1
|
Cheng J, Yan G, Tan W, Qin Z, Xie Q, Liu Y, Li Y, Chen J, Yang X, Chen J, Su Z, Xie J. Berberine alleviates fructose-induced hepatic injury via ADK/AMPK/Nrf2 pathway: A novel insight. Biomed Pharmacother 2024; 179:117361. [PMID: 39243432 DOI: 10.1016/j.biopha.2024.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Berberine (BBR) is a major active component of traditional Chinese medicine Rhizoma Coptidis and Cortex Phellodendri, which have been frequently used to treat liver diseases. Oxidative stress and inflammation are two pivotal hepatic pathological hallmarks. This study aimed to explore the potential effect and underlying mechanism of BBR on fructose-induced rat liver injury model, and hepatocyte damage in HepG2 and BRL-3A cells. Our results indicated that BBR effectively reversed fructose-induced body weight gain, glucose intolerance, and insulin resistance, observably attenuated abnormal histopathological alterations and ameliorated serum activities of ALT and AST. In vivo and in vitro, BBR significantly alleviated the secretion of pro-inflammatory cytokines IL-6 and TNF-α, and elevated levels of anti-inflammatory cytokine IL-10. BBR also attenuated oxidative stress by markedly decreasing intracellular contents of ROS and MDA, and increasing SOD enzymatic activity and GSH level. Furthermore, BBR substantially upregulated the protein expression of Nrf2, HO-1 and p-AMPK, and the fluorescence level of p-AMPK. In addition, BBR significantly increased the level of AMP, the ratio of AMP/ATP, and promoted the expression of ADK. Nevertheless, siADK abolished the benefits exerted by BBR on HepG2 and BRL-3A cells. Conclusively, the hepatoprotective effect of BBR was believed to be intimately associated with anti-inflammatory and antioxidant action mediated, at least partially, via ADK/AMPK/Nrf2 signaling. This work provided further support for the traditional application of Rhizoma Coptidis and Cortex Phellodendri in liver protection and might shed novel dimension to the clinical application of BBR, providing a promising lead compound for drug design.
Collapse
Affiliation(s)
- Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China
| | - Guangtao Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wenwen Tan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qingfeng Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Li Ke Ancient Chinese medicine & Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China.
| |
Collapse
|
2
|
Jang HJ, Boo HJ, Min HY, Kang YP, Kwon SW, Lee HY. Effect of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and benzo[a]pyrene exposure on the development of metabolic syndrome in mice. Life Sci 2023; 329:121925. [PMID: 37423377 DOI: 10.1016/j.lfs.2023.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
AIM The prevalence of metabolic syndrome (MetS), a cluster of serious medical conditions that raise the risk of lung cancer, has increased worldwide. Tobacco smoking (TS) potentially increases the risk of developing MetS. Despite the potential association of MetS with lung cancer, preclinical models that mimic human diseases, including TS-induced MetS, are limited. Here we evaluated the impact of exposure to tobacco smoke condensate (TSC) and two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNK) and benzo[a]pyrene (BaP), on MetS development in mice. MATERIALS AND METHODS FVB/N or C57BL/6 mice were exposed to vehicle, TSC, or NNK and BaP (NB) twice weekly for 5 months. The serum levels of total cholesterol (TCHO), triglycerides, high-density lipoprotein (HDL), blood glucose, and metabolites, along with glucose tolerance and body weight, were measured. KEY FINDINGS Compared with those of vehicle-treated mice, mice with TSC or NB exposure displayed major phenotypes associated with MetS, including increased serum levels of TCHO, triglycerides, and fasting and basal blood glucose and decreased glucose tolerance, and serum levels of HDL. These MetS-associated changes were found in both FVB/N and C57BL/6 mice that were susceptible or resistant to carcinogen-induced tumorigenesis, respectively, indicating that tumor formation is not involved in the TSC- or NB-mediated MetS. Moreover, oleic acid and palmitoleic acid, which are known to be associated with MetS, were significantly upregulated in the serum of TSC- or NB-treated mice compared with those in vehicle-treated mice. SIGNIFICANCE Both TSC and NB caused detrimental health problems, leading to the development of MetS in experimental mice.
Collapse
Affiliation(s)
- Hyun-Ji Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Maternal intake of alpha-lipoic acid prevents development of symptoms associated with a fructose-rich diet in the male offspring in Wistar rats. J Dev Orig Health Dis 2020; 12:758-767. [PMID: 33303040 DOI: 10.1017/s2040174420001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hypothesis was that maternal intake of the antioxidant alpha-lipoid acid (ALA), during the developmental period of the hypothalamic orexigenic neurons, causes a permanent beneficial effect in offspring metabolism. Pregnant Wistar rats were fed with standard diet (food) + ALA (0.4% wt/wt) from day 14 of gestation to day 20 of lactation (n = 4) or food (n = 4). At 3 months of age, male offspring born from ALA-fed rats or controls (CT) were randomly assigned to be fed with food + 10% fructose solution in drinking water (F) or food + tap water (C), resulting in four groups: ALAF, ALAC, CTF, and CTC (n = 5/group). Food intake and body weight (BW) were measured twice a week for 31 days. Metabolites' levels in blood, mRNA expressions of Npy, Agrp (hypothalamus), Fasn, Srebf1, Ppard, and Pparg (liver), and the antioxidant capacity of the liver were determined. Results significance was set at p < 0.05. Average BW gain, daily BW gain, and intraabdominal fat tissue at necropsy were higher in CTF group followed by CTC, ALAF, and ALAC groups. There were no differences between groups in Kcal intake per day. mRNA expressions of hypothalamic and hepatic genes and plasmatic levels of glucose and triglycerides were higher in CTF group followed by ALAF, CTC, and ALAC groups. Fructose intake affected the oxidative capacity of the liver, but this effect was not observed in the ALAF group. In conclusion, maternal ALA intake protected the adult offspring to develop metabolic symptoms associated with high fructose in the drinking water.
Collapse
|
4
|
The marine compound and elongation factor 1A1 inhibitor, didemnin B, provides benefit in western diet-induced non-alcoholic fatty liver disease. Pharmacol Res 2020; 161:105208. [PMID: 32977024 DOI: 10.1016/j.phrs.2020.105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Inhibition of eukaryotic elongation factor 1A1 (EEF1A1) with the marine compound didemnin B decreases lipotoxic HepG2 cell death in vitro and improves early stage non-alcoholic fatty liver disease (NAFLD) in young genetically obese mice. However, the effects of didemnin B on NAFLD in a model of long-term diet-induced obesity are not known. We investigated the effects of didemnin B on NAFLD severity and metabolic parameters in western diet-induced obese mice, and on the cell types that contribute to liver inflammation and fibrosis in vitro. Male 129S6 mice were fed either standard chow or western diet for 26 weeks, followed by intervention with didemnin B (50 μg/kg) or vehicle by intraperitoneal (i.p.) injection once every 3 days for 14 days. Didemnin B decreased liver and plasma triglycerides, improved oral glucose tolerance, and decreased NAFLD severity. Moreover, didemnin B moderately increased hepatic expression of genes involved in ER stress response (Perk, Chop), and fatty acid oxidation (Fgf21, Cpt1a). In vitro, didemnin B decreased THP-1 monocyte proliferation, disrupted THP-1 monocyte-macrophage differentiation, decreased THP-1 macrophage IL-1β secretion, and decreased hepatic stellate cell (HSteC) proliferation and collagen secretion under both basal and lipotoxic (high fatty acid) conditions. Thus, didemnin B improves hepatic steatosis, glucose tolerance, and blood lipids in obesity, in association with moderate, possibly hormetic, upregulation of pathways involved in cell stress response and energy balance in the liver. Furthermore, it decreases the activity of the cell types implicated in liver inflammation and fibrosis in vitro. These findings highlight the therapeutic potential of partial protein synthesis inhibition in the treatment of NAFLD.
Collapse
|
5
|
Fauste E, Rodrigo S, Aguirre R, Donis C, Rodríguez L, Álvarez-Millán JJ, Panadero MI, Otero P, Bocos C. Maternal Fructose Intake Increases Liver H 2 S Synthesis but Exarcebates its Fructose-Induced Decrease in Female Progeny. Mol Nutr Food Res 2020; 64:e2000628. [PMID: 32754997 DOI: 10.1002/mnfr.202000628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases (CVD). However, consumption of beverages containing fructose is allowed during gestation. Homocysteine (Hcy) is a well-known risk factor for CVD while hydrogen sulfide (H2 S), a product of its metabolism, has been proved to exert opposite effects to Hcy. METHODS AND RESULTS First, it is investigated whether maternal fructose intake produces subsequent changes in Hcy metabolism and H2 S synthesis of the progeny. Carbohydrates are supplied to pregnant rats in drinking water (10% wt/vol) throughout gestation. Adult female descendants from fructose-fed, control or glucose-fed mothers are studied. Females from fructose-fed mothers have elevated homocysteinemia, hepatic H2 S production, cystathionine γ-lyase (CSE) (the key enzyme in H2 S synthesis) expression and plasma H2 S, versus the other two groups. Second, it is studied how adult female progeny from control (C/F), fructose- (F/F), and glucose-fed (G/F) mothers responded to liquid fructose and compared them to the control group (C/C). Interestingly, hepatic CSE expression and H2 S synthesis are diminished by fructose intake, this effect being more pronounced in F/F females. CONCLUSION Maternal fructose intake produces a fetal programming that increases hepatic H2 S production and, in contrast, exacerbates its fructose-induced drop in female progeny.
Collapse
Affiliation(s)
- Elena Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Rodrigo Aguirre
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Cristina Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Lourdes Rodríguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | | | - María I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, 28668, Spain
| |
Collapse
|
6
|
Castro MC, Villagarcía H, Nazar A, Arbeláez LG, Massa ML, Del Zotto H, Ríos JL, Schinella GR, Francini F. Cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112263. [PMID: 31580944 DOI: 10.1016/j.jep.2019.112263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cocoa extracts rich in polyphenols are used as potential agent for treating diabetes. Cocoa polyphenols have been proved to ameliorate important hallmarks of type-2 diabetes (T2D). They can regulate glucose levels by increasing insulin secretion, promoting β-cell proliferation and a reduction of insulin resistance. In addition, epidemiological evidence indicates that consumption of flavonoid decreases the incidence of T2D. AIM OF THE STUDY T2D is preceded by a prediabetic state in which the endocrine-metabolic changes described in T2D are already present. Since epidemiological evidence indicates that consumption of flavonoid decreases its incidence, we evaluated possible preventive effects of polyphenol-enriched cocoa extract on a model of prediabetes induced by sucrose. MATERIALS AND METHODS We determined circulating parameters and insulin sensitivity indexes, liver protein carbonyl groups and reduced glutathione, liver mRNA expression levels of lipogenic enzymes, expression of different pro-inflammatory mediators, fructokinase activity and liver glycogen content. For that, radioimmunoassay, real-time polymerase chain reaction, Western blot, spectrophotometry, and immunohistochemistry were used. RESULTS We demonstrated that sucrose administration triggered hypertriglyceridemia, insulin-resistance, and liver increased oxidative stress and inflammation markers compared to control rats. Additionally, we found an increase in glycogen deposit, fructokinase activity, and lipogenic genes expression (SREBP-1c, FAS and GPAT) together with a decrease in P-Akt and P-eNOS protein content (P < 0.05). Sucrose-induced insulin resistance, hepatic carbohydrate and lipid dysmetabolism, oxidative stress, and inflammation were effectively disrupted by polyphenol-enriched cocoa extract (PECE) co-administration (P < 0.05). CONCLUSION Dietary administration of cocoa flavanols may be an effective and complementary tool for preventing or reverting T2D at an early stage of its development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Hernán Villagarcía
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Ada Nazar
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Luisa González Arbeláez
- CIC (Centro de Investigaciones Cardiovasculares) (UNLP-CONICET La Plata-FCM), La Plata, Argentina
| | - María Laura Massa
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Héctor Del Zotto
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Guillermo R Schinella
- Cátedra Farmacología Básica, Facultad de Ciencias Médicas UNLP and CICPBA, La Plata, Argentina
| | - Flavio Francini
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina.
| |
Collapse
|
7
|
Fauste E, Rodrigo S, Rodríguez L, Donis C, García A, Barbas C, Álvarez-Millán JJ, Panadero MI, Otero P, Bocos C. FGF21-protection against fructose-induced lipid accretion and oxidative stress is influenced by maternal nutrition in male progeny. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
Castro MC, Villagarcía HG, Massa ML, Francini F. Alpha-lipoic acid and its protective role in fructose induced endocrine-metabolic disturbances. Food Funct 2019; 10:16-25. [PMID: 30575838 DOI: 10.1039/c8fo01856a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent decades a worldwide increase has been reported in the consumption of unhealthy high calorie diets associated with marked changes in meal nutrient composition, such as a higher intake of refined carbohydrates, which leads to the speculatation that changes in food habits have contributed to the current epidemic of obesity and type 2 diabetes. Among these refined carbohydrates, fructose has been deeply investigated and murine models of high fructose diet have emerged as useful tools to study dietary-induced insulin resistance, impaired glucose tolerance, dyslipidemia and alterations in glucose metabolism. Since oxidative stress has been demonstrated to play a key pathogenic role in the alterations described above, several lines of research have focused on the possible preventive effects of antioxidant/redox state regulation therapy, among which alpha-lipoic acid has been extensively investigated. The following references discussed support the fact that co-administration of alpha-lipoic acid normalized the changes generated by fructose rich diets, thereby making this compound a good therapeutic tool, also administered as a food supplement, to prevent endocrine-metabolic disturbances triggered by high fructose associated with obesity and type 2 diabetes at an early stage of development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada, UNLP-CONICET La Plata-FCM) (Centro asociado CICPBA), 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
9
|
El-Shinnawy NA, Abd Elhalem SS, Haggag NZ, Badr G. Ameliorative role of camel whey protein and rosuvastatin on induced dyslipidemia in mice. Food Funct 2018; 9:1038-1047. [PMID: 29349446 DOI: 10.1039/c7fo01871a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The incidence of obesity is rapidly increasing throughout the world. Dyslipidemia is a major risk factor for a number of chronic diseases, including diabetes and cardiovascular diseases. This work presents a novel approach to study the activity of camel whey protein (WP) with antioxidant and anti-inflammatory properties as a cheap dietary protein substance extracted from camel milk to produce satiety and help in building muscles. Mice model suffering from dyslipidemia as a result of feeding on high fat-cholesterol diet for 8 weeks were administrated with either camel WP and/or rosuvastatin for 4 weeks. Dyslipidemia revealed significant increase in anthropometrical measurements, levels of glucose, insulin, cholesterol, triglycerides, low-density lipoprotein, total leucocyte count, inflammatory cytokines and reactive oxygen species, accompanied by a significant elevation in activating transcription factor-3 and inducible nitric oxide synthase expressions. These alterations were correlated with a profound reduction in high-density lipoprotein, peroxisome proliferator-activated receptor alpha and adiponectin along with a decrease in liver and muscle mitochondrial proteins. Rosuvastatin treatment to mice suffering from dyslipidemia in combination with camel WP for 4 weeks ameliorated these parameters. Notably, animals treated with both camel WP and rosuvastatin exhibited a remarkable decrease in the incidence of dyslipidemia. In addition, camel WP succeeded to overcome the therapeutic drawback posed from rosuvastatin therapy alone with minimal side effects.
Collapse
Affiliation(s)
- Nashwa Ahmed El-Shinnawy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt.
| | | | | | | |
Collapse
|
10
|
Tan BL, Norhaizan ME, Liew WPP. Nutrients and Oxidative Stress: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9719584. [PMID: 29643982 PMCID: PMC5831951 DOI: 10.1155/2018/9719584] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Pan HC, Lee CC, Chou KM, Lu SC, Sun CY. Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore) 2017; 96:e8053. [PMID: 28984759 PMCID: PMC5737995 DOI: 10.1097/md.0000000000008053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1-3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1-3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin.
Collapse
Affiliation(s)
- Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuei-Mei Chou
- Divisions of Endocrinology and Metabolism, Department of Internal Medicine
| | - Shang-Chieh Lu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
12
|
Rodrigo S, Rodríguez L, Otero P, Panadero MI, García A, Barbas C, Roglans N, Ramos S, Goya L, Laguna JC, Álvarez-Millán JJ, Bocos C. Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1. Mol Nutr Food Res 2016; 60:2700-2711. [PMID: 27545118 DOI: 10.1002/mnfr.201600193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
SCOPE One of the features of metabolic syndrome caused by liquid fructose intake is an impairment of redox status. We have investigated whether maternal fructose ingestion modifies the redox status in pregnant rats and their fetuses. METHODS AND RESULTS Fructose (10% wt/vol) in the drinking water of rats throughout gestation, leads to maternal hepatic oxidative stress. However, this change was also observed in glucose-fed rats and, in fact, both carbohydrates produced a decrease in antioxidant enzyme activity. Surprisingly, mothers fed carbohydrates displayed low plasma lipid oxidation. In contrast, fetuses from fructose-fed mothers showed elevated levels of plasma lipoperoxides versus fetuses from control or glucose-fed mothers. Interestingly, a clearly augmented oxidative stress was observed in placenta of fructose-fed mothers, accompanied by a lower expression of the transcription factor Nuclear factor-erythroid 2-related factor-2 (Nrf2) and its target gene, heme oxygenase-1 (HO-1), a potent antioxidant molecule. Moreover, histone deacetylase 3 (HDAC3) that has been proposed to upregulate HO-1 expression by stabilizing Nrf2, exhibited a diminished expression in placenta of fructose-supplemented mothers. CONCLUSIONS Maternal fructose intake provoked an imbalanced redox status in placenta and a clear diminution of HO-1 expression, which could be responsible for the augmented oxidative stress found in their fetuses.
Collapse
Affiliation(s)
- Silvia Rodrigo
- Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Paola Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Antonia García
- Centre of Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Núria Roglans
- Facultad de Farmacia, Universidad de Barcelona, CIBERobn, IBUB, Barcelona, Spain
| | - Sonia Ramos
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN/CSIC), Madrid, Spain
| | - Luis Goya
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN/CSIC), Madrid, Spain
| | - Juan C Laguna
- Facultad de Farmacia, Universidad de Barcelona, CIBERobn, IBUB, Barcelona, Spain
| | | | - Carlos Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
13
|
Pheiffer C, Jacobs C, Patel O, Ghoor S, Muller C, Louw J. Expression of UCP2 in Wistar rats varies according to age and the severity of obesity. J Physiol Biochem 2015; 72:25-32. [PMID: 26621256 DOI: 10.1007/s13105-015-0454-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/24/2015] [Indexed: 01/26/2023]
Abstract
Obesity, a complex metabolic disorder, is characterized by mitochondrial dysfunction and oxidative stress. Increased expression of uncoupling protein 2 (UCP2) during obesity is an adaptive response to suppress the production of reactive oxygen species. The aims of this study were to compare the expression of UCP2 in diet-induced obese Wistar rats that differed according to age and their severity of obesity, and to compare UCP2 expression in the liver and muscle of these rats. UCP2 messenger RNA and protein expression was increased 4.6-fold (p < 0.0001) and 3.0-fold (p < 0.05), respectively, in the liver of the older and heavier rats. In contrast, UCP2 expression was decreased twofold (p < 0.005) in the muscle of these rats, while UCP3 messenger RNA (mRNA) was increased twofold (p < 0.01). Peroxisome proliferator-activated receptor alpha (PPARα) was similarly increased (3.0-fold, p < 0.05) in the liver of the older and more severe obese rats. Total protein content was increased (2.3-fold, p < 0.0001), while 5' adenosine monophosphate-activated protein kinase (AMPK) activity was decreased (1.3-fold, p = 0.05) in the liver of the older, heavier rats. No difference in total protein content and AMPK expression was observed in the muscle of these rats. This study showed that the expression of UCP2 varies according to age and the severity of obesity and supports the widely held notion that increased UCP2 expression is an adaptive response to increased fatty acid β-oxidation and reactive oxygen species production that occurs during obesity. An understanding of metabolic adaptation is imperative to gain insight into the underlying causes of disease, thus facilitating intervention strategies to combat disease progression.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa.
| | - Carvern Jacobs
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa
| | - Samira Ghoor
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa
| | - Christo Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505, South Africa
| |
Collapse
|
14
|
Kobayashi Y, Peterson BC, Waldbieser GC. Relationship between expression of muscle-specific uncoupling protein 2 messenger RNA and genetic selection toward growth in channel catfish. Domest Anim Endocrinol 2015; 51:56-64. [PMID: 25528205 DOI: 10.1016/j.domaniend.2014.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022]
Abstract
This study tested the hypothesis that increased growth in channel catfish is associated with expression of the genes that code for uncoupling proteins (UCP) 2 and 3, members of the mitochondrial channel proteins involved in nutrient sensing and metabolism. The specific objective was to contrast the levels of UCP2 messenger RNA (mRNA) in fast vs slow growing catfish as well as in fed vs fasted catfish. Two distinct UCP2 transcripts were identified and named UCP2a and UCP2b, respectively. Nucleotide and amino acid sequence of catfish UCP2s were highly similar to UCP2 and other UCPs from other fish and mammals (>75%). Expression of UCP2a mRNA was detectable at very low levels in various metabolically active tissues, whereas the expression of UCP2b mRNA was readily detectable in the muscle and heart. In a 21-wk feeding study, fish that grew faster had a greater percent body fat at the end of the study (P < 0.01). Expression of UCP2b mRNA tended to be lower (P < 0.10) in fast growing fish in the middle of the study although levels were similar at the beginning and the end of the study. In the fed vs fasted study, expression of UCP2b mRNA in muscle was increased (P < 0.05) in fish assigned to 30 d of fasting. Our results suggest that, based on the nucleotide and amino acid sequence similarities and tissue mRNA distribution, catfish UCP2b may be the analog to UCP3. Moreover, our results suggest selection toward growth and associated fat accumulation appears to be independent of muscle UCP2b mRNA expression and UCP2b-mediated mechanisms.
Collapse
Affiliation(s)
- Y Kobayashi
- Department of Biological Sciences, Fort Hays State University, Hays, KS, USA.
| | - B C Peterson
- USDA/ARS Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, USA
| | - G C Waldbieser
- USDA/ARS Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, USA
| |
Collapse
|
15
|
Wu Q, Li JV, Seyfried F, le Roux CW, Ashrafian H, Athanasiou T, Fenske W, Darzi A, Nicholson JK, Holmes E, Gooderham NJ. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery. Int J Obes (Lond) 2015; 39:1126-34. [PMID: 25783038 PMCID: PMC4766927 DOI: 10.1038/ijo.2015.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/22/2015] [Indexed: 01/21/2023]
Abstract
Background/Objectives: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. Subjects/Methods: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. Results: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. Conclusions: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting.
Collapse
Affiliation(s)
- Q Wu
- Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK
| | - J V Li
- 1] Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK [2] Center for Digestive and Gut Health, Institute of Global Health Innovation, Imperial College London, London, UK
| | - F Seyfried
- Department of General and Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - C W le Roux
- 1] Diabetes Complications Research Centre, Pathology, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland [2] Investigative Science, Imperial College London, London, UK
| | - H Ashrafian
- Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK
| | - T Athanasiou
- Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK
| | - W Fenske
- Department of General and Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - A Darzi
- Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK
| | - J K Nicholson
- 1] Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK [2] Center for Digestive and Gut Health, Institute of Global Health Innovation, Imperial College London, London, UK
| | - E Holmes
- 1] Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK [2] Center for Digestive and Gut Health, Institute of Global Health Innovation, Imperial College London, London, UK
| | - N J Gooderham
- Division of Computational and Systems Medicine, Department of Surgery and Cancer Imperial College London, South Kensington, London, UK
| |
Collapse
|
16
|
Maternal fructose intake induces insulin resistance and oxidative stress in male, but not female, offspring. J Nutr Metab 2015; 2015:158091. [PMID: 25763281 PMCID: PMC4339788 DOI: 10.1155/2015/158091] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 11/28/2022] Open
Abstract
Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol) throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity) were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers) were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny.
Collapse
|
17
|
Castro MC, Francini F, Gagliardino JJ, Massa ML. Lipoic acid prevents fructose-induced changes in liver carbohydrate metabolism: role of oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1145-51. [PMID: 24361606 DOI: 10.1016/j.bbagen.2013.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/29/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fructose administration rapidly induces oxidative stress that triggers compensatory hepatic metabolic changes. We evaluated the effect of an antioxidant, R/S-α-lipoic acid on fructose-induced oxidative stress and carbohydrate metabolism changes. METHODS Wistar rats were fed a standard commercial diet, the same diet plus 10% fructose in drinking water, or injected with R/S-α-lipoic acid (35mg/kg, i.p.) (control+L and fructose+L). Three weeks thereafter, blood samples were drawn to measure glucose, triglycerides, insulin, and the homeostasis model assessment-insulin resistance (HOMA-IR) and Matsuda indices. In the liver, we measured gene expression, protein content and activity of several enzymes, and metabolite concentration. RESULTS Comparable body weight changes and calorie intake were recorded in all groups after the treatments. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR and lower Matsuda indices compared to control animals. Fructose fed rats showed increased fructokinase gene expression, protein content and activity, glucokinase and glucose-6-phosphatase gene expression and activity, glycogen storage, glucose-6-phosphate dehydrogenase mRNA and enzyme activity, NAD(P)H oxidase subunits (gp91(phox) and p22(phox)) gene expression and protein concentration and phosphofructokinase-2 protein content than control rats. All these changes were prevented by R/S-α-lipoic acid co-administration. CONCLUSIONS Fructose induces hepatic metabolic changes that presumably begin with increased fructose phosphorylation by fructokinase, followed by adaptive changes that attempt to switch the substrate flow from mitochondrial metabolism to energy storage. These changes can be effectively prevented by R/S-α-lipoic acid co-administration. GENERAL SIGNIFICANCE Control of oxidative stress could be a useful strategy to prevent the transition from impaired glucose tolerance to type 2 diabetes.
Collapse
Affiliation(s)
- María C Castro
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Flavio Francini
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Juan J Gagliardino
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - María L Massa
- CENEXA -Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET LA PLATA, Centro Colaborador OPS/OMS), Facultad de Ciencias Médicas UNLP, La Plata, Argentina.
| |
Collapse
|
18
|
Song M, Schuschke DA, Zhou Z, Chen T, Shi X, Zhang J, Zhang X, Pierce WM, Johnson WT, Vos MB, McClain CJ. Modest fructose beverage intake causes liver injury and fat accumulation in marginal copper deficient rats. Obesity (Silver Spring) 2013; 21:1669-75. [PMID: 23512597 PMCID: PMC3695073 DOI: 10.1002/oby.20380] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Dietary fructose and copper interaction may play an important role in the pathogenesis of nonalcoholic fatty liver disease. In this study, whether or not modest fructose consumption (3% fructose, w/v) (which is more closely related to the American lifestyle with regard to sugar beverage consumption) affects copper status, and causes liver injury and fat accumulation in marginal copper deficient rats was investigated. DESIGN AND METHODS Male weanling Sprague-Dawley rats were fed either an adequate copper (6 ppm) or a marginally copper deficient (1.6 ppm) diet for 4 weeks. Deionized water or deionized water containing 3% fructose (w/v) was given ad lib. RESULTS Modest fructose consumption further impaired copper status in the marginal copper deficient rats and increased hepatic iron accumulation. Liver injury and fat accumulation were significantly induced in the marginal copper deficient rats exposed to fructose. CONCLUSIONS Our data suggest that modest fructose consumption can impair copper status and lead to hepatic iron overload, which in turn, may lead to liver injury and fatty liver in marginal copper deficient rats. This study provides important information on dietary fructose and copper interaction, suggesting that dietary fructose-induced low copper availability might be an important mechanism underlying fructose-induced fatty liver.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202
| | - Dale A Schuschke
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202
| | - Zhanxiang Zhou
- Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Theresa Chen
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202
| | - Xue Shi
- Department of Chemistry, University of Louisville School of Medicine, Louisville, KY 40202
| | - Jiayuan Zhang
- Department of Chemistry, University of Louisville School of Medicine, Louisville, KY 40202
| | - Xiang Zhang
- Department of Chemistry, University of Louisville School of Medicine, Louisville, KY 40202
| | - William M. Pierce
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202
| | | | - Miriam B. Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30307; and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202
- Robley Rex Louisville Veterans Affairs Medical Center, Louisville, KY 40206
| |
Collapse
|
19
|
Rodríguez L, Panadero MI, Roglans N, Otero P, Alvarez-Millán JJ, Laguna JC, Bocos C. Fructose during pregnancy affects maternal and fetal leptin signaling. J Nutr Biochem 2013; 24:1709-16. [PMID: 23643523 DOI: 10.1016/j.jnutbio.2013.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
Abstract
Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome and cardiovascular diseases. Fructose intake also causes features of metabolic syndrome in laboratory animals. Therefore, we have investigated whether fructose modifies lipidemia in pregnant rats and produces changes in their fetuses. Thus, fructose administration (10% wt/vol.) in the drinking water of rats throughout gestation leads to maternal hypertriglyceridemia. This change was not observed in glucose-fed rats, although both carbohydrates produced similar changes in liver triglycerides and in the expression of transcription factors and enzymes involved in lipogenesis. After fasting overnight, mothers fed with carbohydrates were found to be hyperleptinemic. However, after a bolus of glucose, leptinemia in fructose-fed mothers showed no response, whereas it increased in parallel in glucose-fed and control mothers. Fetuses from fructose-fed mothers showed hypotriglyceridemia and a higher hepatic triglyceride content than fetuses from control or glucose-fed mothers. A higher expression of genes related to lipogenesis and a lower expression of fatty acid catabolism genes were also found in fetuses from fructose-fed mothers. Moreover, although hyperleptinemic, these fetuses exhibited increased tyrosine phosphorylation of the signal transducer and activator of transcription-3 (STAT-3) protein, without a parallel increase in the serine phosphorylation of STAT-3 nor in the suppressor of cytokine signaling-3 protein levels whose expression is regulated by leptin through STAT-3 activation. Thus, fructose intake during gestation provoked a diminished maternal leptin response to fasting and refeeding and an impairment in the transduction of the leptin signal in the fetuses, which could be responsible for their hepatic steatosis.
Collapse
Affiliation(s)
- Lourdes Rodríguez
- Facultades de Farmacia y Medicina, Universidad San Pablo-CEU, Montepríncipe, Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta Gen Subj 2012; 1830:2226-32. [PMID: 23085069 DOI: 10.1016/j.bbagen.2012.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND To evaluate whether co-administration of R/S-α-lipoic acid can prevent the development of oxidative stress and metabolic changes induced by a fructose-rich diet (F). METHODS We assessed glycemia in the fasting state and during an oral glucose tolerance test, triglyceridemia and insulinemia in rats fed with standard diet (control) and fructose without or with R/S-α-lipoic acid. Insulin resistance and hepatic insulin sensitivity were also calculated. In liver, we measured reduced glutathione, protein carbonyl groups, antioxidant capacity by ABTS assay, antioxidant enzymes (catalase and superoxide dismutase 1 and 2), uncoupling protein 2, PPARδ and PPARγ protein expressions, SREBP-1c, fatty acid synthase and glycerol-3-phosphate acyltransferase-1 gene expression, and glucokinase activity. RESULTS R/S-α-lipoic acid co-administration to F-fed rats a) prevented hyperinsulinemia, hypertriglyceridemia and insulin resistance, b) improved hepatic insulin sensitivity and glucose tolerance, c) decreased liver oxidative stress and increased antioxidant capacity and antioxidant enzymes expression, d) decreased uncoupling protein 2 and PPARδ protein expression and increased PPARγ levels, e) restored the basal gene expression of PPARδ, SREBP-1c and the lipogenic genes fatty acid synthase and glycerol-3-phosphate acyltransferase, and f) decreased the fructose-mediated enhancement of glucokinase activity. CONCLUSIONS Our results suggest that fructose-induced oxidative stress is an early phenomenon associated with compensatory hepatic metabolic mechanisms, and that treatment with an antioxidant prevented the development of such changes. GENERAL SIGNIFICANCE This knowledge would help to better understand the mechanisms involved in liver adaptation to fructose-induced oxidative stress and to develop effective strategies to prevent and treat, at early stages, obesity and type 2 diabetes mellitus.
Collapse
|