumpp T, Miraglia SM. Late morfofunctional alterations of the Sertoli cell caused by doxorubicin administered to prepubertal rats. Reprod Biol Endocrinol 2012; 10:79. [PMID: 22967030 PMCID: PMC3502149 DOI: 10.1186/1477-7827-10-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/27/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Doxorubicin is a potent chemotherapeutic drug used against a variety of cancers. It acts through interaction with polymerases and topoisomerase II and free radical production. Doxorubicin activity is not specific to cancer cells and can also damage healthy cells, especially those undergoing rapid proliferation, such as spermatogonia. In previous studies our group showed that etoposide, another topoisomarese II poison, causes irreversible damage to Sertoli cells. Thus, the aim of this study was to address the effects of doxorubicin on Sertoli cell morphology and function and on the seminiferous epithelium cycle when administered to prepubertal rats. METHODS Prepubertal rats received the dose of 5 mg/Kg of doxorubicin, which was fractioned in two doses: 3 mg/Kg at 15dpp and 2 mg/Kg at 22 dpp. The testes were collected at 40, 64 and 127 dpp, fixed in Bouin's liquid and submitted to transferrin immunolabeling for Sertoli cell function analysis. Sertoli cell morphology and the frequency of the stages of the seminiferous epithelium cycle were analyzed in PAS + H-stained sections. RESULTS The rats treated with doxorubicin showed reduction of transferrin labeling in the seminiferous epithelium at 40 and 64 dpp, suggesting that Sertoli cell function is altered in these rats. All doxorubicin-treated rats showed sloughing and morphological alterations of Sertoli cells. The frequency of the stages of the seminiferous epithelium cycle was also affected in all doxorubicin-treated rats. CONCLUSIONS AND DISCUSSION These data show that doxorubicin administration during prepuberty causes functional and morphological late damage to Sertoli cells; such damage is secondary to the germ cell primary injury and contributed to enhance the spermatogenic harm caused by this drug. However, additional studies are required to clarify if there is also a direct effect of doxorubicin on Sertoli cells producing a primary damage on these cells.
Collapse
Affiliation(s)
- Otávio Brilhante
- Centre for Health and Rural Technology, Academic Unit of Veterinary Medicine, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Fatima K Okada
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Laboratory of Histology and Embryology, Dental School of São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taiza Stumpp
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| | - Sandra M Miraglia
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo. Vila Clementino, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Lee IC, Kim SH, Lee SM, Baek HS, Moon C, Kim SH, Park SC, Kim HC, Kim JC. Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats. Arch Toxicol 2012; 86:1527-36. [DOI: 10.1007/s00204-012-0849-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/28/2012] [Indexed: 02/05/2023]
|
48
|
Lee KM, Lee IC, Kim SH, Moon C, Park SH, Shin DH, Kim SH, Park SC, Kim HC, Kim JC. Melatonin attenuates doxorubicin-induced testicular toxicity in rats. Andrologia 2011; 44 Suppl 1:796-803. [PMID: 22212014 DOI: 10.1111/j.1439-0272.2011.01269.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/06/2011] [Accepted: 11/01/2011] [Indexed: 11/27/2022] Open
Abstract
This study investigated the protective effects of melatonin (MLT) against doxorubicin (DXR)-induced testicular toxicity and oxidative stress in rats. DXR was given as a single intraperitoneal dose of 10 mg kg(-1) body weight to male rats at 1 h after MLT treatment on day 6 of the study. MLT at 15 mg kg(-1) body weight was administered daily by gavage for 5 days before DXR treatment followed by an additional dose for 5 days. Sperm analysis, histopathological examination and biochemical methods were used for this investigation. DXR caused a decrease in the weight of seminal vesicles, epididymal sperm count and motility and an increase in the incidence of histopathological changes of the testis. In addition, an increased malondialdehyde (MDA) concentration and decreased glutathione content, glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase activities were observed. On the contrary, MLT treatment significantly ameliorated DXR-induced testicular toxicity in rats. Moreover, MDA concentration and GR, GST and SOD activities were not affected when MLT was administered in conjunction with DXR. These results indicate that MLT had a protective effect against DXR-induced testicular toxicity and that the protective effects of MLT may be due to both the inhibition of lipid peroxidation and increased antioxidant activity.
Collapse
Affiliation(s)
- K-M Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aluise CD, Miriyala S, Noel T, Sultana R, Jungsuwadee P, Taylor TJ, Cai J, Pierce WM, Vore M, Moscow JA, St Clair DK, Butterfield DA. 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 2011; 50:1630-8. [PMID: 21421044 DOI: 10.1016/j.freeradbiomed.2011.03.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/18/2011] [Accepted: 03/06/2011] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX), an anthracycline used to treat a variety of cancers, is known to generate intracellular reactive oxygen species. Moreover, many patients who have undergone chemotherapy complain of cognitive dysfunction often lasting years after cessation of the chemotherapy. Previously, we reported that intraperitoneal administration of DOX led to elevated TNF-α and oxidative stress in the plasma and brain of mice. However, the mechanisms involved in nontargeted tissue damage remain unknown. In this study, we measured plasma oxidative stress and cytokine levels in patients treated with DOX. We observed increased plasma protein carbonylation and elevation of TNF-α 6 h after DOX administration in the context of multiagent chemotherapy regimens. Importantly, patients not treated coincidentally with 2-mercaptoethane sulfonate (MESNA) showed statistically significantly increased plasma protein-bound 4-hydroxynonenal, whereas those who had been coincidentally treated with MESNA as part of their multiagent chemotherapy regimen did not, suggesting that concomitant administration of the antioxidant MESNA with DOX prevents intravascular oxidative stress. We demonstrate in a murine model that MESNA suppressed DOX-induced increased plasma oxidative stress indexed by protein carbonyls and protein-bound HNE, and also suppressed DOX-induced increased peripheral TNF-α levels. A direct interaction between DOX and MESNA was demonstrated by MESNA suppression of DOX-induced DCF fluorescence. Using redox proteomics, we identified apolipoprotein A1 (APOA1) in both patients and mice after DOX administration as having increased specific carbonyl levels. Macrophage stimulation studies showed that oxidized APOA1 increased TNF-α levels and augmented TNF-α release by lipopolysaccharide, effects that were prevented by MESNA. This study is the first to demonstrate that DOX oxidizes plasma APOA1, that oxidized APOA1 enhances macrophage TNF-α release and thus could contribute to potential subsequent TNF-α-mediated toxicity, and that MESNA interacts with DOX to block this mechanism and suggests that MESNA could reduce systemic side effects of DOX.
Collapse
|
50
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|