1
|
Chen N, Jin J, Qiao B, Gao Z, Tian Y, Ping J. JNK kinase promotes inflammatory responses by inducing the expression of the inflammatory amplifier TREM1 during influenza a virus infection. Virus Res 2025; 356:199577. [PMID: 40253010 PMCID: PMC12033962 DOI: 10.1016/j.virusres.2025.199577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Since the twentieth century, four influenza pandemics caused by IAV have killed millions of people worldwide. IAV infection could induce acute lung injury mediated by cytokine storms, which is an essential cause of death in critically ill patients. Consequently, it is crucial to explore the regulators and regulatory mechanisms of cytokine storms, which may provide potential drug targets and expand our understanding of acute lung injury. Previous studies have shown that JNK kinase is essential in promoting inflammatory responses during viral infections. In this study, we demonstrated that JNK kinase could regulate the IAV-induced cytokine storms by affecting the expression of pro-inflammatory and anti-inflammatory factors. Further studies revealed that inhibition of JNK kinase activity significantly downregulated the expression of the inflammatory amplifier TREM1. Besides, TREM1 knockdown could significantly inhibit the expression of pro-inflammatory factors. Furthermore, SP600125 is a specific inhibitor of JNK kinase. The results show that TREM1 overexpression reversed the effect of SP600125 treatment on the expression of pro-inflammatory factors. Together, we found that JNK kinase could activate the inflammatory amplifier TREM1 to promote inflammatory responses during influenza A virus infection. These findings may provide some inspiration for subsequent researchers to explore the regulatory mechanisms of cytokine storms induced by emerging viral infections.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiayu Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihe Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yusen Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Li C, Cai C, Xu D, Chen X, Song J. TREM1: Activation, signaling, cancer and therapy. Pharmacol Res 2024; 204:107212. [PMID: 38749377 DOI: 10.1016/j.phrs.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1) is a cell surface receptor expressed on neutrophils, monocytes and some tissue macrophages, where it functions as an immunoregulator that controls myeloid cell responses. The activation of TREM1 is suggested to be an upregulation-based, ligands-induced and structural multimerization-mediated process, in which damage- and pathogen-associated molecular patterns play important roles. Activated TREM1 initiates an array of downstream signaling pathways that ultimately result in the production of pro-inflammatory cytokines and chemokines, whereby it functions as an amplifier of inflammation and is implicated in the pathogenesis of many inflammation-associated diseases. Over the past decade, there has been growing evidence for the involvement of TREM1 overactivation in tumor stroma inflammation and cancer progression. Indeed, it was shown that TREM1 promotes tumor progression, immunosuppression, and resistance to therapy by activating tumor-infiltrating myeloid cells. TREM1-deficiency or blockade provide protection against tumors and reverse the resistance to anti-PD-1/PD-L1 therapy and arginine-deprivation therapy in preclinical models. Here, we first review the structure, activation modes and signaling pathways of TREM1 and emphasize the role of soluble TREM1 as a biomarker of infection and cancer. We then focus on the role of TREM1 in cancer and systematically summarize its expression patterns, upregulation mechanisms and functions in tumor development and progression. Lastly, we discuss the therapeutic prospects of TREM1 inhibition, via effective pharmacological inhibitors, in treating cancer and other diseases.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis(Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dafeng Xu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei 430030, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China.
| | - Jia Song
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Clinical Medicine Research Centre for Hepatic Surgery of Hubei Province, Wuhan, Hubei 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Wei H, Deng M, Ding R, Wei L, Yuan H. Macrophage β2-AR activation amplifies inflammation in wound healing by upregulating Trem1 via the cAMP/PKA/CREB pathway. Int Immunopharmacol 2024; 128:111463. [PMID: 38190789 DOI: 10.1016/j.intimp.2023.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Inflammation is an important part of the wound healing process. The stress hormone epinephrine has been demonstrated to modulate the inflammatory response via its interaction with β2-adrenergic receptor (β2-AR). However, the precise molecular mechanism through which β2-AR exerts its influence on inflammation during the wound healing process remains an unresolved question. METHODS Transcriptome datasets of wound and macrophages from the GEO database were reanalyzed using bioinformatics. The role of β2-AR in wound healing was explored by a mouse hind paw plantar wound model, and histological analyses were performed to assess wound healing. In vivo and in vitro assays were performed to elucidate the role of β2-AR on the inflammatory response. Triggering receptor expressed on myeloid cells 1 (Trem1) was knocked down with siRNA on RAW cells and western blot and qPCR assays were performed. RESULTS Trem1 was upregulated within 24 h of wounding, and macrophage β2-AR activation also upregulated Trem1. In vivo experiments demonstrated that β2-AR agonists impaired wound healing, accompanied by upregulation of Trem1 and activation of cAMP/PKA/CREB pathway, as well as by a high level of pro-inflammatory cytokine production. In vitro experiments showed that macrophage β2-AR activation amplified LPS-induced inflammation, and knockdown of Trem1 reversed this effect. Using activator and inhibitor of cAMP, macrophage β2-AR activation was confirmed to upregulate Trem1 via the cAMP/PKA/CREB pathway. CONCLUSION Our study found that β2-AR agonists increase Trem1 expression in wounds, accompanied by amplification of the inflammatory response, impairing wound healing. β2-AR activation in RAW cells induces Trem1 upregulation via the cAMP/PKA/CREB pathway and amplifies LPS-induced inflammatory responses.
Collapse
Affiliation(s)
- Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
4
|
Panagopoulos A, Samant S, Bakhos JJ, Liu M, Khan B, Makadia J, Muhammad F, Kievit FM, Agrawal DK, Chatzizisis YS. Triggering receptor expressed on myeloid cells-1 (TREM-1) inhibition in atherosclerosis. Pharmacol Ther 2022; 238:108182. [DOI: 10.1016/j.pharmthera.2022.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
|
5
|
Shen P, Zhang T, Chen G, Zhang B, Huang A, Duan L, Zhu D, Chen J, Wang J, Duan Y. Recombinant P40 protein of Schistosoma japonicum inhibits TREM-1 expression in RAW264.7 cells via FOXO3a. Biomed Pharmacother 2022; 149:112826. [PMID: 35306429 DOI: 10.1016/j.biopha.2022.112826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a transmembrane glycoprotein receptor and TREM-1 expression reached the peak at 6 weeks after infection with Schistosoma japonicum and inhibited subsequently. Since TREM-1 may be involved in the macrophage polarization process, the reason for the inhibition of TREM-1 expression in chronic schistosomiasis engaged us in them. In this study, flow cytometry was used to observe TREM-1 expression in peritoneal macrophages from mice infected with Schistosoma japonicum. Since P40 is one of the main components from schistosoma eggs, western blot and dual-luciferase reporter assays were performed to observe the effect of recombinant Schistosoma japonicum P40 protein (rSjP40) on TREM-1 expression in the mouse leukemic monocyte/macrophage cell line RAW264.7. These methods were also conducted to observe the effect of FOXO3a on the expression of TREM-1 in RAW264.7 cells, and a ChIP assay was performed to confirm the binding site of FOXO3a to the TREM-1 promoter. Our results showed that TREM-1 expression reached the peak in peritoneal macrophages from mice at 6 weeks after infection with Schistosoma japonicum. rSjP40 inhibited TREM-1 promoter activity at the position of - 1924 ~ - 1531 bp. rSjP40 down-regulated TREM-1 and FOXO3a protein expression in RAW264.7 cells. TREM-1 protein expression may be regulated by binding of FOXO3a to the promoter of TREM-1 in RAW264.7 cells. In conclusion, we found that rSjP40 inhibited TREM-1 expression in macrophages by inhibiting FOXO3a expression. This study will provide the basis for the study to explore the role of TREM-1 in Schistosoma japonicum infection.
Collapse
Affiliation(s)
- Pei Shen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China; Department of Laboratory Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Tianyu Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Bei Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Ailong Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China.
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jianxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Cao L, Yang K. Paeoniflorin Attenuated TREM-1-Mediated Inflammation in THP-1 Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7051643. [PMID: 35480155 PMCID: PMC9038380 DOI: 10.1155/2022/7051643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 12/04/2022]
Abstract
Sepsis is caused by bacterial infections or viral infections. Clinically, there exist confirmed or highly suspected infection foci. Mortality caused by septic shock remains in a high rate even though antibiotic treatment works effectively. In this study, we treat THP-1 cells with 1 ug/mL LPS (lipopolysaccharide) and add paeoniflorin or LR-12 inhibitor. TREM-1 (triggering receptor expressed on myeloid cells-1), IL-6, IL-1β, and TNF-α (tumour necrosis factor alpha (a)-cachectin) were detected by ELISA and qRT-PCR, and western blotting is performed to detect related proteins in the NF-κB signaling pathway. As a result, paeoniflorin can significantly reduce the production of LPS-stimulated TREM-1 as well as inflammatory factors and attenuate the phosphorylation of NF-κB signaling pathway-related factors, such as p65 and IκBα. At the same time, the combined effect of paeoniflorin and LR-12 is more significant. The results of this study solidly prove that paeoniflorin plays a role in inhibiting TREM-1-mediated inflammation and the NF-κB pathway could be a potential mechanism of action.
Collapse
Affiliation(s)
- Li Cao
- Department of Critical Medicine, Shenzhen Baoan Shiyan People's Hospital, Shenzhen 5515108, China
| | - Kerong Yang
- Department of Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Chellappan R, Guha A, Si Y, Kwan T, Nabors LB, Filippova N, Yang X, Myneni AS, Meesala S, Harms AS, King PH. SRI-42127, a novel small molecule inhibitor of the RNA regulator HuR, potently attenuates glial activation in a model of lipopolysaccharide-induced neuroinflammation. Glia 2022; 70:155-172. [PMID: 34533864 PMCID: PMC8595840 DOI: 10.1002/glia.24094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1β, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-β1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.
Collapse
Affiliation(s)
- Rajeshwari Chellappan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - L. Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiuhua Yang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anish S. Myneni
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shriya Meesala
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294,,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294,,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294,Correspondence to: Dr. P.H. King; UAB Dept. of Neurology, Civitan 545C, 1530 3 Avenue South, Birmingham, AL 35294-0017, USA. Tel. (205) 975-8116; Fax (205) 996-7255;
| |
Collapse
|
8
|
Ohlstrom D, Hernandez-Lagunas L, Garcia AM, Allawzi A, Karimpour-Fard A, Sucharov CC, Nozik-Grayck E. MicroRNA regulation postbleomycin due to the R213G extracellular superoxide dismutase variant is predicted to suppress inflammatory and immune pathways. Physiol Genomics 2020; 52:245-254. [PMID: 32421439 PMCID: PMC7311677 DOI: 10.1152/physiolgenomics.00116.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress is a key contributor to the development of dysregulated inflammation in acute lung injury (ALI). A naturally occurring single nucleotide polymorphism in the key extracellular antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), results in an arginine to glycine substitution (R213G) that promotes resolution of inflammation and protection against bleomycin-induced ALI. Previously we found that mice harboring the R213G mutation in EC-SOD exhibit a transcriptomic profile consistent with a striking suppression of inflammatory and immune pathways 7 days postbleomycin. However, the alterations in noncoding regulatory RNAs in wild-type (WT) and R213G EC-SOD lungs have not been examined. Therefore, we used next-generation microRNA (miR) Sequencing of lung tissue to identify dysregulated miRs 7 days after bleomycin in WT and R213G mice. Differential expression analysis identified 92 WT and 235 R213G miRs uniquely dysregulated in their respective genotypes. Subsequent pathway analysis identified that these miRs were predicted to regulate approximately half of the differentially expressed genes previously identified. The gene targets of these altered miRs indicate suppression of immune and inflammatory pathways in the R213G mice versus activation of these pathways in WT mice. Triggering receptor expressed on myeloid cells 1 (TREM1) signaling was identified as the inflammatory pathway with the most striking difference between WT and R213G lungs. miR-486b-3p was identified as the most dysregulated miR predicted to regulate the TREM1 pathway. We validated the increase in TREM1 signaling using miR-486b-3p antagomir transfection. These findings indicate that differential miR regulation is predicted to regulate the inflammatory gene profile, contributing to the protection against ALI in R213G mice.
Collapse
Affiliation(s)
- Denis Ohlstrom
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| | - Laura Hernandez-Lagunas
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| | - Anastacia M Garcia
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, C Colorado
| |
Collapse
|
9
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
10
|
Dantas PHDS, Matos ADO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020; 39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is an innate immune receptor found in the surface of several immune and non-immune cells. Since its first description in 2000, this molecule and its soluble form (sTREM-1) have been implicated in many diseases with infectious and noninfectious origins. As an amplifier of inflammation, the membrane-associated TREM-1 (mTREM-1) isoform induces the production of pro-inflammatory mediators, thus contributing to the pathogenesis of diseases such as sepsis, arthritis, colitis and infections. In this context, many studies have used molecules capable of inhibiting TREM-1 activity as anti-inflammatory drugs. In this regard, a few peptides have been showing promising results in the amelioration of detrimental immune responses. Some commercially available drugs, including corticosteroids and antibiotics, with known anti-inflammatory effects, have also shown activity in TREM-1 signaling. Therefore, considering the potential of this receptor as a therapeutic target, the present review encompasses the main compounds explored so far in TREM-1 modulation, highlighting and critically discussing its effects and major drawbacks of such approaches.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Ernandes da Silva Filho
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
11
|
Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, Shen L, Wang W, Hua C. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev 2018; 18:25-35. [PMID: 30408584 DOI: 10.1016/j.autrev.2018.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) engagement can directly trigger inflammation or amplify an inflammatory response by synergizing with TLRs or NLRs. Autoimmune diseases are a family of chronic systemic inflammatory disorders. The pivotal role of TREM-1 in inflammation makes it important to explore its immunological effects in autoimmune diseases. In this review, we summarize the structural and functional characteristics of TREM-1. Particularly, we discuss recent findings on TREM-1 pathway regulation in various autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), type 1 diabetes (T1D), and psoriasis. This receptor may potentially be manipulated to alter the inflammatory response to chronic inflammation and possible therapies are explored in this review.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chengyang Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chenmin Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fuyang Tu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Leibin Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wenqian Wang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
12
|
Che X, Park KC, Park SJ, Kang YH, Jin HA, Kim JW, Seo DH, Kim DK, Kim TI, Kim WH, Kim SW, Cheon JH. Protective effects of guggulsterone against colitis are associated with the suppression of TREM-1 and modulation of macrophages. Am J Physiol Gastrointest Liver Physiol 2018; 315:G128-G139. [PMID: 29543509 DOI: 10.1152/ajpgi.00027.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1)-expressing intestinal macrophages are significantly increased in the colons of patients with inflammatory bowel disease (IBD). We focused here on the effects of guggulsterone on macrophage modulation in colitis as a potential therapeutic molecule in human IBD and explore the underlying mechanisms. Gene expression in macrophages was examined and wound-healing assay using HT-29 cells was performed. Colitis in wild-type and IL-10-, Toll-like receptor 4 (TLR4)-, and myeloid differentiation primary response 88 (MyD88)-deficient mice was induced via the administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the colon. In both in vitro and in vivo experiments, guggulsterone suppressed intestinal inflammation amplified by TREM-1 stimulation, in which the suppression of NF-κB, activating protein-1, and proteasome pathways was involved. In the TNBS-induced colitis model, guggulsterone reduced disease activity index scores and TREM-1 expression, stimulated IL-10 production, and improved survival in wild-type mice. These effects were not observed in IL-10-, TLR4-, and MyD88-deficient mice. Guggulsterone also suppressed M1 polarization, yet induced the M2 phenotype in macrophages from IBD patients as well as from mice. These findings indicate that guggulsterone blocks the hyperactivation of macrophages via TREM-1 suppression and induces M2 polarization via IL-10 mediated by the TLR4 signaling pathway. Furthermore, this study provides a new rationale for the therapeutic potential of guggulsterone in the treatment of IBD. NEW & NOTEWORTHY We found that guggulsterone attenuates triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated hyperactivation of macrophages and polarizes macrophages toward the M2 phenotype. This was mediated by IL-10 and partly Toll-like receptor 4 signaling pathways. Overall, these data support that guggulsterone as a natural plant sterol modulates macrophage phenotypes in colitis, which may be of novel therapeutic importance in inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Xiumei Che
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
| | - Ki Cheong Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
- Department of Surgery, Yonsei University College of Medicine , Seoul , Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
| | - You Hyun Kang
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
| | - Hyun A Jin
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
| | - Joo Wan Kim
- University of Toronto, Toronto, Ontario, Canada
| | - Dong Hyuk Seo
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
| | - Dae Kyu Kim
- Chadwick International School , Seoul , Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine , Seoul , Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine , Seoul , Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
13
|
Han L, Fu L, Peng Y, Zhang A. Triggering Receptor Expressed on Myeloid Cells-1 Signaling: Protective and Pathogenic Roles on Streptococcal Toxic-Shock-Like Syndrome Caused by Streptococcus suis. Front Immunol 2018; 9:577. [PMID: 29619033 PMCID: PMC5871666 DOI: 10.3389/fimmu.2018.00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis infections can cause septic shock, which is referred to as streptococcal toxic-shock-like syndrome (STSLS). The disease is characterized by a severe inflammatory response, multiple organ failure, and high mortality. However, no superantigen that is responsible for toxic shock syndrome was detected in S. suis, indicating that the mechanism underlying STSLS is different and remains to be elucidated. Triggering receptor expressed on myeloid cells-1 (TREM-1), belonging to the Ig superfamily, is an activating receptor expressed on myeloid cells, and has been recognized as a critical immunomodulator in several inflammatory diseases of both infectious and non-infectious etiologies. In this review, we discuss the current understanding of the immunoregulatory functions of TREM-1 on acute infectious diseases and then highlight the crucial roles of TREM-1 on the development of STSLS.
Collapse
Affiliation(s)
- Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Kwan T, Floyd CL, Kim S, King PH. RNA Binding Protein Human Antigen R Is Translocated in Astrocytes following Spinal Cord Injury and Promotes the Inflammatory Response. J Neurotrauma 2017; 34:1249-1259. [PMID: 27852147 DOI: 10.1089/neu.2016.4757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays a prominent role in the events following traumatic injury to the central nervous system (CNS). The initial inflammatory response is driven by mediators such as tumor necrosis factor α and interleukin 1β, which are produced by activated astrocytes and microglia at the site of injury. These factors are regulated post-transcriptionally by RNA binding proteins (RBP) that interact with adenylate and uridylate-rich elements (ARE) in the 3'-untranslated region of the messenger RNA (mRNA). Human antigen R (HuR) is one of these RBPs and generally functions as a positive regulator of ARE-containing mRNAs. Here, we hypothesized that HuR plays an important role in the induction of cytokine and chemokines in astrocytes following traumatic injury. Using a mouse model of spinal cord injury, we found HuR to be extensively translocated to the cytoplasm in astrocytes at the level of injury, consistent with its activation. In an in vitro stretch injury model of CNS trauma, we observed a similar cytoplasmic shift of HuR in astrocytes and an attenuation of cytokine induction with HuR knockdown. RNA kinetics and luciferase assays suggested that the effect was more related to transcription than RNA destabilization. A small molecule inhibitor of HuR suppressed cytokine induction of injured astrocytes and reduced chemoattraction for neutrophils and microglia. In summary, HuR is activated in astrocytes in the early stages of CNS trauma and positively regulates the molecular response of key inflammatory mediators in astrocytes. Our findings suggest that HuR may be a therapeutic target in acute CNS trauma for blunting secondary tissue injury triggered by the inflammatory response.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama
| | - Candace L Floyd
- 2 Department of Physical Medicine and Rehabilitation, University of Alabama , Birmingham, Alabama
| | - Soojin Kim
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Peter H King
- 1 Department of Neurology, University of Alabama , Birmingham, Alabama.,3 Department of Cell, Developmental and Integrative Biology, University of Alabama , Birmingham, Alabama.,4 Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
15
|
Zemankova N, Chlebova K, Matiasovic J, Prodelalova J, Gebauer J, Faldyna M. Bovine lactoferrin free of lipopolysaccharide can induce a proinflammatory response of macrophages. BMC Vet Res 2016; 12:251. [PMID: 27829421 PMCID: PMC5103330 DOI: 10.1186/s12917-016-0878-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Background Lactoferrin (LF) is an 80 kDa glycoprotein which is known for its effects against bacteria, viruses and other pathogens. It also has a high potential in nutrition therapy and welfare of people and a variety of animals, including piglets. The ability to bind lipopolysaccharide (LPS) is one of the described anti-inflammatory mechanisms of LF. Previous studies suggested that cells can be stimulated even by LPS-free LF. Therefore, the aim of our study was to bring additional information about this possibility. Porcine monocyte derived macrophages (MDMF) and human embryonic kidney (HEK) cells were stimulated with unpurified LF in complex with LPS and with purified LF without bound LPS. Results Both cell types were stimulated with unpurified as well as purified LF. On the other hand, neither HEK0 cells not expressing any TLR nor HEK4a cells transfected with TLR4 produced any pro-inflammatory cytokine transcripts after stimulation with purified LF. This suggests that purified LF without LPS stimulates cells via another receptor than TLR4. An alternative, TLR4-independent, pathway was further confirmed by analyses of the NF-kappa-B-inducing kinase (NIK) activation. Western blot analyses showed NIK which activates different NFκB subunits compared to LF-LPS signaling via TLR4. Though, this confirmed an alternative pathway which is used by the purified LF free of LPS. This stimulation of MDMF led to low, but significant amounts of pro-inflammatory cytokines, which can be considered as a positive stimulation of the immune system. Conclusion Our results suggest that LF’s ability is not only to bind LPS, but LF itself may be a stimulant of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Nada Zemankova
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katarina Chlebova
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Matiasovic
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Jana Prodelalova
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Jan Gebauer
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic.
| |
Collapse
|
16
|
Peng L, Zhou Y, Dong L, Chen RQ, Sun GY, Liu T, Ran WZ, Fang X, Jiang JX, Guan CX. TGF-β1 Upregulates the Expression of Triggering Receptor Expressed on Myeloid Cells 1 in Murine Lungs. Sci Rep 2016; 6:18946. [PMID: 26738569 PMCID: PMC4704059 DOI: 10.1038/srep18946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) increases the expression of TGF-β family genes, which are known as profibrogenic cytokines in the pathogenesis of pulmonary fibrosis. In this study, we determined whether TGF-β1 regulated the expression of TREM-1 in a mouse model of pulmonary fibrosis. The expression of TGF-β1 and TREM-1 was increased on day 7, 14, and 21 after single intratracheal injection of bleomycin (BLM). And there was positive correlation between the expression of TGF-β1 and TREM-1. TGF-β1 increased expression of TREM-1 mRNA and protein in a time- and dose-dependent manner in mouse macrophages. The expression of the activator protein 1 (AP-1) was increased in lung tissues from mouse after BLM injection and in mouse macrophages after TGF-β1 treatment, respectively. TGF-β1 significantly increased the relative activity of luciferase in the cells transfected with plasmid contenting wild type-promoter of TREM-1. But TGF-β1 had no effect on the activity of luciferase in the cells transfected with a mutant-TREM1 plasmid carrying mutations in the AP-1 promoter binding site. In conclusion, we found the expression of TREM-1 was increased in lung tissues from mice with pulmonary fibrosis. TGF-β1 increased the expression of TREM-1 in mouse macrophages partly via the transcription factor AP-1.
Collapse
Affiliation(s)
- Li Peng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Liang Dong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui-Qi Chen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guo-Ying Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen-Zhuo Ran
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
17
|
Hosoda H, Tamura H, Nagaoka I. Evaluation of the lipopolysaccharide-induced transcription of the human TREM-1 gene in vitamin D3-matured THP-1 macrophage-like cells. Int J Mol Med 2015; 36:1300-10. [PMID: 26397033 DOI: 10.3892/ijmm.2015.2349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) plays a role in inflammation by augmenting inflammatory responses through the production of pro-inflammatory cytokines. TREM-1 is expressed in mature macrophages, and is upregulated by stimulation with bacterial components, such as lipopolysaccharide (LPS). In the present study, the regulatory mechanisms responsible for the transcription of the human TREM-1 gene were examined using a human monocytic cell line (THP-1 cells). Reverse transcription-polymerase chain reaction (RT-PCR) revealed that TREM-1 mRNA was constitutively expressed at a low level in resting cells, and that its expression was upregulated by treatment with vitamin D3 (VitD3), but not by LPS. Importantly, TREM-1 mRNA expression was further upregulated by stimulation of the VitD3‑treated THP-1 cells with LPS. In addition, a luciferase reporter assay revealed that the serum response element (SRE) was involved in VitD3-induced promoter activity, whereas the activator protein-1 (AP-1) sites participated in the VitD3- and LPS-induced promoter activity. Of note, the CCAAT-enhancer-binding protein (C/EBP) site contributed not only to basal, but also to VitD3- and LPS-induced promoter activity. Transfection with transcription factor oligodeoxynucleotide (ODN) decoys indicated that transcription factors of the C/EBP and AP-1 families are likely involved in the basal, as well as in the VitD3- and LPS-induced TREM-1 transcription. Western blot analysis indicated that, of the members of the C/EBP family, C/EBPα was constitutively expressed in resting cells; its expression was enhanced by treatment with VitD3 and was further increased by treatment with VitD3 and LPS. Moreover, the expression of c-Fos and c-Jun (members of the AP-1 family) was augmented by treatment with both VitD3 and LPS. These observations indicate that members of the C/EBP family participate not only in basal, but also in the VitD3- and LPS-induced promoter activity of the human TREM-1 gene, and that members of the AP-1 family are involved in the VitD3- and LPS-induced promoter activity.
Collapse
Affiliation(s)
- Hiroshi Hosoda
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Hiroshi Tamura
- LPS (Laboratory Program Support) Consulting Office, Tokyo 160-0023, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113‑8421, Japan
| |
Collapse
|
18
|
Pelham CJ, Pandya AN, Agrawal DK. Triggering receptor expressed on myeloid cells receptor family modulators: a patent review. Expert Opin Ther Pat 2014; 24:1383-95. [PMID: 25363248 DOI: 10.1517/13543776.2014.977865] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Triggering receptor expressed on myeloid cells (TREM) receptors and TREM-like transcript (TLT; or TREML) receptors of the immunoglobulin superfamily are known as key modulators of host immune responses. TREM-1 (CD354) and TREM-2 share the transmembrane adaptor DNAX-activation protein of 12 kDa (DAP12), but they possess separate stimulatory and inhibitory functional roles, especially in myeloid cells. AREAS COVERED This review covers findings related to TREMs and TLTs published in patent applications from their discovery in 2000 to the present. New roles for TREM-1, TREM-2, TLT-1 and TLT-2 in maladies ranging from acute and chronic inflammatory disorders to cardiovascular diseases and cancers are discussed. Putative endogenous ligands and novel synthetic peptide blockers are also discussed. EXPERT OPINION So far, therapeutic use of activators/blockers specific for TREMs and TLTs has been limited to preclinical animal models. TREM-1 is an immediate therapeutic target for acute and chronic inflammatory conditions, especially sepsis. Certain mutations in DAP12 and TREM-2 manifest into a disorder named polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, and newly identified TREM-2 variants confer a significant increase in risk of developing Alzheimer's disease. This makes TREM-2 an attractive therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher J Pelham
- Creighton University School of Medicine, Department of Biomedical Sciences and Center for Clinical & Translational Science , Omaha, NE 68178 , USA
| | | | | |
Collapse
|
19
|
Pelham CJ, Agrawal DK. Emerging roles for triggering receptor expressed on myeloid cells receptor family signaling in inflammatory diseases. Expert Rev Clin Immunol 2013; 10:243-56. [PMID: 24325404 DOI: 10.1586/1744666x.2014.866519] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Innate immune receptors represent important therapeutic targets for inflammatory disorders. In particular, the Toll-like receptor (TLR) family has emerged as a promoter of chronic inflammation that contributes to obesity, insulin resistance and atherosclerosis. Importantly, triggering receptor expressed on myeloid cells-1 (TREM-1) has been characterized as an 'amplifier' of TLR2 and TLR4 signaling. TREM-1- and TREM-2-dependent signaling, as opposed to TREM-like transcript-1 (TLT-1 or TREML1), are mediated through association with the transmembrane adaptor DNAX activation protein of 12 kDa (DAP12). Recessive inheritance of rare mutations in DAP12 or TREM-2 results in a disorder called polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, and surprisingly these subjects are not immunocompromised. Recent progress into the roles of TREM/DAP12 signaling is critically reviewed here with a focus on metabolic, cardiovascular and inflammatory diseases. The expanding repertoire of putative ligands for TREM receptors is also discussed.
Collapse
Affiliation(s)
- Christopher J Pelham
- Department of Biomedical Sciences and Center for Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | |
Collapse
|
20
|
Liu YJ, Fan HB, Jin Y, Ren CG, Jia XE, Wang L, Chen Y, Dong M, Zhu KY, Dong ZW, Ye BX, Zhong Z, Deng M, Liu TX, Ren R. Cannabinoid receptor 2 suppresses leukocyte inflammatory migration by modulating the JNK/c-Jun/Alox5 pathway. J Biol Chem 2013; 288:13551-62. [PMID: 23539630 DOI: 10.1074/jbc.m113.453811] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. RESULTS Cnr2 activation down-regulates 5-lipoxygenase (Alox5) expression by suppressing the JNK/c-Jun activation. CONCLUSION The Cnr2-JNK-Alox5 axis modulates leukocyte inflammatory migration. SIGNIFICANCE Linking two important regulators in leukocyte inflammatory migration and providing a potential therapeutic strategy for treating human inflammation-associated diseases. Inflammatory migration of immune cells is involved in many human diseases. Identification of molecular pathways and modulators controlling inflammatory migration could lead to therapeutic strategies for treating human inflammation-associated diseases. The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. Through a chemical genetic screen using a zebrafish model for leukocyte migration, we found that both an agonist of the Cnr2 and inhibitor of the 5-lipoxygenase (Alox5, encoded by alox5) inhibit leukocyte migration in response to acute injury. These agents have a similar effect on migration of human myeloid cells. Consistent with these results, we found that inactivation of Cnr2 by zinc finger nuclease-mediated mutagenesis enhances leukocyte migration, while inactivation of Alox5 blocks leukocyte migration. Further investigation indicates that there is a signaling link between Cnr2 and Alox5 and that alox5 is a target of c-Jun. Cnr2 activation down-regulates alox5 expression by suppressing the JNK/c-Jun activation. These studies demonstrate that Cnr2, JNK, and Alox5 constitute a pathway regulating leukocyte migration. The cooperative effect between the Cnr2 agonist and Alox5 inhibitor also provides a potential therapeutic strategy for treating human inflammation-associated diseases.
Collapse
Affiliation(s)
- Yi-Jie Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li X, Lin WJ, Chen CY, Si Y, Zhang X, Lu L, Suswam E, Zheng L, King PH. KSRP: a checkpoint for inflammatory cytokine production in astrocytes. Glia 2012; 60:1773-84. [PMID: 22847996 DOI: 10.1002/glia.22396] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/29/2012] [Indexed: 11/08/2022]
Abstract
Chronic inflammation in the central nervous system (CNS) is a central feature of many neurodegenerative and autoimmune diseases. As an immunologically competent cell, the astrocyte plays an important role in CNS inflammation. It is capable of expressing a number of cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) that promote inflammation directly and through the recruitment of immune cells. Checkpoints are therefore in place to keep tight control over cytokine production. Adenylate/uridylate-rich elements (ARE) in the 3' untranslated region of cytokine mRNAs serve as a major checkpoint by regulating mRNA stability and translational efficiency. Here, we examined the impact of KH-type splicing regulatory protein (KSRP), an RNA binding protein which destabilizes mRNAs via the ARE, on cytokine expression and paracrine phenotypes of primary astrocytes. We identified a network of inflammatory mediators, including TNF-α and IL-1β, whose expression increased 2 to 4-fold at the RNA level in astrocytes isolated from KSRP(-/-) mice compared to littermate controls. Upon activation, KSRP(-/-) astrocytes produced TNF-α and IL-1β at levels that exceeded control cells by 15-fold or more. Conditioned media from KSRP(-/-) astrocytes induced chemotaxis and neuronal cell death in vitro. Surprisingly, we observed a prolongation of half-life in only a subset of mRNA targets and only after selective astrocyte activation. Luciferase reporter studies indicated that KSRP regulates cytokine gene expression at both transcriptional and post-transcriptional levels. Our results outline a critical role for KSRP in regulating pro-inflammatory mediators and have implications for a wide range of CNS inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Neurology, University of Alabama, Birmingham, Alabama 35233-0017, USA
| | | | | | | | | | | | | | | | | |
Collapse
|