1
|
Ceccarelli S, Pasqua Marzolesi V, Vannucci J, Bellezza G, Floridi C, Nocentini G, Cari L, Traina G, Petri D, Puma F, Conte C. Toll-Like Receptor 4 and 8 are Overexpressed in Lung Biopsies of Human Non-small Cell Lung Carcinoma. Lung 2025; 203:38. [PMID: 40025339 PMCID: PMC11872755 DOI: 10.1007/s00408-025-00793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Lung cancer is the leading cause of cancer death worldwide which includes two main types of carcinoma distinguished in non-small cell lung cancer (NSCLC) involving epithelial cells, and small cell lung cancer (SCLC) affecting neuronal cells and hormone secreting cells. Studies have shown a causal link between inflammation/innate immunity and onset of NSCLC. The present study aimed to evaluate the expression of Toll-like receptors (TLRs) 4 and TLR8 in peripheral blood mononuclear cells (PBMC) and in lung tissues of patients with NSCLC, useful for future prognostic tools for NSCLC. METHODS Patients surgically treated for NSCLC with anatomical resections and patients with benign disease were enrolled. The expression levels of TLR4 and TLR8 were determined by real time PCR and by immunohistochemical analysis in PBMC and in lung tissues, respectively. A preliminary in silico analysis including 1194 arrays from healthy and cancer tissues were extracted by Genevestigator database. The association between TLRs gene expression and survival outcome was also investigated. RESULTS Bioinformatics analysis revealed that downregulation of TLR4 and TLR8 positively impacts the survival in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). However, no significant differences in TLR4 and TLR8 gene expression between case and control groups were observed in PBMC. A positive correlation was found in their expression levels. Interestingly, immunohistochemical analysis showed that the levels of TLR4 and TLR8 were higher in the lung tissues of patients with NSCLC than in the control group in terms of staining intensity and positive cells. CONCLUSION Albeit the precise role of TLRs is not fully defined, this study identified the potential involvement of TLR4 and TLR8 in the pathogenesis of NSCLC. Our data led us to hypothesize their potential role in overall survival which deserves to be explored further to establish whether TLR4 and TLR8 can represent positive prognostic indicators of disease in NSCLC.
Collapse
MESH Headings
- Humans
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/surgery
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/surgery
- Male
- Female
- Middle Aged
- Aged
- Toll-Like Receptor 8/genetics
- Toll-Like Receptor 8/metabolism
- Biopsy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Leukocytes, Mononuclear/metabolism
- Prognosis
- Lung/pathology
- Lung/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Adenocarcinoma of Lung/genetics
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/metabolism
Collapse
Affiliation(s)
- Silvia Ceccarelli
- Department of Surgical and Biomedical Sciences, Thoracic Surgery Unit, Medical School, University of Perugia, Perugia, Italy
| | | | - Jacopo Vannucci
- Department of Surgical and Biomedical Sciences, Thoracic Surgery Unit, Medical School, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Claudia Floridi
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Davide Petri
- Department of Environment and Health, National Institute of Health, Rome, Italy
| | - Francesco Puma
- Department of Surgical and Biomedical Sciences, Thoracic Surgery Unit, Medical School, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
2
|
Chen X, Zhang J, Wang Y, Hu Q, Zhao R, Zhong L, Zhan Q, Zhao L. Structure and immunostimulatory activity studies on two novel Flammulina velutipes polysaccharides: revealing potential impacts of →6)-α-D-Glc p(1→ on the TLR-4/MyD88/NF-κB pathway. Food Funct 2024; 15:3507-3521. [PMID: 38465397 DOI: 10.1039/d3fo05468c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Two novel Flammulina velutipes (F. velutipes) polysaccharides, FVPH1 and FVPH2, were isolated and purified after hot water extraction. The structural characterization revealed that the backbone of FVPH1 consisted mainly of →6)-α-D-Glcp(1→, →3,4)-α-D-Galp(1→, →4)-α-L-Fucp(1→, and →4)-β-D-Manp(1→, while the backbone of FVPH2 consisted of →3)-α-D-Galp(1→, →3,4)-α-D-Manp(1→,→6)-α-D-Glcp(1→. The branches of FVPH1 contained →6)-α-D-Glcp(1→ and α-D-Glcp(1→ and the branches of FVPH2 consisted of →3)-α-D-Galp(1→, →6)-α-D-Glcp(1→, and β-L-Fucp(1→. FVPH2 exhibited significantly better immunostimulatory activity than FVPH1 (P < 0.05), as evidenced by the increased expression of NO, IL-1β, IL-6, and TNF-α and pinocytic activity of RAW264.7 cells. As the most abundant structure in the polysaccharides of F. velutipes, the content of →6)-α-D-Glcp(1→ might play a crucial role in influencing the immunostimulatory activity of F. velutipes polysaccharides. The F. velutipes polysaccharide with a lower content of →6)-α-D-Glcp(1→ and a higher branching degree could significantly enhance the immunostimulatory activity of F. velutipes polysaccharides via activating the TLR-4/MyD88/NF-κB pathway more effectively.
Collapse
Affiliation(s)
- Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China
| | - Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, P. R. China
| | - Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
3
|
Khan MT, Mahmud A, Islam MM, Sumaia MSN, Rahim Z, Islam K, Iqbal A. Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach. Genomics Inform 2023; 21:e42. [PMID: 37813638 PMCID: PMC10584640 DOI: 10.5808/gi.23021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Toll-like receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Muzahidul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mst. Sayedatun Nessa Sumaia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Zeaur Rahim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Asif Iqbal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
5
|
Yasui M, Cui L, Miyamoto H. Recent advances in the understanding of urothelial tumorigenesis. Expert Rev Anticancer Ther 2023; 23:485-493. [PMID: 37052619 DOI: 10.1080/14737140.2023.2203388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Patients with non-muscle-invasive bladder tumor suffer from disease recurrence following transurethral surgery even with intravesical pharmacotherapy, while muscle-invasive disease is often deadly. It is therefore critical to elucidate the underlying molecular mechanisms responsible for not only bladder tumor progression but also its tumorigenesis. Indeed, various molecules and/or signaling pathways have been suggested to contribute to the pathogenesis of bladder cancer. AREAS COVERED We summarize the progress during the last few years on the initiation or development, but not progression, of urothelial cancer. The clinical implications of these available data, including prognostic significance and possible application for the prevention of the recurrence of non-muscle-invasive bladder tumors, are also discussed. EXPERT OPINION Bladder cancer is a heterogeneous group of neoplasms. The establishment of personalized therapeutic options based on the molecular profile in each case should thus be considered. On that account, further accumulation of data on urothelial tumorigenesis is warranted to identify promising targets for the prevention of postoperative tumor recurrence or tumor development in otherwise high-risk patients.
Collapse
Affiliation(s)
- Masato Yasui
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
- James P. Wilmot Cancer Institute, Rochester, NY, USA
| | - Liam Cui
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
- James P. Wilmot Cancer Institute, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Interaction of Opioids with TLR4-Mechanisms and Ramifications. Cancers (Basel) 2021; 13:cancers13215274. [PMID: 34771442 PMCID: PMC8582379 DOI: 10.3390/cancers13215274] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent evidence indicates that opioids can be active at a receptor that is abundantly expressed on innate immune cells as well as cancer cells: the receptor is termed toll-like receptor 4 (TLR4). TLR4 is increasingly recognised as playing key roles in tumour biology and anticancer defences. However, the issue of whether TLR4 mediates some of the effects of opioids on tumour growth and metastasis is entirely unknown. We review existing evidence, mechanisms, and functional consequences of the action of opioids at TLR4. This opens new avenues of research on the role of opioids in cancer. Abstract The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.
Collapse
|
7
|
Zhu L, Li W, Fan Z, Ye X, Lin R, Ban M, Ren L, Chen X, Zhang D. Immunomodulatory activity of polysaccharide from Arca granosa Linnaeus via TLR4/MyD88/NFκB and TLR4/TRIF signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
A comprehensive mechanistic review insight into the effects of micronutrients on toll-like receptors functions. Pharmacol Res 2019; 152:104619. [PMID: 31887355 DOI: 10.1016/j.phrs.2019.104619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Toll-like receptors (TLRs) are the special proteins receptors for recognition of molecules related to the pathogens. In this way, TLRs and secreted cytokines as a result of TLRs activation are involved in the inflammation pathways. So far, in vivo and in vitro studies have demonstrated that micronutrients (vitamins & minerals) with a broad range of effects on body health, can regulate TLRs signaling pathways. Current review aimed at determining the possible mechanisms of micronutrient effects on TLRs functions. In the aspect of gene expression, micronutrients have inconsistent effects on mRNA level of TLRs which are dependent on time, dose and type of studied TLR. Also, some micronutrients affect gene expression of TLRs signaling mediators namely TLRs adaptors like Myeloid differentiation primary response 88 (MyD88). In the aspect of TLRs signaling pathways, nuclear factor-κB (NF-κB) is an important mediator which is regulated by micronutrients. Also, the regulatory effects of micronutrients on phosphorylation reactions may be effective in the activation/inactivation of TLRs signaling mediators. In addition, zinc can regulate TLRs signaling indirectly via the zinc finger proteins which have contradictory effects on TLRs cascade. In conclusion, the relationship between micronutrients and TLRs signaling is complicated and depends on some known internal, external and genetic factors like form of studied micronutrient, cell type, TLR agonist, dose and time of exposure, inflammation, apoptosis, cell cycle, and environmental factors. Some unknown factors may be effective in TLRs response and as a result additional mechanistic studies are needed to elucidate exact effect of micronutrients on TLRs signaling.
Collapse
|
9
|
Sepehri Z, Kiani Z, Kohan F, Ghavami S. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med 2019; 50:117-129. [PMID: 30124945 DOI: 10.1093/labmed/lmy047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To review the main Mycobacterium tuberculosis (Mtb) pathogen-associated molecular patterns (PAMPs) and the roles played by toll-like receptor (TLR)4 in determination of Mtb infection outcome. METHODS Several scientific databases, including Scopus, PubMed, and Google Scholar, were used for searching appropriate research articles from the literature for information on our topic. RESULTS TLR4 plays positive roles in induction of immune responses against Mtb and participates in eradication of the infection. Some limited investigations approved the roles of TLR4 in induction of apoptosis in macrophages during tuberculosis (TB) and attenuation of immune responses in some situations. CONCLUSIONS TB outcome appears to be dependent on TLR4/Mtb interaction and several factors, including bacterial load and immune or nonimmune cells, as hosts. Also, other TLR/Mtb interactions can affect TLR4 responses.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran and Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Kohan
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Arababadi MK, Nosratabadi R, Asadikaram G. Vitamin D and toll like receptors. Life Sci 2018; 203:105-111. [PMID: 29596922 DOI: 10.1016/j.lfs.2018.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that vitamin D (VD) significantly modulates immune responses. Toll like receptors (TLRs) are the main innate immunity receptors which are expressed on the cell membrane and intracellular vesicles and recognize several pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) to induce immune responses. Based on the important roles played by TLRs in physiologic and pathologic functions of immune responses and due to the immunomodulatory functions of VD, it has been hypothesized that VD may present its immunomodulatory functions via modulation of TLRs. This review article collates recent studies regarding the interactions between VD and TLRs and discussed the controversial investigations.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Sepehri Z, Kiani Z, Kohan F, Alavian SM, Ghavami S. Toll like receptor 4 and hepatocellular carcinoma; A systematic review. Life Sci 2017; 179:80-87. [PMID: 28472619 DOI: 10.1016/j.lfs.2017.04.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/16/2017] [Accepted: 04/29/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Toll like receptor 4 (TLR4) is an extracellular pathogen recognition receptor (PRR) which recognizes a wide range of pathogens and damage associated molecular patterns (PAMPs and DAMPs). It can activate intracellular signaling and consequently transcription factors which participate in transcription from either immune related or malignancy genes. Thus, it has been hypothesized that TLR4 may be a cause of hepatocellular carcinoma (HCC). This article has reviewed the roles of TLR4 in the pathogenesis of HCC. METHOD "TLR4", "hepatocellular carcinoma", "liver tumor" and "liver cancer" were used as key words for searching in Scopus, Google Scholar and MEDLINE scientific databases. RESULTS Most of the investigations documented the roles of TLR4 in induction of HCC via several mechanisms including increased number of T regulatory lymphocytes and liver resident follicular helper like cells, increased production of pro-inflammatory and malignancy related molecules including cytokines, NANOG, Caspase-1, Ephrin-A1, NO and BCL6. TLR4 participates in the proliferation of the cells and also production of the molecules in both chronic infectious and non-infectious inflammatory diseases. DISCUSSION TLR4 is an innate immunity receptor which plays a pathogenic role during chronic inflammation and can induce HCC in human.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran; Kerman University of Medical Sciences, Kerman, Iran.
| | - Farhad Kohan
- Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
12
|
Nosratababadi R, Bagheri V, Zare-Bidaki M, Hakimi H, Zainodini N, Kazemi Arababadi M. Toll like receptor 4: an important molecule in recognition and induction of appropriate immune responses against Chlamydia infection. Comp Immunol Microbiol Infect Dis 2017; 51:27-33. [PMID: 28504091 DOI: 10.1016/j.cimid.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/06/2017] [Accepted: 03/12/2017] [Indexed: 01/09/2023]
Abstract
Chlamydia species are obligate intracellular pathogens causing different infectious diseases particularly asymptomatic genital infections and are also responsible for a wide range of complications. Previous studies showed that there are different immune responses to Chlamydia species and their infections are limited to some cases. Moreover, Chlamydia species are able to alter immune responses through modulating the expression of some immune system related molecules including cytokines. Toll like receptors (TLRs) belonge to pathogen recognition receptors (PRRs) and play vital roles in recognition of microbes and stimulation of appropriate immune responses. Therefore, it appears that TLRs may be considered as important sensors for recognition of Chlamydia and promotion of immune responses against these bacterial infections. Accordingly, TLR4 detects several microbial PAMPs such as bacterial lipopolysacharide (LPS) and subsequently activates transcription from pro-inflammatory cytokines in both MYD88 and TRIF pathways dependent manner. The purpose of this review is to provide the recent data about the status and major roles played by TLR4 in Chlamydia species recognition and promotion of immune responses against these infections and also the relationship between TLR4 activities and pathogenesis of Chlamydia infections.
Collapse
Affiliation(s)
- Reza Nosratababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Bagheri
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Hakimi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
13
|
Khabbazi S, Xie N, Pu W, Goumon Y, Parat MO. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro. Front Pharmacol 2016; 7:441. [PMID: 27909407 PMCID: PMC5112272 DOI: 10.3389/fphar.2016.00441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.
Collapse
Affiliation(s)
- Samira Khabbazi
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD, Australia
| | - Nan Xie
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD, Australia
| | - Wenjun Pu
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD, Australia
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique-University of Strasbourg Strasbourg, France
| | - Marie-Odile Parat
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD, Australia
| |
Collapse
|