1
|
Tian C, Wang A, Kuang Y. Remote ischemic conditioning in experimental hepatic ischemia‑reperfusion: A systematic review and meta‑analysis. Biomed Rep 2025; 22:49. [PMID: 39882337 PMCID: PMC11775642 DOI: 10.3892/br.2025.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Remote ischemic conditioning (RIC), including pre-conditioning (RIPC, before the ischemic event), per-conditioning (RIPerC, during the ischemic event), and post-conditioning (RIPostC, after the ischemic event), protects the liver in animal hepatic ischemia-reperfusion injuries models. However, several questions regarding the optimal timing of intervention and administration protocols remain unanswered. Therefore, the preclinical evidence on RIC in the HIRI models was systematically reviewed and meta-analyzed in the present review to provide constructive and helpful information for future works. In the present review, 39 articles were identified by searching the PubMed, OVID, Web of Science and Embase databases spanned from database inception to July 2024. According to the preferred reporting items for systematic reviews and meta-analyses guidelines, data were extracted independently by two researchers. The primary outcomes evaluated in this study were those directly related to liver injury, such as alanine transaminase (ALT), aspartate transaminase (AST) and liver histopathology. The risk of bias was assessed using the risk of bias tool of the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE). The findings were expressed as standardized mean difference (SMD) and analyzed using random-effects models. Egger's test was used to evaluate the publication bias. RIC significantly reduced the changes in ALT, AST and liver histopathology (all P<0.00001). These effects had two peaks, with the first peak of RIPerC/RIPostC occurring earlier, regardless of models and species. RIPerC/RIPostC exerted significant effects on changes in ALT and AST [ALT SMD (95% confidence interval (CI]): RIPC -1.97 (-2.40, -1.55) vs. -2.78 (-3.77, -1.78); P=0.142; AST SMD (95%CI): RIPC -1.45 (-1.90, -0.99) vs. -2.13 (-2.91, -1.34); P=0.142], and RIPC had a greater effect on liver histopathology change [SMD (95%CI): RIPC -2.68 (-3.67, -1.69) vs. -1.58 (-2.24, -0.92); P=0.070]; however, no interactions were observed between the two groups in the meta-regression analysis. RIC is the most effective in experimental HIRI, using a 10-25-min dose. These outcomes suggest that RIC may be a promising strategy for treating HIRI; however, future studies using repeated doses in animal models with comorbidities will present novel ideas for its therapeutic application. The protocol of present study was registered with PROSPERO (CRD42023482725).
Collapse
Affiliation(s)
- Chun Tian
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Aihua Wang
- Department of Science and Education, Yongchuan District People's Hospital of Chongqing, Chongqing 400010, P.R. China
| | - Yonghong Kuang
- Department of Science and Education, Yongchuan District People's Hospital of Chongqing, Chongqing 400010, P.R. China
| |
Collapse
|
2
|
Zhang W, Wu Y, Zeng M, Yang C, Qiu Z, Liu R, Wang L, Zhong M, Chen Q, Liang W. Protective role of remote ischemic conditioning in renal transplantation and partial nephrectomy: A systematic review and meta-analysis of randomized controlled trials. Front Surg 2023; 10:1024650. [PMID: 37091267 PMCID: PMC10113469 DOI: 10.3389/fsurg.2023.1024650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Objective Studies have shown that remote ischemic conditioning (RIC) can effectively attenuate ischemic-reperfusion injury in the heart and brain, but the effect on ischemic-reperfusion injury in patients with kidney transplantation or partial nephrectomy remains controversial. The main objective of this systematic review and meta-analysis was to investigate whether RIC provides renal protection after renal ischemia-reperfusion injury in patients undergoing kidney transplantation or partial nephrectomy. Methods A computer-based search was conducted to retrieve relevant publications from the PubMed database, Embase database, Cochrane Library and Web of Science database. We then conducted a systematic review and meta-analysis of randomized controlled trials that met our study inclusion criteria. Results Eleven eligible studies included a total of 1,145 patients with kidney transplantation or partial nephrectomy for systematic review and meta-analysis, among whom 576 patients were randomly assigned to the RIC group and the remaining 569 to the control group. The 3-month estimated glomerular filtration rate (eGFR) was improved in the RIC group, which was statistically significant between the two groups on kidney transplantation [P < 0.001; mean difference (MD) = 2.74, confidence interval (CI): 1.41 to 4.06; I 2 = 14%], and the 1- and 2-day postoperative Scr levels in the RIC group decreased, which was statistically significant between the two groups on kidney transplantation (1-day postoperative: P < 0.001; MD = 0.10, CI: 0.05 to 0.15, I 2 = 0; 2-day postoperative: P = 0.006; MD = 0.41, CI: 0.12 to 0.70, I 2 = 0), but at other times, there was no significant difference between the two groups in Scr levels. The incidence of delayed graft function (DGF) decreased, but there was no significant difference (P = 0.60; 95% CI: 0.67 to 1.26). There was no significant difference between the two groups in terms of cross-clamp time, cold ischemia time, warm ischemic time, acute rejection (AR), graft loss or length of hospital stay. Conclusion Our meta-analysis showed that the effect of remote ischemia conditioning on reducing serum creatinine (Scr) and improving estimate glomerular filtration rate (eGFR) seemed to be very weak, and we did not observe a significant protective effect of RIC on renal ischemic-reperfusion. Due to small sample sizes, more studies using stricter inclusion criteria are needed to elucidate the nephroprotective effect of RIC in renal surgery in the future.
Collapse
Affiliation(s)
- Wenfu Zhang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Department of Anesthesia, hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Yingting Wu
- Department of Critical Care Medicine Nursing, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mingwang Zeng
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Chao Yang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lifeng Wang
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Maolin Zhong
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiaoling Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weidong Liang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Masior Ł, Grąt M. Methods of Attenuating Ischemia-Reperfusion Injury in Liver Transplantation for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:8229. [PMID: 34360995 PMCID: PMC8347959 DOI: 10.3390/ijms22158229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent indications for liver transplantation. However, the transplantation is ultimately associated with the occurrence of ischemia-reperfusion injury (IRI). It affects not only the function of the graft but also significantly worsens the oncological results. Various methods have been used so far to manage IRI. These include the non-invasive approach (pharmacotherapy) and more advanced options encompassing various types of liver conditioning and machine perfusion. Strategies aimed at shortening ischemic times and better organ allocation pathways are still under development as well. This article presents the mechanisms responsible for IRI, its impact on treatment outcomes, and strategies to mitigate it. An extensive review of the relevant literature using MEDLINE (PubMed) and Scopus databases until September 2020 was conducted. Only full-text articles written in English were included. The following search terms were used: "ischemia reperfusion injury", "liver transplantation", "hepatocellular carcinoma", "preconditioning", "machine perfusion".
Collapse
Affiliation(s)
- Łukasz Masior
- Department of General, Vascular and Oncological Surgery, Medical University of Warsaw, Stępińska Street 19/25, 00-739 Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha Street 1A, 02-097 Warsaw, Poland;
| |
Collapse
|
4
|
Stankiewicz R, Grąt M. Direct, remote and combined ischemic conditioning in liver surgery. World J Hepatol 2021; 13:533-542. [PMID: 34131468 PMCID: PMC8173344 DOI: 10.4254/wjh.v13.i5.533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury is a major cause of postoperative liver dysfunction, morbidity and mortality following liver resection and transplantation. Ischemic conditioning has been shown to ameliorate ischemia-reperfusion injury in small animal models. It can be applied directly or remotely when cycles of ischemia and reperfusion are applied to a distant site or organ. Considering timing of the procedure, different protocols are available. Ischemic preconditioning refers to that performed before the duration of ischemia of the target organ. Ischemic perconditioning is performed over the duration of ischemia of the target organ. Ischemic postconditioning applies brief episodes of ischemia at the onset of reperfusion following a prolonged ischemia. Animal studies pointed towards suppressing cytokine release, enhancing the production of hepatoprotective adenosine and reducing liver apoptotic response as the potential mechanisms responsible for the protective effect of direct tissue conditioning. Interactions between neural, humoral and systemic pathways all lead to the protective effect of remote ischemic preconditioning. Despite promising animal studies, none of the aforementioned protocols proved to be clinically effective in liver surgery with the exception of morbidity reduction in cirrhotic patients undergoing liver resection. Further human clinical trials with application of novel conditioning protocols and combination of methods are warranted before implementation of ischemic conditioning in day-to-day clinical practice.
Collapse
Affiliation(s)
- Rafał Stankiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland.
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
5
|
Remote organ ischaemic preconditioning in human recipients suppresses systemic inflammation and prevents glycocalyx degradation in living-donor liver transplantation: A randomised controlled trial. Eur J Anaesthesiol 2021; 38:667-669. [PMID: 33967259 DOI: 10.1097/eja.0000000000001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Chen X, Zhang J, Xia L, Wang L, Li H, Liu H, Zhou J, Feng Z, Jin H, Yang J, Yang Y, Wu B, Zhang L, Chen G, Wang G. β-Arrestin-2 attenuates hepatic ischemia-reperfusion injury by activating PI3K/Akt signaling. Aging (Albany NY) 2020; 13:2251-2263. [PMID: 33323551 PMCID: PMC7880335 DOI: 10.18632/aging.202246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI) remains a common complication during liver transplantation (LT), partial hepatectomy and hemorrhagic shock in patients. As a member of the G protein-coupled receptors adaptors, ARRB2 has been reported to be involved in a variety of physiological and pathological processes. However, whether β-arrestin-2 affects the pathogenesis of hepatic IRI remains unknown. The goal of the present study was to determine whether ARRB2 protects against hepatic IR injury and elucidate the underlying mechanisms. To this end, 70% hepatic IR models were established in ARRB2 knockdown mice and wild-type littermates, with blood and liver samples collected at 1, 6 and 12 h after reperfusion to evaluate liver injury. The effect of ARBB2 on PI3K/Akt signaling during IR injury was evaluated in vivo, and PI3K/Akt pathway regulation by ARRB2 was further assessed in vitro. Our results showed that ARRB2 knockdown aggravates hepatic IR injury by promoting the apoptosis of hepatocytes and inhibiting their proliferation. In addition, ARRB2 deficiency inhibited PI3K/Akt pathway activation, while the administration of the PI3K/Akt inhibitor PX866 resulted in severe IR injury in mice. Furthermore, the liver-protecting effect of ARRB2 was shown to depend on PI3K/Akt pathway activation. In summary, our results suggest that β-Arrestin-2 protects against hepatic IRI by activating PI3K/Akt signaling, which may provide a novel therapeutic strategy for treating liver ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Junbin Zhang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Long Xia
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Li Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Hui Li
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Huilin Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China.,Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Jing Zhou
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Zhiying Feng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Hai Jin
- Department of Medical Ultrasonics, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510630, Guangdong Province, P. R. China
| | - JianXu Yang
- Department of Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, P. R. China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Bin Wu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China.,Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China.,Department of Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China
| | - Guihua Chen
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| | - Genshu Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, Guangdong Province, P. R. China
| |
Collapse
|
7
|
Liu SH, Wang PP, Chen CT, Li D, Liu QY, Lv L, Liu X, Wang LN, Li BX, Weng CY, Fang XS, Cao XF, Mao HB, Chen XJ, Luo SL, Zheng SX, Liu GL, Wu Y. MicroRNA-148b enhances the radiosensitivity of B-cell lymphoma cells by targeting Bcl-w to promote apoptosis. Int J Biol Sci 2020; 16:935-946. [PMID: 32140063 PMCID: PMC7053334 DOI: 10.7150/ijbs.40756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Lymphoma is a malignant disease of the hematopoietic system that typically affects B cells. The up-regulation of miR-148b is associated with radiosensitization in B-cell lymphoma (BCL). This study aimed to explore the role of miR-148b in regulating the radiosensitivity of BCL cells and to investigate the underlying mechanism. miR-148b directly targeted Bcl-w, decreased the cell viability and colony formation, while promoted apoptosis, in irradiated BCL cells. These changes were accompanied by decreased mitochondrial membrane potential, release of cytochrome C, increased levels of the cleaved caspase 9 and caspase 3, and increased expression of other proteins related to the mitochondrial apoptosis pathway. These effects of miR-148b were effectively inhibited by Bcl-w. In addition, miR-148b inhibited the growth of tumors in nude mice implanted with xenografts of irradiated Raji cells. In patients with BCL, levels of miR-148b were downregulated, while levels of Bcl-w were upregulated; a significant negative correlation between levels of miR-148b and Bcl-w was confirmed. Taken together, these experiments showed that miR-148b promoted radiation-induced apoptosis in BCL cells by targeting anti-apoptotic Bcl-w. miR-148b might be used as a marker to predict the radiosensitivity of BCL.
Collapse
Affiliation(s)
- Si-Hong Liu
- Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pei-Pei Wang
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cun-Te Chen
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Li
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong-Yao Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Lv
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xia Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Na Wang
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bao-Xiu Li
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng-Yin Weng
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi-Sheng Fang
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Fei Cao
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai-Bo Mao
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Jun Chen
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shao-Li Luo
- Department of Gerontology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu-Xiang Zheng
- Department of Obstetrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guo-Long Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Koh WU, Kim J, Lee J, Song GW, Hwang GS, Tak E, Song JG. Remote Ischemic Preconditioning and Diazoxide Protect from Hepatic Ischemic Reperfusion Injury by Inhibiting HMGB1-Induced TLR4/MyD88/NF-κB Signaling. Int J Mol Sci 2019; 20:ijms20235899. [PMID: 31771292 PMCID: PMC6929132 DOI: 10.3390/ijms20235899] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 01/23/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) is known to have a protective effect against hepatic ischemia-reperfusion (IR) injury in animal models. However, the underlying mechanism of action is not clearly understood. This study examined the effectiveness of RIPC in a mouse model of hepatic IR and aimed to clarify the mechanism and relationship of the ATP-sensitive potassium channel (KATP) and HMGB1-induced TLR4/MyD88/NF-κB signaling. C57BL/6 male mice were separated into six groups: (i) sham-operated control, (ii) IR, (iii) RIPC+IR, (iv) RIPC+IR+glyburide (KATP blocker), (v) RIPC+IR+diazoxide (KATP opener), and (vi) RIPC+IR+diazoxide+glyburide groups. Histological changes, including hepatic ischemia injury, were assessed. The levels of circulating liver enzymes and inflammatory cytokines were measured. Levels of apoptotic proteins, proinflammatory factors (TLR4, HMGB1, MyD88, and NF-κB), and IκBα were measured by Western blot and mRNA levels of proinflammatory cytokine factors were determined by RT-PCR. RIPC significantly decreased hepatic ischemic injury, inflammatory cytokine levels, and liver enzymes compared to the corresponding values observed in the IR mouse model. The KATP opener diazoxide + RIPC significantly reduced hepatic IR injury demonstrating an additive effect on protection against hepatic IR injury. The protective effect appeared to be related to the opening of KATP, which inhibited HMGB1-induced TRL4/MyD88/NF-kB signaling.
Collapse
Affiliation(s)
- Won Uk Koh
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
| | - Jiye Kim
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
| | - Jooyoung Lee
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Gyu Sam Hwang
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
| | - Eunyoung Tak
- Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.K.); (J.L.)
- Correspondence: (E.T.); (J.-G.S.); Tel.: +82-2-3010-4634 (E.T.); Tel.: +82-2-3010-3869 (J.-G.S.)
| | - Jun-Gol Song
- Department of Anesthesiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (W.U.K.); (G.S.H.)
- Correspondence: (E.T.); (J.-G.S.); Tel.: +82-2-3010-4634 (E.T.); Tel.: +82-2-3010-3869 (J.-G.S.)
| |
Collapse
|
9
|
Li DY, Liu WT, Wang GY, Shi XJ. Impact of combined ischemic preconditioning and remote ischemic perconditioning on ischemia-reperfusion injury after liver transplantation. Sci Rep 2018; 8:17979. [PMID: 30568237 PMCID: PMC6299280 DOI: 10.1038/s41598-018-36365-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Ischemic preconditioning (IPC) and remote ischemic perconditioning (RIPer) confer protective effects against liver ischemia-reperfusion injury (IRI), but data about RIPer applying in liver transplantation is lacking. The study aimed to evaluate whether the combination of IPC and RIPer provides reinforced protective effects. C57BL/6 mice (160 pairs) were allocated into four groups: control, subjected to liver transplantation only; IPC, donor hilar was clamped for 10 min followed by 15 min of reperfusion; RIPer, three cycles of occlusion (5 min) and opening (5 min) of femoral vascular bundle were performed before reperfusion; IPC + RIPer, donors and recipients were subjected to IPC and RIPer respectively. Liver tissues were obtained for histological evaluation, TUNEL staining, malondialdehyde assays, GSH-Px assays, and NF-κB p65 protein and Bcl-2/Bax mRNA analyses. Blood samples were used to evaluate ALT, AST, TNF-α, NOx levels and flow cytometry. We found that protective efficacy of RIPer is less than IPC in terms of ALT, TNF-α, GSH-Px and NOx at 2 h postoperation, but almost equivalent at 24 h and 72 h postoperation. Except for Suzuki scores, ALT, Bcl-2/Bax mRNA ratio, other indices showed that combined treatment brought enhanced attenuation in IRI, compared with single treatment, through additive effects on antioxidation, anti-apoptosis, modulation of microcirculation disturbance, and inhibition of innate immune response. This study suggested a combined strategy that could enhance protection against IRI in clinical liver transplantation, otherwise, provided a hint that RIPer's mechanism might be partly or totally different from IPC in humoral pathway.
Collapse
Affiliation(s)
- Ding-Yang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Wen-Tao Liu
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guang-Yi Wang
- Department of Hepatobiliary & Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiao-Ju Shi
- Department of Hepatobiliary & Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
10
|
Wang D, Liu Y, Yang X, Zhou J. Hypoxic preconditioning enhances cell hypoxia tolerance and correlated lncRNA and mRNA analysis. Life Sci 2018; 208:46-54. [DOI: 10.1016/j.lfs.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/23/2018] [Accepted: 07/07/2018] [Indexed: 01/04/2023]
|
11
|
Liu Y, Zhang W, Cheng Y, Miao C, Gong J, Wang M. Activation of PPARγ by Curcumin protects mice from ischemia/reperfusion injury induced by orthotopic liver transplantation via modulating polarization of Kupffer cells. Int Immunopharmacol 2018; 62:270-276. [PMID: 30036770 DOI: 10.1016/j.intimp.2018.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Curcumin shows protective effects on various diseases due to its anti-inflammatory and anti-oxidative functions; however, its effect on organ transplantation has not been fully elucidated. To understand its role in liver ischemia/reperfusion (I/R) injury, we studied its impact on orthotopic liver transplantation (OLT) and Kupffer cells (KCs) polarization and its underlying mechanisms. We first investigated the reactive oxygen species (ROS) accumulation and cytokines profile of KCs, intracellular ROS and the mRNA level of pro-inflammatory cytokines were downregulated while the mRNA level of anti-inflammatory cytokine was upregulated by the pretreatment of Curcumin; Then the liver injury was detected by histopathological examination and liver function. Pretreatment with Curcumin significantly alleviated liver injury while improving liver function and overall post-transplantation survival compared with the control groups. The Western blotting showed that Curcumin inhibited the function of KCs via down-regulating the nuclear factor κb (NF-κb) signaling pathway by activating peroxisome proliferator-activated receptor γ (PPARγ) and flow cytometry revealed that Curcumin suppressed pro-inflammatory phenotype (M1) of KCs while promoting its anti-inflammatory phenotype (M2) polarization. These results showed that Curcumin may exert positive effects on I/R injury after OLT through activating PPARγ by inhibiting the activation of NF-κb pathway and remodeling the polarization of KCs. This may reveal a potential therapy for I/R injury after liver transplantation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, The Fifth People's Hospital of Chengdu, Chengdu, 611130, PR China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yao Cheng
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jianping Gong
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Menghao Wang
- Department of Hepatobiliary Surgery and Chongqing Key Laboratory of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
12
|
Chen Z, Wang J, Yang W, Chen J, Meng Y, Geng B, Cui Q, Yang J. FAM3A mediates PPARγ's protection in liver ischemia-reperfusion injury by activating Akt survival pathway and repressing inflammation and oxidative stress. Oncotarget 2018; 8:49882-49896. [PMID: 28562339 PMCID: PMC5564815 DOI: 10.18632/oncotarget.17805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
FAM3A is a novel mitochondrial protein, and its biological function remains largely unknown. This study determined the role and mechanism of FAM3A in liver ischemia-reperfusion injury (IRI). In mouse liver after IRI, FAM3A expression was increased. FAM3A-deficient mice exhibited exaggerated liver damage with increased serum levels of AST, ALT, MPO, MDA and oxidative stress when compared with WT mice after liver IRI. FAM3A-deficient mouse livers had a decrease in ATP content, Akt activity and anti-apoptotic protein expression with an increase in apoptotic protein expression, inflammation and oxidative stress when compared WT mouse livers after IRI. Rosiglitazone pretreatment protected against liver IRI in wild type mice but not in FAM3A-deficient mice. In cultured hepatocytes, FAM3A overexpression protected against, whereas FAM3A deficiency exaggerated oxidative stress-induced cell death. FAM3A upregulation or FAM3A overexpression inhibited hypoxia/reoxygenation-induced activation of apoptotic gene and hepatocyte death in P2 receptor-dependent manner. FAM3A deficiency blunted rosiglitazone's beneficial effects on Akt activation and cell survival in cultured hepatocytes. Collectively, FAM3A protects against liver IRI by activating Akt survival pathways, repressing inflammation and attenuating oxidative stress. Moreover, the protective effects of PPARγ agonist(s) on liver IRI are dependent on FAM3A-ATP-Akt pathway.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
13
|
Remote Ischemic Preconditioning Is Efficient in Reducing Hepatic Ischemia-Reperfusion Injury in a Growing Rat Model and Does Not Promote Histologic Lesions in Distant Organs. Transplant Proc 2018; 50:3840-3844. [PMID: 30385044 DOI: 10.1016/j.transproceed.2018.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ischemic preconditioning (IPC) was developed to diminish ischemia-reperfusion injury (IRI). There are two main ways of performing it: direct ischemic-preconditioning (DIP) and remote ischemic-preconditioning (RIP). The objectives of this study were to investigate local and systemic effects of DIP and RIP in liver IRI. METHODS Thirty-two weaning rats (50-70 g body weight; 21 days old) were divided into 4 groups: control (C); ischemia followed by reperfusion (IR); DIP followed by ischemia and reperfusion; and RIP followed by ischemia and reperfusion. In the IR group, the vascular pedicles of medial and left lateral liver lobes were clamped for 60 minutes and then unclamped. In the DIP group, a 10-minute cycle of ischemia followed by a 10-minute reperfusion of the same lobes was performed before 60 minutes of ischemia. In the RIP group, three 5-minute cycles of clamping and unclamping of the femoral vessels were performed before liver ischemia. The animals were euthanized 24 hours after the surgical procedures. RESULTS The serum levels of liver enzymes were significantly lower in the RIP group compared to the control and IR groups and to the DIP group. The scores of histologic hepatic lesions were significantly lower in RIP animals than those of IR animals (P = .002) and similar to the C group animals. The Bax/BCl-xl relation was lower in the DIP group than that in the RIP group (P = .045) and no differences were observed in histologic analyses of kidney, lung, intestine, and heart. CONCLUSION In young animals, the beneficial effects of RIP are more evident than those of DIP.
Collapse
|
14
|
Liu Y, Shi B, Li Y, Zhang H. Protective Effect of Luteolin Against Renal Ischemia/Reperfusion Injury via Modulation of Pro-Inflammatory Cytokines, Oxidative Stress and Apoptosis for Possible Benefit in Kidney Transplant. Med Sci Monit 2017; 23:5720-5727. [PMID: 29196613 PMCID: PMC5723104 DOI: 10.12659/msm.903253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The acceptances and long-term outcomes of the renal transplantations are seriously jeopardized by inflammatory responses and damage to tissues. The present study intended to explicate the pharmacological effect of luteolin (LT) in renal ischemia/reperfusion (I/R) injury and the possible mechanism of action of LT. Material/Methods The effect of LT on the level of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the homogenates of kidney tissues of male Swiss albino mice was determined after I/R injury. The effect of LT on MDA (malondialdehyde), SOD (superoxide dismutase), CAT (catalase), and glutathione were also identified by enzyme assay. In addition, Western blotting was used to determine the level of Bcl-2, Bax, and caspase-3 in the presence of LT. Results The results showed that LT caused significant reduction in the level of TNF-α, IL-1β, and IL-6 compared to the I/R group without LT (p>0.05). To further confirm this, the efficacy of LT on the histopathology of I/R injured renal tissues was studied. It was found that LT restored cellular viability of damaged renal tissue. This observation was further confirmed by TUNEL assay, where it was found that LT caused considerable reduction in the population of apoptotic cells. LT pretreatment significantly increased Bcl-2 expression and reduced the level of Bax expression together with a reduction in the level of caspase-3 expression. Conclusions Luteolin showed its effect by interfering and attenuating a number of pathways, including pathways for inflammation and apoptosis in renal tissues.
Collapse
Affiliation(s)
- Yan Liu
- Department of Transplantation, Tianjin 1st Central Hospital, Tianjin, China (mainland)
| | - Baoxin Shi
- Hospice Research Center, Tianjin Medical University, Tianjin, China (mainland)
| | - Yi Li
- Department of Family Planning, Tianjin 1st Central Hospital, Tianjin, China (mainland)
| | - Hui Zhang
- Department of Family Planning, Tianjin 1st Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
15
|
Xue Y, Xu Z, Chen H, Gan W, Chong T. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion. Acta Cir Bras 2017; 32:550-558. [PMID: 28793039 DOI: 10.1590/s0102-865020170070000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 01/19/2023] Open
Abstract
Purpose: To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. Methods: The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Results: Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Conclusion: Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.
Collapse
Affiliation(s)
- Yuquan Xue
- PhD, Department of Urology, the Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi Province, China. Conception and design of the study, intellectual content of the study, analysis and interpretation of data, drafting of the manuscript, critical revision, supervised all phases of the study
| | - Zhibin Xu
- MD, Department of Urology, the Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi Province, China. Acquisition, analysis and interpretation of data; statistical analysis
| | - Haiwen Chen
- PhD, Department of Urology, the Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi Province, China. Conception and design of the study, intellectual content of the study, analysis and interpretation of data, drafting of the manuscript, critical revision, supervised all phases of the study
| | - Weimin Gan
- MD, Department of Urology, the Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi Province, China. Acquisition, analysis and interpretation of data; statistical analysis
| | - Tie Chong
- PhD, Department of Urology, the Second Affiliated Hospital, Xi'an Jiaotong University, Shaanxi Province, China. Conception and design of the study, intellectual content of the study, analysis and interpretation of data, drafting of the manuscript, critical revision, supervised all phases of the study
| |
Collapse
|
16
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|