1
|
Goto M, Azuma K, Arima H, Kaneko S, Higashi T, Motoyama K, Michihara A, Shimizu T, Kadowaki D, Maruyama T, Otagiri M, Iohara D, Hirayama F, Anraku M. Sacran, a sulfated polysaccharide, suppresses the absorption of lipids and modulates the intestinal flora in non-alcoholic steatohepatitis model rats. Life Sci 2021; 268:118991. [PMID: 33417955 DOI: 10.1016/j.lfs.2020.118991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
AIMS The objective of this study was to investigate the effects of administering sacran, a sulfated polysaccharide, on liver biology, gut microbiota, oxidative stress, and inflammation on stroke-prone spontaneously hypertensive (SHRSP5/Dmcr) rats that develop fibrotic steatohepatitis with histological similarities to that of non-alcoholic steatohepatitis (NASH). MAIN METHODS Four groups of 8-week-old SHRSP5/Dmcr rats were fed a high fat-cholesterol (HFC) diet for 4 and 8 weeks and administered either sacran (80 mg/kg/day) or a non-treatment, respectively. Liver function was evaluated by biochemical and histopathological analyses. Hepatic inflammatory markers were measured using mRNA expression. Fecal microbial profiles were determined via 16S rRNA sequencing. A triglyceride (TG) absorption test was administered to the 8-week-old Sprague-Dawley (SD) rats. KEY FINDING Sacran administration was observed to decrease the extent of oxidative stress and hepatic biochemical parameters in serum and hepatic injury with the levels of transforming growth factor-beta (TGF-β1) and tumor necrosis factor-alpha (TNF-α), being increased compared to those of the non-treatment group. At the genus level, sacran administration caused a significant decrease in the harmful Prevotella genus, and a significant increase in the useful Blautia genus was observed. Sacran administration also decreased the serum TG increase that was induced by administering corn oil to the SD rats. SIGNIFICANCE We conclude that sacran administration has the potential to reduce the absorption of lipids into blood and to improve several gut microbiotas, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress and hepatic markers in the systematic circulation on NASH.
Collapse
Affiliation(s)
- Miwa Goto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Kazuo Azuma
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan
| | - Hidetoshi Arima
- Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | | | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akihiro Michihara
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo 1, Gakuen-cho, Fukuyama 729-0292, Japan
| | - Takae Shimizu
- Anicom Holdings, Inc., 8-17-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Makoto Anraku
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan.
| |
Collapse
|
2
|
Effects of surface-deacetylated chitin nanofibers on non-alcoholic steatohepatitis model rats and their gut microbiota. Int J Biol Macromol 2020; 164:659-666. [PMID: 32698063 DOI: 10.1016/j.ijbiomac.2020.07.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/21/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), a more advanced form of nonalcoholic fatty liver disease (NAFLD), is associated with increased cardiovascular and liver-related mortality. Stroke-prone spontaneously hypertensive rats (SHRSP5/Dmcr) that are fed a high-fat and high-cholesterol diet develop hepatic lesions that are similar to those observed in human NASH pathology. We investigated the hepatic protective and antioxidant effects of surface-deacetylated chitin nanofibers (SDACNFs) that were administered to SHRSP5/Dmcr rats for 8 weeks. The administration of SDACNFs (80 mg/kg/day) resulted in a significant decrease in hepatic injury, oxidative stress, compared with the non-treatment. The SDACNFs also caused a reduction in the population of harmful members of the Morganella and Prevotella genus, and increased the abundance of the Blautia genus, a useful bacterium in gut microbiota. We therefore conclude that SDACNF exerts anti-hepatic and antioxidative effects not only by adsorbing lipid substances but also by reforming the community of intestinal microflora in the intestinal tract.
Collapse
|
3
|
High-fat and high-cholesterol diet decreases phosphorylated inositol-requiring kinase-1 and inhibits autophagy process in rat liver. Sci Rep 2019; 9:12514. [PMID: 31467308 PMCID: PMC6715744 DOI: 10.1038/s41598-019-48973-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Precise molecular pathways involved in the progression of non-alcoholic steatohepatitis (NASH) remain to be elucidated. As Mallory–Denk bodies were occasionally observed in the enlarged hepatocytes in NASH model rat (SHRSP5/Dmcr) fed high-fat and high-cholesterol (HFC) diet, we aimed to clarify the roles of autophagy and endoplasmic reticulum (ER) stress in NASH progression. Male SHRSP5/Dmcr were randomly divided into 4 groups. Two groups were fed a control diet; the other two groups were fed a HFC diet for 2 and 8 weeks, respectively. The HFC diet increased the autophagy-related proteins levels and microtubule-associated protein 1 light chain 3-II/I ratio after 2 and 8 weeks, respectively. However, regarding ER stress-related proteins, the HFC diet decreased the levels of phosphorylated (p-) inositol-requiring kinase-1 (p-IRE-1) and p-protein kinase RNA-like ER kinase after 2 weeks. Additionally, the HFC diet increased anti-ubiquitin-positive cells and the level of the autophagy substrate p62, suggesting that the HFC diet induced dysfunction in ubiquitin-dependent protein degradation pathways. In conclusion, the HFC diet arrested the autophagy process in the liver; this was particularly associated with decreases in p-IRE-1 expression.
Collapse
|
4
|
Protective effect of cultured bear bile powder against dimethylnitrosamine-induced hepatic fibrosis in rats. Biomed Pharmacother 2019; 112:108701. [DOI: 10.1016/j.biopha.2019.108701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
|
5
|
Watanabe S, Kumazaki S, Yamamoto S, Sato I, Kitamori K, Mori M, Yamori Y, Hirohata S. Non-alcoholic steatohepatitis aggravates nitric oxide synthase inhibition-induced arteriosclerosis in SHRSP5/Dmcr rat model. Int J Exp Pathol 2019; 99:282-294. [PMID: 30680827 DOI: 10.1111/iep.12301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is linked to increased cardiovascular risk, independent of the broad spectrum of metabolic syndrome risk factors. Stroke-prone (SP) spontaneously hypertensive rats (SHRSP5/Dmcr) fed a high-fat and high-cholesterol (HFC) diet developed hepatic lesions similar to those in human NASH pathology. These rats simultaneously developed lipid deposits in the mesenteric arteries, cardiac fibrosis, endothelial dysfunction and left ventricle (LV) diastolic dysfunction. However, the intermediary factors between NASH and cardiovascular disease are still unknown. We investigated whether NASH aggravates nitric oxide (NO) synthase inhibition-induced arteriosclerosis in SHRSP5/Dmcr rats. Wistar Kyoto and SHRSP5/Dmcr rats were divided into 4 groups of 5 and fed the stroke-prone (SP) or HFC diets for 8 weeks. To induce NO synthase inhibition, Nω -nitro-L-arginine methyl ester hydrochloride (L-NAME) mixed with drinking water was administered in the final 2 weeks. The NASH+L-NAME group demonstrated the following characteristics related to arteriosclerosis and myocardial ischaemia: (a) LV systolic dysfunction with asynergy, (b) replacement fibrosis caused by the shedding of cardiomyocytes and (c) arterial lipid deposition and coronary occlusion secondary to endothelial dysfunction. These characteristics were not observed in the NASH or non-NASH+L-NAME groups. The SHRSP5/Dmcr rat model demonstrates that NASH significantly aggravates cardiovascular risk.
Collapse
Affiliation(s)
- Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
| | - Mari Mori
- Department of Health Management, School of Health Studies, Tokai University, Kanagawa, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Hyogo, Japan
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Yetti H, Naito H, Yuan Y, Jia X, Hayashi Y, Tamada H, Kitamori K, Ikeda K, Yamori Y, Nakajima T. Bile acid detoxifying enzymes limit susceptibility to liver fibrosis in female SHRSP5/Dmcr rats fed with a high-fat-cholesterol diet. PLoS One 2018; 13:e0192863. [PMID: 29438418 PMCID: PMC5811017 DOI: 10.1371/journal.pone.0192863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
During middle age, women are less susceptible to nonalcoholic steatohepatitis (NASH) than men. Thus, we investigated the underlying molecular mechanisms behind these sexual differences using an established rat model of NASH. Mature female and male stroke-prone spontaneously hypertensive 5/Dmcr rats were fed control or high-fat-cholesterol (HFC) diets for 2, 8, and 14 weeks. Although HFC-induced hepatic fibrosis was markedly less severe in females than in males, only minor gender differences were observed in expression levels of cytochrome P450 enzymes (CYP)7A1, CYP8B1 CYP27A1, and CYP7B1, and multidrug resistance-associated protein 3, and bile salt export pump, which are involved in fibrosis-related bile acid (BA) kinetics. However, the BA detoxification-related enzymes UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) 2A1, and the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), were strongly suppressed in HFC-fed males, and were only slightly changed in HFC-diet fed females. Expression levels of the farnesoid X receptor and its small heterodimer partner were similarly regulated in a gender-dependent fashion following HFC feeding. Hence, the pronounced female resistance to HFC-induced liver damage likely reflects sustained expression of the nuclear receptors CAR and PXR and the BA detoxification enzymes UGT and SULT.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cholesterol, Dietary/administration & dosage
- Cholesterol, Dietary/adverse effects
- Constitutive Androstane Receptor
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gene Expression
- Glucuronosyltransferase/metabolism
- Liver Cirrhosis/etiology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Male
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Pregnane X Receptor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sex Characteristics
- Sulfotransferases/metabolism
Collapse
Affiliation(s)
- Husna Yetti
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuan Yuan
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Xiaofang Jia
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumi Hayashi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
| | - Katsumi Ikeda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
- * E-mail:
| |
Collapse
|
7
|
Watanabe S, Kumazaki S, Kusunoki K, Inoue T, Maeda Y, Usui S, Shinohata R, Ohtsuki T, Hirohata S, Kusachi S, Kitamori K, Mori M, Yamori Y, Oka H. A High-Fat and High-Cholesterol Diet Induces Cardiac Fibrosis, Vascular Endothelial, and Left Ventricular Diastolic Dysfunction in SHRSP5/Dmcr Rats. J Atheroscler Thromb 2017; 25:439-453. [PMID: 29162773 PMCID: PMC5945557 DOI: 10.5551/jat.40956] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM Non-alcoholic steatohepatitis (NASH) increases cardiovascular risk regardless of risk factors in metabolic syndrome. However, the intermediary factors between NASH and vascular disease are still unknown because a suitable animal model has never been established. The stroke-prone (SP) spontaneously hypertensive rat, SHRSP5/Dmcr, simultaneously develops hypertension, acute arterial lipid deposits in mesenteric arteries, and NASH when feed with a high-fat and high-cholesterol (HFC) diet. We investigated whether SHRSP5/Dmcr affected with NASH aggravates the cardiac or vascular dysfunction. METHOD Wister Kyoto and SHRSP5/Dmcr rats were divided into 4 groups of 5 rats each, and fed with a SP or HFC diet. After 8 weeks of HFC or SP diet feeding, glucose and insulin resistance, echocardiography, blood biochemistry, histopathological staining, and endothelial function in aorta were evaluated. RESULTS We demonstrate that SHRSP5/Dmcr rats fed with a HFC diet presented with cardiac and vascular dysfunction caused by cardiac fibrosis, endothelial dysfunction, and left ventricular diastolic dysfunction, in association with NASH and hypertension. These cardiac and vascular dysfunctions were aggravated and not associated with the presence of hypertension, glucose metabolism disorder, and/or obesity. CONCLUSIONS SHRSP5/Dmcr rats may be a suitable animal model for elucidating the organ interaction between NASH and cardiac or vascular dysfunction.
Collapse
Affiliation(s)
- Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Katsuhiro Kusunoki
- Department of Medical Technology, Faculty of Health Sciences, Okayama University
| | - Terumi Inoue
- Department of Medical Technology, Faculty of Health Sciences, Okayama University
| | - Yui Maeda
- Department of Medical Technology, Faculty of Health Sciences, Okayama University
| | - Shinichi Usui
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Ryoko Shinohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Shozo Kusachi
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University
| | - Mari Mori
- Institute for World Health Development, Mukogawa Women's University
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University
| | - Hisao Oka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| |
Collapse
|
8
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
9
|
Yuan Y, Naito H, Jia X, Kitamori K, Nakajima T. Combination of Hypertension Along with a High Fat and Cholesterol Diet Induces Severe Hepatic Inflammation in Rats via a Signaling Network Comprising NF-κB, MAPK, and Nrf2 Pathways. Nutrients 2017; 9:nu9091018. [PMID: 28906458 PMCID: PMC5622778 DOI: 10.3390/nu9091018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Populations with essential hypertension have a high risk of nonalcoholic steatohepatitis (NASH). In this study, we investigated the mechanism that underlies the progression of hypertension-associated NASH by comparing differences in the development of high fat and cholesterol (HFC) diet-induced NASH among three strains of rats, i.e., two hypertensive strains comprising spontaneously hypertensive rats and the stroke-prone spontaneously hypertensive 5/Dmcr, and the original Wistar Kyoto rats as the normotensive control. We investigated histopathological changes and molecular signals related to inflammation in the liver after feeding with the HFC diet for 8 weeks. The diet induced severe lobular inflammation and fibrosis in the livers of the hypertensive rats, whereas it only caused mild steatohepatitis in the normotensive rats. An increased activation of proinflammatory signaling (transforming growth factor-β1/mitogen-activated protein kinases pathway) was observed in the hypertensive strains fed with the HFC diet. In addition, the HFC diet suppressed the nuclear factor erythroid 2-related factor 2 pathway in the hypertensive rats and led to lower increases in the hepatic expression of heme oxygenase-1, which has anti-oxidative and anti-inflammatory activities. In conclusion, these signaling pathways might play crucial roles in the development of hypertension-associated NASH.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Life and Health Sciences, Chubu University, 487-8501 Kasugai, Japan.
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, 470-1192 Toyoake, Japan.
| | - Xiaofang Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 100050 Beijing, China.
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 463-8521 Nagoya, Japan.
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 487-8501 Kasugai, Japan.
| |
Collapse
|
10
|
Nakajima T, Naito H. [Mechanism Analysis and Prevention of Pathogenesis of Nonalcoholic Steatohepatitis]. Nihon Eiseigaku Zasshi 2016; 70:197-204. [PMID: 26411937 DOI: 10.1265/jjh.70.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in humans having a broad spectrum of liver histology from simple fatty liver to mixed inflammatory cell infiltration and fibrosis (nonalcoholic steatohepatitis, NASH), which is a more severe and progressing form. NASH/NAFLD is significantly associated with lifestyle such as diet and exercise, obesity, insulin resistance, type 2 diabetes, dyslipidemia and hypertension. Age and gender are also associated with the development. On the other hand, NAFLD has been found in a high percentage of nonobese individuals in the Asia-Pacific area. Some characteristic animal models of NAFLD/NASH have been developed to clarify the pathogenesis of human NAFLD/NASH. We have recently developed a novel NASH rat model (stroke-prone spontaneously hypertensive rats, SHRSP5/Dmcr), which showed hepatic steatosis and inflammation at 2 weeks, ballooning, macrovesicular steatosis and fibrosis at 8 weeks, and bridging fibrosis at 14 weeks by feeding of high-fat and -cholesterol (HFC) diet alone. This animal model does not have obesity, insulin resistance or diabetes. Therefore, this may be an excellent animal model of human NASH/NAFLD without obesity and diabetes. Sex and strain differences observed in fibrogenesis by the HFC diet in SHRSP5/Dmcr may be associated with the sensitivity to detoxification enzymes in the liver, because the levels of UGP-glucuronosyltransferase and sulfotransferase and their regulating nuclear receptors only decreased in male SHRSP5/Dmcr rats, but not in female and SHRSP rats. This suggests the importance of phase II reactions of drug-metabolizing enzymes in NASH progression. Importantly, SHRSP5/Dmcr rats are spontaneously hypertensive; therefore, when we use the original strain Wistar Kyoto, which has normal blood pressure, the involvement of blood pressure in the development of human NASH/NAFLD may also be clarified.
Collapse
|
11
|
Naito H, Jia X, Yetti H, Yanagiba Y, Tamada H, Kitamori K, Hayashi Y, Wang D, Kato M, Ishii A, Nakajima T. Importance of detoxifying enzymes in differentiating fibrotic development between SHRSP5/Dmcr and SHRSP rats. Environ Health Prev Med 2016; 21:368-381. [PMID: 27209494 DOI: 10.1007/s12199-016-0539-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES High-fat and -cholesterol diet (HFC) induced fibrotic steatohepatitis in stroke-prone spontaneously hypertensive rat (SHRSP) 5/Dmcr, the fifth substrain from SHRSP, by dysregulating bile acid (BA) kinetics. This study aimed to clarify the histopathological and BA kinetic differences in HFC-induced fibrosis between SHRSP5/Dmcr and SHRSP. METHODS Ten-week-old male SHRSP5/Dmcr and SHRSP were randomly allocated to groups and fed with either control diet or HFC for 2 and 8 weeks. The liver histopathology, biochemical features, and molecular signaling involved in BA kinetics were measured. RESULTS HFC caused more severe hepatocyte ballooning, macrovesicular steatosis and fibrosis in SHRSP5/Dmcr than in SHRSP. It was noted that fibrosis was disproportionately formed in retroperitoneal side of both strains. As for BA kinetics, HFC greatly increased the level of Cyp7a1 and Cyp7b1 to the same degree in both strains at 8 weeks, while multidrug resistance-associated protein 3 was greater in SHRSP5/Dmcr than SHRSP. The diet decreased the level of bile salt export pump by the same degree in both strains, while constitutive androstane receptor, pregnane X receptor, and UDP-glucuronosyltransferase activity more prominent in SHRSP5/Dmcr than SHRSP at 8 weeks. In the fibrosis-related genes, only expression of collagen, type I, alpha 1 mRNA was greater in SHRSP5/Dmcr than SHRSP. CONCLUSIONS The greater progression of fibrosis in SHRSP5/Dmcr induced by HFC may be due to greater suppression of UDP-glucuronosyltransferase activity detoxifying toxicants, such as hydrophobic BAs.
Collapse
Affiliation(s)
- Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, Dengakugakubo 1-98, Kutsukake-cho, Toyoake, 470-1192, Japan. .,Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Xiaofang Jia
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Husna Yetti
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukie Yanagiba
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
| | - Kazuya Kitamori
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
| | - Yumi Hayashi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dong Wang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Ishii
- Department of Legal Medicine and Bioethics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tamie Nakajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
12
|
Liu MH, Lin AH, Lu SH, Peng RY, Lee TS, Kou YR. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Front Physiol 2014; 5:440. [PMID: 25452730 PMCID: PMC4231989 DOI: 10.3389/fphys.2014.00440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/27/2014] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Shing-Hwa Lu
- Department of Urology, Taipei City Hospital, Zhong-Xiao Branch Taipei, Taiwan
| | - Ruo-Yun Peng
- Hsin Sheng Junior College of Medical Care and Management Longtan Township, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| |
Collapse
|
13
|
Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:637027. [PMID: 25371775 PMCID: PMC4211163 DOI: 10.1155/2014/637027] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.
Collapse
|
14
|
Jia X, Suzuki Y, Naito H, Yetti H, Kitamori K, Hayashi Y, Kaneko R, Nomura M, Yamori Y, Zaitsu K, Kato M, Ishii A, Nakajima T. A possible role of chenodeoxycholic acid and glycine-conjugated bile acids in fibrotic steatohepatitis in a dietary rat model. Dig Dis Sci 2014; 59:1490-501. [PMID: 24448653 DOI: 10.1007/s10620-014-3028-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/03/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Our previous study indicated that hepatic bile acids (BAs) may have deposited and stimulated the pathogenesis of a high fat-cholesterol (HFC) diet-induced fibrotic steatohepatitis in stroke-prone spontaneously hypertensive 5/Dmcr rats, based on dysregulated BA homeostasis pathways. We aimed to further characterize BA profiles in liver and evaluate their relationships to liver injury using this model. METHODS Hepatic 21 BA levels were determined by ultra-performance liquid chromatography-tandem mass spectrometry, and their correlations with macrovesicular steatosis score, serum alanine aminotransferase (ALT) level and quantified fibrotic area were assessed using Spearman and Pearson correlations. RESULTS Compared to control, BAs highly accumulated in HFC-fed rat liver at 2 weeks: cholic acid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) were major species, thereafter, levels of CA and DCA declined, but CDCA species persistently increased, which induced a decrease in total CA/total CDCA ratio at 8 and 14 weeks. CDCA species positively, while total CA/total CDCA negatively, correlated with macrovesicular steatosis score, serum ALT and quantified fibrotic area. Unlike control, total ursodeoxycholic acid was minor in HFC-fed rat liver, and inversely correlated to aforementioned indicators of liver injury; total glyco-BAs, rather than tauro-BAs, were predominant in HFC-fed rat liver, and positively correlated with macrovesicular steatosis score. Moreover, its ratio to total tauro-BAs positively correlated with each parameter of liver injury, while inverse associations were detected for total tauro-BAs. CONCLUSIONS Hepatic BA accumulation may potentiate liver disease. CDCA and glyco-BAs play a more important role in the pathogenesis of fibrotic steatohepatitis.
Collapse
Affiliation(s)
- Xiaofang Jia
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
16
|
High-fat-cholesterol diet mainly induced necrosis in fibrotic steatohepatitis rat by suppressing caspase activity. Life Sci 2013; 93:673-80. [DOI: 10.1016/j.lfs.2013.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022]
|
17
|
Nakashima R, Hayashi Y, Md K, Jia X, Wang D, Naito H, Ito Y, Kamijima M, Gonzalez FJ, Nakajima T. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. Toxicology 2013; 309:52-60. [PMID: 23619606 DOI: 10.1016/j.tox.2013.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/22/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
Maternal exposure to di(2-ethylhexyl) phthalate (DEHP) decreased the plasma triglyceride in prepartum mice. To identify the fatty acid (FA) species involved and to understand the underlying mechanisms, pregnant Sv/129 wild-type (mPPARα), peroxisome proliferator-activated receptor α-null (Pparα-null) and humanized PPARα (hPPARα) mice were treated with diets containing 0%, 0.01%, 0.05% or 0.1% DEHP. Dams were dissected on gestational day 18 together with fetuses, and on postnatal day 2 together with newborns. n-3/n-6 polyunsaturated, saturated, and monounsaturated FAs in maternal plasma and in liver of wild-type offspring, and representative enzymes for FA desaturation and elongation in maternal liver, were measured. The plasma levels of linoleic acid, α-linolenic acid, palmitic acid and oleic acid were higher in the pregnant control mPPARa mice than in Ppara-null and hPPARa mice. DEHP exposure significantly decreased the levels of these four FAs only in pregnant mPPARα mice. Plasma levels of many FAs were higher in pregnant mice than in postpartum ones in a genotype-independent manner, while it was lower in the livers of fetuses than pups. DEHP exposure slightly increased hepatic arachidonic acid, α-linolenic acid, palmitoleic acid and oleic acid in fetuses, but not in pups. However, DEHP exposure did not clearly influence FA desaturase 1 and 2 nor elongase 2 and 5 expressions in the liver of all maternal mice. Taken together, the levels of plasma four FAs with shorter carbon chains were higher in pregnant mPPARα mice than in other genotypes, and DEHP exposure decreased these specific FA concentrations only in mPPARα mice, similarly to triglyceride levels.
Collapse
Affiliation(s)
- Ryosuke Nakashima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jia X, Naito H, Yetti H, Tamada H, Kitamori K, Hayashi Y, Wang D, Yanagiba Y, Wang J, Ikeda K, Yamori Y, Nakajima T. Dysregulated bile acid synthesis, metabolism and excretion in a high fat-cholesterol diet-induced fibrotic steatohepatitis in rats. Dig Dis Sci 2013; 58:2212-22. [PMID: 23824403 PMCID: PMC3731517 DOI: 10.1007/s10620-013-2747-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cholesterol over-intake is involved in the onset of nonalcoholic steatohepatitis (NASH), and hepatocellular bile acid (BA) accumulation correlates with liver injuries. However, how dietary cholesterol influences cholesterol and BA kinetics in NASH liver remains ambiguous and needs to be clarified. METHODS Molecular markers involved in cholesterol and BA kinetics were investigated at protein and mRNA levels in an already-established stroke-prone spontaneously hypertensive 5/Dmcr rat model with fibrotic steatohepatitis, by feeding a high fat-cholesterol (HFC) diet. RESULTS Unlike the control diet, the HFC diet deposited cholesterol greatly in rat livers, where 3-hydroxy-3-methylglutaryl CoA reductase, low-density lipoprotein (LDL) receptor and LDL receptor-related protein-1 were expectedly downregulated, especially at 8 and 14 weeks, suggesting that cholesterol synthesis and uptake in response to cholesterol accumulation may not be disorganized. The HFC diet did not upregulate liver X receptor-α, conversely, it enhanced classic BA synthesis by upregulating cholesterol 7α-hydroxylase but downregulating sterol 12α-hydroxylase, and influenced alternative synthesis by downregulating sterol 27-hydroxylase but upregulating oxysterol 7α-hydroxylase, mainly at 8 and 14 weeks, indicating that there were different productions of primary BA species. Unexpectedly, no feedback inhibition of BA synthesis by farnesoid X receptor occurred. Additionally, the HFC diet impaired BA detoxification by UDP-glucuronosyltransferase and sulfotransferase 2A1, and decreased excretion by bile salt export pump at 8 and 14 weeks, although it induced compensatory export by multidrug resistance-associated protein-3. The disturbed BA detoxification may correlate with suppressed pregnane X receptor and constitutive androstane receptor. CONCLUSIONS The HFC diet may accumulate BA in rat livers, which influences fibrotic steatohepatitis progression.
Collapse
Affiliation(s)
- Xiaofang Jia
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Hisao Naito
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Husna Yetti
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521 Japan
| | - Kazuya Kitamori
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521 Japan
| | - Yumi Hayashi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Dong Wang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yukie Yanagiba
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Juncai Wang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Katsumi Ikeda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya, 663-8179 Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya, 663-8143 Japan
| | - Tamie Nakajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan ,College of Life and Health Sciences, Chubu University, Kasugai, 487-8501 Japan
| |
Collapse
|