1
|
Idris RM, Al-Hroub H, Schmies CC, Riziki P, Renn C, Claff T, Sylvester K, Moschütz S, Reinhardt J, Deuter-Conrad W, Dietrich JM, Toma M, Fleischmann BK, Wenzel D, Zimmermann H, Hölzel M, Sträter N, Müller CE. Design, development and evaluation of a tritium-labeled radiotracer for ecto-5'-nucleotidase (CD73) - A versatile research tool and diagnostic agent for personalized medicine. Biomed Pharmacother 2025; 188:118115. [PMID: 40367555 DOI: 10.1016/j.biopha.2025.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Ecto-5'-nucleotidase (CD73) is the main enzyme that catalyzes the hydrolysis of extracellular AMP to produce anti-inflammatory, immunosuppressive adenosine. Many tumor cells over-express ectonucleotidases accumulating adenosine in the tumor microenvironment, which promotes tumor growth, metastasis, angiogenesis, and immune escape. CD73 is upregulated in inflammation, and possesses potential as a biomarker and as a novel drug target for inflammatory diseases and cancer immunotherapy. New, metabolically stable N6-disubstituted adenosine-5'-diphosphate analogs were synthesized providing a basis for the design and preparation of the CD73-selective radioligand [3H]PSB-17230 by catalytic hydrogenation of a propargyl-substituted precursor. It showed high, pico- to low nanomolar affinity for human, rat and mouse CD73, slow dissociation kinetics, negligible non-specific binding, and high selectivity, as confirmed by studies on an inactive CD73 mutant and CD73 knockout cells. A high-resolution co-crystal structure (2.35 Å) of PSB-17230 with human CD73 elucidated its binding interactions. Radioligand binding was employed to characterize competitive CD73 inhibitors and to study expression levels of the enzyme in tissues and tumor cell lines of different species. Moreover, [3H]PSB-17230 was employed in autoradiography studies to determine CD73 expression in healthy and diseased mouse and human tissues. Significant upregulation of CD73 was observed in a mouse asthma model and in kidney cancer biopsies as compared to healthy controls. [3H]PSB-17230 represents a high-affinity tracer which is anticipated to find broad application in drug screening, preclinical studies, and for diagnostic purposes in inflammation and cancer, enabling drug monitoring and targeted therapies.
Collapse
Affiliation(s)
- Riham M Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Constanze C Schmies
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Patrick Riziki
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Tobias Claff
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Katharina Sylvester
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Julia Reinhardt
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Venusberg-Campus, Bonn 153127, Germany
| | - Winnie Deuter-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany
| | - Jennifer M Dietrich
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Bonn Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn (UKB), Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Bonn Germany; Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Venusberg-Campus, Bonn 153127, Germany
| | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany.
| |
Collapse
|
2
|
Wang R, Yao X, Yu J, Wan X, Li S, Tian Y, Liu G, Yang Z, Yang X, Cheng S, Pan W, Cao Y, Luo H. A novel L-shaped ortho-quinone analog targeting adenosine A2b receptor to inhibit epithelial-mesenchymal transition in colorectal cancer cells. Med Oncol 2025; 42:197. [PMID: 40325273 DOI: 10.1007/s12032-025-02767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, with its incidence and mortality rates rising significantly in recent decades. In this study, we identified a compound (TC4) from a series of L-shaped ortho-quinone analog with notable inhibitory effects on epithelial-mesenchymal transition (EMT) in CRC cells. In vitro studies demonstrated that TC4 induces apoptosis, thereby suppressing CRC cell growth, invasion, and metastasis. Target analysis suggested that adenosine A2b receptor (ADORA2B) is a key molecular target of TC4, which was further confirmed by thermodynamic experiments showing direct binding to ADORA2B in living cells. Using ADORA2B overexpression and knockdown models, we found that abnormal expression of ADORA2B significantly affects CRC cell growth, invasion, metastasis, and sensitivity to TC4, confirming ADORA2B as a critical target for the compound's anti-tumor activity. TC4 was shown to markedly influence EMT, downregulating E-cadherin while upregulating N-cadherin, Vimentin, and Snail, with these effects dependent on ADORA2B overexpression. This indicates that the regulation of EMT by TC4 is closely associated with its interaction with ADORA2B. The present study confirms that TC4, a newly discovered compound with the ability to inhibit the growth and metastasis of CRC cells, can target ADORA2B to significantly regulate EMT in cancer cells.
Collapse
Affiliation(s)
- Rui Wang
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Xingsheng Yao
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Jia Yu
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Xinwei Wan
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Shengyou Li
- School of Pharmaceutical Sciences, GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Yuxuan Tian
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Guangyang Liu
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Ziqi Yang
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Xianhui Yang
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, China
| | - Weidong Pan
- School of Pharmaceutical Sciences, GuiZhou University, Guiyang, 550025, Guizhou Province, China
| | - Ying Cao
- Medical College of GuiZhou University, Guiyang, 550025, Guizhou Province, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou Province, China.
| |
Collapse
|
3
|
Gao ZG, Haddad M, Jacobson KA. A 2B adenosine receptor signaling and regulation. Purinergic Signal 2025; 21:201-220. [PMID: 38833181 PMCID: PMC12061833 DOI: 10.1007/s11302-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Schiemann K, Belousova N, Matevossian A, Nallaparaju KC, Kradjian G, Pandya M, Chen Z, Aral E, Krauel EM, Petrova E, Boesler C, Kitzing T, Lecomte M, Wagner C, Blayo AL, Schann S, Huck B, Moisan J, Zaynagetdinov R. Dual A2A/A2B Adenosine Receptor Antagonist M1069 Counteracts Immunosuppressive Mechanisms of Adenosine and Reduces Tumor Growth In Vivo. Mol Cancer Ther 2024; 23:1517-1529. [PMID: 39162025 DOI: 10.1158/1535-7163.mct-23-0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
While A2A adenosine receptor (AR) was considered as a major contributor to adenosine-mediated immunosuppression, A2B, having the lowest affinity to adenosine, has also emerged as a potential contributor to tumor promotion. Therefore, in adenosine-rich tumor microenvironment (TME), where A2B could be complementary and/or compensatory to A2A, simultaneous targeting of A2A and A2B ARs can provide higher potential for cancer immunotherapy. We developed M1069-a highly selective dual antagonist of the A2A and A2B AR. In assays with primary human and murine immune cells, M1069 rescued IL2 production from T cells (A2A dependent) and inhibited VEGF production by myeloid cells (A2B dependent) in adenosine-high settings. M1069 also demonstrated superior suppression of the secretion of protumorigenic cytokines CXCL1, CXCL5, and rescue of IL12 secretion from adenosine-differentiated dendritic cells compared to an A2A-selective antagonist (A2Ai). In a one-way mixed lymphocyte reaction (MLR) assay, adenosine-differentiated human and murine dendritic cells treated with M1069 demonstrated superior T-cell stimulatory activity compared to dendritic cells differentiated in presence of A2Ai. In vivo, M1069 decreased tumor growth as a monotherapy and enhanced antitumor activity of bintrafusp alfa (BA) or cisplatin in syngeneic adenosinehi/CD73hi 4T1 breast tumor model, but not in the CD73 knockout 4T1 tumor model or in adenosinelow/CD73low MC38 murine colon carcinoma model. In summary, our dual A2A/A2B AR antagonist M1069 may counteract immune-suppressive mechanisms of high concentrations of adenosine in vitro and in vivo and enhance the antitumor activity of other agents, including BA and cisplatin.
Collapse
Affiliation(s)
- Kai Schiemann
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | | | | - Thomas Kitzing
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Marc Lecomte
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Kirschenbaum A, Cheung P, Rajagopalan V, Yao S, Milgrim L, Kyprianou N, Levine AC. Transmembrane prostatic acid phosphatase: a therapeutic target in advanced prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:255-265. [PMID: 39584003 PMCID: PMC11578768 DOI: 10.62347/dziu5992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Prostate cancer (PCa) is the most common cancer and second leading cause of cancer death in American men. Most patients with metastatic disease respond initially to androgen deprivation therapy (ADT), but almost inevitably progress to castration resistant prostate cancer (CRPC). Identification of markers and drivers of mCRPC that (a) represent a progenitor-type cancer cell population (b) persist in castration resistant disease (c) are actionable targets expressed on the cell surface, and (d) are induced by hypoxia, is required to facilitate the development of novel targeted therapies. We identified prostatic acid phosphatase (PAP), particularly the transmembrane form (TMPAP), as one such potential target. PAP is both a phosphatase and a 5'ectonucleotidase that generates adenosine. We herein demonstrate that PAP is expressed early on during fetal development and persists in castration-resistant disease. The VCaP and VCaP-enzalutamide-resistant PCa cell lines express secretory (sPAP) and TMPAP. Androgens downregulate while hypoxia upregulates PAP expression. In vivo, PAP persists in hypoxic areas of castration-resistant tumors. Knockdown of PAP decreases VCaP migration and colony formation. Finally, treatment of VCaP tumor-bearing mice with inhibitors of adenosine receptors reduces tumor growth. This data demonstrates that TMPAP is a novel therapeutic target in advanced prostate cancer.
Collapse
Affiliation(s)
- Alexander Kirschenbaum
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| | - Pamela Cheung
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| | - Vinodh Rajagopalan
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| | - Shen Yao
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| | - Lucas Milgrim
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| | - Alice C Levine
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY 10029, The United States
| |
Collapse
|
6
|
Figueroa L, Rosas M, Alvarez M, Aguilar E, Mateu V, Bonilla E. Interaction of Purine and its Derivatives with A1, A2-Adenosine Receptors and Vascular Endothelial Growth Factor Receptor-1 (Vegf-R1) as a Therapeutic Alternative to Treat Cancer. Drug Res (Stuttg) 2024; 74:379-393. [PMID: 39173673 DOI: 10.1055/a-2376-5771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND There are several studies that indicate that cancer development may be conditioned by the activation of some biological systems that involve the interaction of different biomolecules, such as adenosine and vascular endothelial growth factor. These biomolecules have been targeted of some drugs for treat of cancer; however, there is little information on the interaction of purine derivatives with adenosine and vascular endothelial growth factor receptor (VEGF-R1). OBJECTIVE The aim of this research was to determine the possible interaction of purine (1: ) and their derivatives (2-31: ) with A1, A2-adenosine receptors, and VEGF-R1. METHODS Theoretical interaction of purine and their derivatives with A1, A2-adenosine receptors and VEGF-R1 was carried out using the 5uen, 5mzj and 3hng proteins as theoretical tools. Besides, adenosine, cgs-15943, rolofylline, cvt-124, wrc-0571, luf-5834, cvt-6883, AZD-4635, cabozantinib, pazopanib, regorafenib, and sorafenib drugs were used as controls. RESULTS The results showed differences in the number of aminoacid residues involved in the interaction of purine and their derivatives with 5uen, 5mzj and 3hng proteins compared with the controls. Besides, the inhibition constants (Ki) values for purine and their derivatives 5: , 9: , 10: , 14: , 15: , 16: , and 20: were lower compared with the controls CONCLUSIONS: Theoretical data suggest that purine and their derivatives 5: , 9: , 10: , 14: , 15: , 16: , and 20: could produce changes in cancer cell growth through inhibition of A1, A2-adenosine receptors and VEGFR-1 inhibition. These data indicate that these purine derivatives could be a therapeutic alternative to treat some types of cancer.
Collapse
Affiliation(s)
- Lauro Figueroa
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, Camp., México
| | - Marcela Rosas
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Magdalena Alvarez
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Emilio Aguilar
- Facultad de Medicina, Universidad Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Virginia Mateu
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Enrique Bonilla
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| |
Collapse
|
7
|
Qin Q, Ramesh S, Li Z, Zhong L, Cherief M, Archer M, Xing X, Thottappillil N, Gomez-Salazar M, Xu M, Zhu M, Chang L, Uniyal A, Mazhar K, Mittal M, McCarthy EF, Morris CD, Levi B, Guan Y, Clemens TL, Price TJ, James AW. TrkA + sensory neurons regulate osteosarcoma proliferation and vascularization to promote disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599869. [PMID: 38979210 PMCID: PMC11230162 DOI: 10.1101/2024.06.20.599869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.
Collapse
|
8
|
Jiang K, Wu J, Wang Q, Chen X, Zhang Y, Gu X, Tang K. Nanoparticles targeting the adenosine pathway for cancer immunotherapy. J Mater Chem B 2024; 12:5787-5811. [PMID: 38845588 DOI: 10.1039/d4tb00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
10
|
Evans JV, Suman S, Goruganthu MUL, Tchekneva EE, Guan S, Arasada RR, Antonucci A, Piao L, Ilgisonis I, Bobko AA, Driesschaert B, Uzhachenko RV, Hoyd R, Samouilov A, Amann J, Wu R, Wei L, Pallerla A, Ryzhov SV, Feoktistov I, Park KP, Kikuchi T, Castro J, Ivanova AV, Kanagasabai T, Owen DH, Spakowicz DJ, Zweier JL, Carbone DP, Novitskiy SV, Khramtsov VV, Shanker A, Dikov MM. Improving combination therapies: targeting A2B-adenosine receptor to modulate metabolic tumor microenvironment and immunosuppression. J Natl Cancer Inst 2023; 115:1404-1419. [PMID: 37195421 PMCID: PMC10637048 DOI: 10.1093/jnci/djad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.
Collapse
Affiliation(s)
- Jason V Evans
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Anatomy, and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Shankar Suman
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mounika Uttam L Goruganthu
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Elena E Tchekneva
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuxiao Guan
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajeswara Rao Arasada
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Pfizer Inc, New York, NY, USA
| | - Anneliese Antonucci
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Longzhu Piao
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Irina Ilgisonis
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Roman V Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rebecca Hoyd
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joseph Amann
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ruohan Wu
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lai Wei
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaditya Pallerla
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sergey V Ryzhov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Igor Feoktistov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kyungho P Park
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Takefumi Kikuchi
- Division of Gastroenterology, Department of Internal Medicine, Sapporo Shirakabadai Hospital, Sapporo, Japan
| | | | - Alla V Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Dwight H Owen
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel J Spakowicz
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jay L Zweier
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David P Carbone
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sergey V Novitskiy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Mikhail M Dikov
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Zhou Y, Shen H, Wu M, Wang J, Wu Z, Fu F, Liu Y, Lu J, Yao Y, Luo N, Zhou S, Tan KS, Chen B, Wang D. Pharmacology, pharmacokinetics, and toxicity characterization of a novel anti-CD73 therapeutic antibody IBI325 for cancer immunotherapy. Int J Biol Macromol 2023; 229:158-167. [PMID: 36587633 DOI: 10.1016/j.ijbiomac.2022.12.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
It is an intriguing approach to target the ecto-5'-nucleotidase CD73 to confer synergetic beneficial survival in cancer patients, along with clinically established immunotherapy targets. In this study, a fully human, subnanomolar affinity CD73 antibody IBI325 was developed using the yeast display platform. Compared with Oleclumab, IBI325 was equivalent in hCD73 affinity and more potent in cell-bound and soluble CD73 enzymatic inhibition, and no hook effects were observed. Correspondingly, adenosine monophosphate-mediated immune suppression was reversed by IBI325, and significant T cell proliferation and release of cytokines were observed. Also, IBI325 enhanced the T cell recall response by inducing interferon-γ secretion. The antitumor efficacy of IBI325 was investigated in a hPBMC-reconstituted NOG mouse model, and a hCD73 knock-in mouse model. Consequently, IBI325 induced a significant tumor regression by inducing intratumoral immune cell expansion, and a combo therapy of IBI325 and aPD-1 was superior in efficacy than aCD73 or aPD-1 monotherapy. Additionally, the binding epitopes of CD73 to IBI325 were distinct from previously reported aCD73 therapeutics. IBI325 displayed acceptable pharmacokinetics and sufficient tolerable safety profiles to support clinical development. In conclusion, the pharmacology, pharmacokinetics, and toxicity profiles of IBI325 with complete CD73 inhibition were characterized, and encouraging preclinical outcomes were reported.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Haoran Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Min Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China; Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Jie Wang
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Zhihai Wu
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Fenggen Fu
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Yang Liu
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Jia Lu
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Ying Yao
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Nana Luo
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Shuaixiang Zhou
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Keai Sinn Tan
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China
| | - Bingliang Chen
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China.
| | - Dongfang Wang
- Innovent Biologics (Suzhou) Co., Ltd., 168 Dongping Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
13
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
14
|
Huh H, Chen DW, Foldvari M, Slavcev R, Blay J. EGFR-targeted bacteriophage lambda penetrates model stromal and colorectal carcinoma tissues, is taken up into carcinoma cells, and interferes with 3-dimensional tumor formation. Front Immunol 2022; 13:957233. [PMID: 36591314 PMCID: PMC9800840 DOI: 10.3389/fimmu.2022.957233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer and other adult solid cancers pose a significant challenge for successful treatment because the tumor microenvironment both hinders the action of conventional therapeutics and suppresses the immune activities of infiltrating leukocytes. The immune suppression is largely the effect of enhanced local mediators such as purine nucleosides and eicosanoids. Genetic approaches have the promise of interfering with these mechanisms of local immunosuppression to allow both intrinsic and therapeutic immunological anticancer processes. Bacterial phages offer a novel means of enabling access into tissues for therapeutic genetic manipulations. Methods We generated spheroids of fibroblastic and CRC cancer cells to model the 3-dimensional stromal and parenchymal components of colorectal tumours. We used these to examine the access and effects of both wildtype (WT) and epidermal growth factor (EGF)-presenting bacteriophage λ (WT- λ and EGF-λ) as a means of delivery of targeted genetic interventions in solid cancers. We used both confocal microscopy of spheroids exposed to AF488-tagged phages, and the recovery of viable phages as measured by plaque-forming assays to evaluate access; and measures of mitochondrial enzyme activity and cellular ATP to evaluate the outcome on the constituent cells. Results Using flourescence-tagged derivatives of these bacteriophages (AF488-WT-λ and AF488-EGF-λ) we showed that phage entry into these tumour microenvironments was possible and that the EGF ligand enabled efficient and persistent uptake into the cancer cell mass. EGF-λ became localized in the intracellular portion of cancer cells and was subjected to subsequent cellular processing. The targeted λ phage had no independent effect upon mature tumour spheroids, but interfered with the early formation and growth of cancer tissues without the need for addition of a toxic payload, suggesting that it might have beneficial effects by itself in addition to any genetic intervention delivered to the tumour. Interference with spheroid formation persisted over the duration of culture. Discussion We conclude that targeted phage technology is a feasible strategy to facilitate delivery into colorectal cancer tumour tissue (and by extension other solid carcinomas) and provides an appropriate delivery vehicle for a gene therapeutic that can reduce local immunosuppression and/or deliver an additional direct anticancer activity.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| |
Collapse
|
15
|
Prieto-Díaz R, González-Gómez M, Fojo-Carballo H, Azuaje J, El Maatougui A, Majellaro M, Loza MI, Brea J, Fernández-Dueñas V, Paleo MR, Díaz-Holguín A, Garcia-Pinel B, Mallo-Abreu A, Estévez JC, Andújar-Arias A, García-Mera X, Gomez-Tourino I, Ciruela F, Salas CO, Gutiérrez-de-Terán H, Sotelo E. Exploring the Effect of Halogenation in a Series of Potent and Selective A 2B Adenosine Receptor Antagonists. J Med Chem 2022; 66:890-912. [PMID: 36517209 PMCID: PMC9841532 DOI: 10.1021/acs.jmedchem.2c01768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The modulation of the A2B adenosine receptor is a promising strategy in cancer (immuno) therapy, with A2BAR antagonists emerging as immune checkpoint inhibitors. Herein, we report a systematic assessment of the impact of (di- and mono-)halogenation at positions 7 and/or 8 on both A2BAR affinity and pharmacokinetic properties of a collection of A2BAR antagonists and its study with structure-based free energy perturbation simulations. Monohalogenation at position 8 produced potent A2BAR ligands irrespective of the nature of the halogen. In contrast, halogenation at position 7 and dihalogenation produced a halogen-size-dependent decay in affinity. Eight novel A2BAR ligands exhibited remarkable affinity (Ki < 10 nM), exquisite subtype selectivity, and enantioselective recognition, with some eutomers eliciting sub-nanomolar affinity. The pharmacokinetic profile of representative derivatives showed enhanced solubility and microsomal stability. Finally, two compounds showed the capacity of reversing the antiproliferative effect of adenosine in activated primary human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Rubén Prieto-Díaz
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain,Department
of Cell and Molecular Biology, Uppsala University, Biomedical Center, 75124Uppsala, Sweden
| | - Manuel González-Gómez
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Hugo Fojo-Carballo
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Jhonny Azuaje
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Abdelaziz El Maatougui
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Maria Majellaro
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - María I. Loza
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of
Pharmacy, University of Santiago de Compostela, 15782Santiago de
Compostela, Spain
| | - José Brea
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of
Pharmacy, University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,. Tel: +34 881815459. Fax: +34-8818115474
| | - Víctor Fernández-Dueñas
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neuroscience, University of Barcelona, 08907L’Hospitalet de Llobregat, Spain,Neuropharmacology
and Pain Group, Neuroscience Program, Institut
d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907L’Hospitalet
de Llobregat, Spain
| | - M. Rita Paleo
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Alejandro Díaz-Holguín
- Department
of Cell and Molecular Biology, Uppsala University, Biomedical Center, 75124Uppsala, Sweden
| | - Beatriz Garcia-Pinel
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de
Compostela, Spain
| | - Ana Mallo-Abreu
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Juan C. Estévez
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Antonio Andújar-Arias
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Xerardo García-Mera
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain
| | - Iria Gomez-Tourino
- Center
for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain
| | - Francisco Ciruela
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neuroscience, University of Barcelona, 08907L’Hospitalet de Llobregat, Spain,Neuropharmacology
and Pain Group, Neuroscience Program, Institut
d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907L’Hospitalet
de Llobregat, Spain
| | - Cristian O. Salas
- Department
of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago7820436, Chile
| | - Hugo Gutiérrez-de-Terán
- Department
of Cell and Molecular Biology, Uppsala University, Biomedical Center, 75124Uppsala, Sweden,. Tel: +46 18
471 5056. Fax: +46 18 536971
| | - Eddy Sotelo
- Center
for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782Santiago de
Compostela, Spain,Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782Santiago de Compostela, Spain,. Tel: +34 881815732. Fax: +34-881815704
| |
Collapse
|
16
|
Duarte-Silva AT, Ximenes LGR, Guimarães-Souza M, Domith I, Paes-de-Carvalho R. Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways. Front Cell Dev Biol 2022; 10:1058925. [PMID: 36568967 PMCID: PMC9780464 DOI: 10.3389/fcell.2022.1058925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Communication between developing progenitor cells as well as differentiated neurons and glial cells in the nervous system is made through direct cell contacts and chemical signaling mediated by different molecules. Several of these substances are synthesized and released by developing cells and play roles since early stages of Central Nervous System development. The chicken retina is a very suitable model for neurochemical studies, including the study of regulation of signaling pathways during development. Among advantages of the model are its very well-known histogenesis, the presence of most neurotransmitter systems found in the brain and the possibility to make cultures of neurons and/or glial cells where many neurochemical functions develop in a similar way than in the intact embryonic tissue. In the chicken retina, some neurotransmitters or neuromodulators as dopamine, adenosine, and others are coupled to cyclic AMP production or adenylyl cyclase inhibition since early stages of development. Other substances as vitamin C and nitric oxide are linked to the major neurotransmitter glutamate and AKT metabolism. All these different systems regulate signaling pathways, including PKA, PKG, SRC, AKT and ERK, and the activation of the transcription factor CREB. Dopamine and adenosine stimulate cAMP accumulation in the chick embryo retina through activation of D1 and A2a receptors, respectively, but the onset of dopamine stimulation is much earlier than that of adenosine. However, adenosine can inhibit adenylyl cyclase and modulate dopamine-dependent cAMP increase since early developmental stages through A1 receptors. Dopamine stimulates different PKA as well as EPAC downstream pathways both in intact tissue and in culture as the CSK-SRC pathway modulating glutamate NMDA receptors as well as vitamin C release and CREB phosphorylation. By the other hand, glutamate modulates nitric oxide production and AKT activation in cultured retinal cells and this pathway controls neuronal survival in retina. Glutamate and adenosine stimulate the release of vitamin C and this vitamin regulates the transport of glutamate, activation of NMDA receptors and AKT phosphorylation in cultured retinal cells. In the present review we will focus on these reciprocal interactions between neurotransmitters or neuromodulators and different signaling pathways during retinal development.
Collapse
Affiliation(s)
- A. T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - L. G. R. Ximenes
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - M. Guimarães-Souza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - I. Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - R. Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil,*Correspondence: R. Paes-de-Carvalho,
| |
Collapse
|
17
|
Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R, Perveen S, Al-Taweel A, Iqbal J, Shahzad SA. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules 2022; 27:molecules27196235. [PMID: 36234774 PMCID: PMC9570995 DOI: 10.3390/molecules27196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure–activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.
Collapse
Affiliation(s)
- Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
- Correspondence: or
| |
Collapse
|
18
|
Erices JI, Niechi I, Uribe-Ojeda A, Toro MDLÁ, García-Romero N, Carrión-Navarro J, Monago-Sánchez Á, Ayuso-Sacido Á, Martin RS, Quezada-Monrás C. The low affinity A2B adenosine receptor enhances migratory and invasive capacity in vitro and angiogenesis in vivo of glioblastoma stem-like cells. Front Oncol 2022; 12:969993. [PMID: 36059665 PMCID: PMC9433907 DOI: 10.3389/fonc.2022.969993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly malignant brain tumor, with a median survival of 15 to 17 months for a patient. GBM contains a cellular subpopulation known as GBM stem-like cells (GSCs) that persist in hypoxic niches and are capable of infiltrating into healthy brain tissue. For this reason, GSCs are considered one of the main culprits for GBM recurrence. A hypoxic microenvironment increases extracellular adenosine levels, activating the low affinity A2B adenosine receptor (A2BAR). Adenosine, through A2BAR, is capable of modulating invasiveness. However, its role in the invasion/migration of hypoxic-GSCs is still unknown. This study aims to understand the importance of A2BAR in modulating the migratory/invasive capacity of GSCs under hypoxia. Data analysis from The Cancer Genome Atlas (TCGA) program correlates A2BAR expression with high-grade glioma and hypoxic necrotic areas. U87MG and primary culture-derived GSCs under hypoxic conditions (0.5% O2) increased A2BAR mRNA and protein levels. As expected, the migratory and invasive capacity of GSCs increased under hypoxia, which was counteracted by blocking A2BAR, through the downregulation of MMP9 activity and epithelial–mesenchymal transition marker expression. Finally, in a xenograft mouse model, we demonstrate that treatment with MRS1754 did not affect the tumor volume but could decrease blood vessel formation and VEGF expression. Our results suggest that extracellular adenosine, through the activation of A2BAR, enhances the migratory and invasive capacity of GSCs in vitro under hypoxic conditions. Targeting A2BAR can be an effective therapy for GBM recurrence.
Collapse
Affiliation(s)
- José I. Erices
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia, Chile
| | - Atenea Uribe-Ojeda
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María de los Ángeles Toro
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Álvaro Monago-Sánchez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
| | - Rody San Martin
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada-Monrás
- Tumor biology laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudia Quezada-Monrás,
| |
Collapse
|
19
|
Voss JH, Mahardhika AB, Inoue A, Müller CE. Agonist-Dependent Coupling of the Promiscuous Adenosine A 2B Receptor to Gα Protein Subunits. ACS Pharmacol Transl Sci 2022; 5:373-386. [PMID: 35592437 PMCID: PMC9112290 DOI: 10.1021/acsptsci.2c00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 12/28/2022]
Abstract
The adenosine A2B receptor (A2BAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family. It is upregulated under hypoxic conditions, in inflammation and cancer. Previous studies indicated the coupling of the A2BAR to different G proteins, mainly Gs, but in some cases Gq/11 or Gi, depending on the cell type. We have now utilized novel technologies, (i) heterologous expression of individual members of the Gαq/11 protein family (Gαq, Gα11, Gα14, and Gα15) in Gαq/11 knockout cells, and (ii) the TRUPATH platform, allowing the direct observation of Gα protein activation for each of the Gα subunits by bioluminescence resonance energy transfer (BRET) measurements. Three structurally diverse A2BAR agonists were studied: the cognate agonist adenosine, its metabolically stable analog NECA, and the non-nucleosidic partial agonist BAY 60-6583. Adenosine and NECA activated most members of all four Gα protein families (Gαs, Gαq/11, Gαi, and Gα12/13). Significant differences in potencies and efficacies were observed; the highest efficacies were determined at the Gα15, Gαs, and Gα12 proteins, and for NECA additionally at the Gαi2 protein. In contrast, the partial agonist BAY 60-6583 only activated Gα15, Gαs, and Gα12 proteins. Adenosine deaminase, an allosteric modulator of ARs, selectively increased the potency and efficacy of NECA and BAY 60-6583 at the Gα15 protein, while it had no effect or decreased efficacy at the other Gα proteins. We conclude that the A2BAR is preferably coupled to the Gα15, Gαs, and Gα12 proteins. Upon upregulation of receptor or Gα protein expression, coupling to further Gα proteins likely occurs. Importantly, different agonists can display different activation profiles.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Andhika B Mahardhika
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.,Research Training Group GRK1873, University of Bonn, D-53121 Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.,Research Training Group GRK1873, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
20
|
Tay AHM, Prieto-Díaz R, Neo S, Tong L, Chen X, Carannante V, Önfelt B, Hartman J, Haglund F, Majellaro M, Azuaje J, Garcia-Mera X, Brea JM, Loza MI, Jespers W, Gutierrez-de-Teran H, Sotelo E, Lundqvist A. A 2B adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models. J Immunother Cancer 2022; 10:e004592. [PMID: 35580926 PMCID: PMC9115112 DOI: 10.1136/jitc-2022-004592] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adenosine is a metabolite that suppresses antitumor immune response of T and NK cells via extracellular binding to the two subtypes of adenosine-2 receptors, A2ARs. While blockade of the A2AARs subtype effectively rescues lymphocyte activity, with four A2AAR antagonists currently in anticancer clinical trials, less is known for the therapeutic potential of the other A2BAR blockade within cancer immunotherapy. Recent studies suggest the formation of A2AAR/A2BAR dimers in tissues that coexpress the two receptor subtypes, where the A2BAR plays a dominant role, suggesting it as a promising target for cancer immunotherapy. METHODS We report the synthesis and functional evaluation of five potent A2BAR antagonists and a dual A2AAR/A2BAR antagonist. The compounds were designed using previous pharmacological data assisted by modeling studies. Synthesis was developed using multicomponent approaches. Flow cytometry was used to evaluate the phenotype of T and NK cells on A2BAR antagonist treatment. Functional activity of T and NK cells was tested in patient-derived tumor spheroid models. RESULTS We provide data for six novel small molecules: five A2BAR selective antagonists and a dual A2AAR/A2BAR antagonist. The growth of patient-derived breast cancer spheroids is prevented when treated with A2BAR antagonists. To elucidate if this depends on increased lymphocyte activity, immune cells proliferation, and cytokine production, lymphocyte infiltration was evaluated and compared with the potent A2AAR antagonist AZD-4635. We find that A2BAR antagonists rescue T and NK cell proliferation, IFNγ and perforin production, and increase tumor infiltrating lymphocytes infiltration into tumor spheroids without altering the expression of adhesion molecules. CONCLUSIONS Our results demonstrate that A2BAR is a promising target in immunotherapy, identifying ISAM-R56A as the most potent candidate for A2BAR blockade. Inhibition of A2BAR signaling restores T cell function and proliferation. Furthermore, A2BAR and dual A2AAR/A2BAR antagonists showed similar or better results than A2AAR antagonist AZD-4635 reinforcing the idea of dominant role of the A2BAR in the regulation of the immune system.
Collapse
Affiliation(s)
- Apple Hui Min Tay
- Department of Biological Science, Nanyang Technological University, Singapore
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Shiyong Neo
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Singapore Immunology Network SIgN, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Majellaro
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Jhonny Azuaje
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Xerardo Garcia-Mera
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Jose M Brea
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Maria I Loza
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Hugo Gutierrez-de-Teran
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Sánchez-Melgar A, Muñoz-López S, Albasanz JL, Martín M. Antitumoral Action of Resveratrol Through Adenosinergic Signaling in C6 Glioma Cells. Front Neurosci 2021; 15:702817. [PMID: 34539333 PMCID: PMC8440868 DOI: 10.3389/fnins.2021.702817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most common and aggressive primary tumors in the central nervous system. The nucleoside adenosine is considered to be one major constituent within the tumor microenvironment. The adenosine level mainly depends on two enzymatic activities: 5′-nucleotidase (5′NT or CD73) that synthesizes adenosine from AMP, and adenosine deaminase (ADA) that converts adenosine into inosine. Adenosine activates specific G-protein coupled receptors named A1, A2A, A2B, and A3 receptors. Resveratrol, a natural polyphenol present in grapes, peanuts, and berries, shows several healthy effects, including protection against cardiovascular, endocrine, and neurodegenerative diseases and cancer. However, the molecular mechanisms of resveratrol actions are not well known. Recently, we demonstrated that resveratrol acts as an agonist for adenosine receptors in rat C6 glioma cells. The present work aimed to investigate the involvement of adenosine metabolism and adenosine receptors in the molecular mechanisms underlying the antitumoral action of resveratrol. Results presented herein show that resveratrol was able to decrease cell numbers and viability and to reduce CD73 and ADA activities, leading to the increase of extracellular adenosine levels. Some resveratrol effects were reduced by the blockade of A1 or A3 receptors by DPCPX or MRS1220, respectively. These results suggest that reduced CD73 activity located in the plasma membrane in addition to a fine-tuned modulatory role of adenosine receptors could be involved, at least in part, in the antiproliferative action of resveratrol in C6 glioma cells.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia Muñoz-López
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - José Luis Albasanz
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
22
|
Increased Extracellular Adenosine in Radiotherapy-Resistant Breast Cancer Cells Enhances Tumor Progression through A2AR-Akt-β-Catenin Signaling. Cancers (Basel) 2021; 13:cancers13092105. [PMID: 33925516 PMCID: PMC8123845 DOI: 10.3390/cancers13092105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In our previous study, purinergic P2Y2 receptor (P2Y2R) activation by ATP was found to play an important role in tumor progression and metastasis by regulating various responses in cancer cells and modulating crosstalk between cancer cells and endothelial cells (ECs). Therefore, we expected that P2Y2R would play a critical role in radioresistance and enhanced tumor progression in radioresistant triple-negative breast cancer (RT-R-TNBC). However, interestingly, P2Y2R expression was slightly decreased in RT-R-TNBC cells, while the expression of A2AR was significantly increased both in RT-R-TNBC cells and in tumor tissues, especially triple negative breast cancer (TNBC) tissues of breast cancer (BC) patients. Thus, we aimed to investigate the role of adenosine A2A receptor (A2AR) and its signaling pathway in the progression of RT-R-TNBC. The results reveal for the first time the role of A2AR in the progression and metastasis of RT-R-BC cells and suggest that the adenosine (ADO)-activated intracellular A2AR signaling pathway is linked to the AKT-β-catenin pathway to regulate RT-R-BC cell invasiveness and metastasis. Abstract Recently, we found that the expressions of adenosine (ADO) receptors A2AR and A2BR and the ectonucleotidase CD73 which is needed for the conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and the extracellular ADO level are increased in TNBC MDA-MB-231 cells and RT-R-MDA-MB-231 cells compared to normal cells or non-TNBC cells. The expression of A2AR, but not A2BR, is significantly upregulated in breast cancer tissues, especially TNBC tissues, compared to normal epithelial tissues. Therefore, we further investigated the role of ADO-activated A2AR and its signaling pathway in the progression of RT-R-TNBC. ADO treatment induced MDA-MB-231 cell proliferation, colony formation, and invasion, which were enhanced in RT-R-MDA-MB-231 cells in an A2AR-dependent manner. A2AR activation by ADO induced AKT phosphorylation and then β-catenin, Snail, and vimentin expression, and these effects were abolished by A2AR-siRNA transfection. In an in vivo animal study, compared to 4T1-injected mice, RT-R-4T1-injected mice exhibited significantly increased tumor growth and lung metastasis, which were decreased by A2AR-knockdown. The upregulation of phospho-AKT, β-catenin, Snail, and vimentin expression in mice injected with RT-R-4T1 cells was also attenuated in mice injected with RT-R-4T1-A2AR-shRNA cells. These results suggest that A2AR is significantly upregulated in BC tissues, especially TNBC tissues, and ADO-mediated A2AR activation is involved in RT-R-TNBC invasion and metastasis through the AKT-β-catenin pathway.
Collapse
|
23
|
Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021; 11:628138. [PMID: 33747948 PMCID: PMC7973280 DOI: 10.3389/fonc.2021.628138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel S. Okoye
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Majellaro M, Jespers W, Crespo A, Núñez MJ, Novio S, Azuaje J, Prieto-Díaz R, Gioé C, Alispahic B, Brea J, Loza MI, Freire-Garabal M, Garcia-Santiago C, Rodríguez-García C, García-Mera X, Caamaño O, Fernandez-Masaguer C, Sardina JF, Stefanachi A, El Maatougui A, Mallo-Abreu A, Åqvist J, Gutiérrez-de-Terán H, Sotelo E. 3,4-Dihydropyrimidin-2(1 H)-ones as Antagonists of the Human A 2B Adenosine Receptor: Optimization, Structure-Activity Relationship Studies, and Enantiospecific Recognition. J Med Chem 2020; 64:458-480. [PMID: 33372800 DOI: 10.1021/acs.jmedchem.0c01431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present and thoroughly characterize a large collection of 3,4-dihydropyrimidin-2(1H)-ones as A2BAR antagonists, an emerging strategy in cancer (immuno) therapy. Most compounds selectively bind A2BAR, with a number of potent and selective antagonists further confirmed by functional cyclic adenosine monophosphate experiments. The series was analyzed with one of the most exhaustive free energy perturbation studies on a GPCR, obtaining an accurate model of the structure-activity relationship of this chemotype. The stereospecific binding modeled for this scaffold was confirmed by resolving the two most potent ligands [(±)-47, and (±)-38 Ki = 10.20 and 23.6 nM, respectively] into their two enantiomers, isolating the affinity on the corresponding (S)-eutomers (Ki = 6.30 and 11.10 nM, respectively). The assessment of the effect in representative cytochromes (CYP3A4 and CYP2D6) demonstrated insignificant inhibitory activity, while in vitro experiments in three prostate cancer cells demonstrated that this pair of compounds exhibits a pronounced antimetastatic effect.
Collapse
Affiliation(s)
- María Majellaro
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Abel Crespo
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María J Núñez
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Novio
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jhonny Azuaje
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rubén Prieto-Díaz
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Claudia Gioé
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Belma Alispahic
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María I Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Freire-Garabal
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlota Garcia-Santiago
- SNL, Departamento de Farmacología, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Rodríguez-García
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xerardo García-Mera
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olga Caamaño
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Christian Fernandez-Masaguer
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier F Sardina
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Abdelaziz El Maatougui
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Mallo-Abreu
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | | | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
25
|
Kitabatake K, Kaji T, Tsukimoto M. Involvement of CD73 and A2B Receptor in Radiation-Induced DNA Damage Response and Cell Migration in Human Glioblastoma A172 Cells. Biol Pharm Bull 2020; 44:197-210. [PMID: 33268695 DOI: 10.1248/bpb.b20-00654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioblastoma is the most common malignant tumor of the central nervous system and is treated with a combination of surgery, radiation and chemotherapy. However, the tumor often acquires radiation resistance, which is characterized by an increased DNA damage response (DDR). Here, we show that CD73, which generates extracellular adenosine from ATP, and A2B receptor, which is activated by adenosine, are involved in the γ-radiation-induced DDR and the enhanced migration ability of human glioblastoma cell line A172. To investigate DDR, we evaluated ataxia telangiectasia mutated (ATM) activation and focus formation of histone H2A isoform γ (γH2AX) and p53-binding protein 1 (53BP1) in the nucleus of A172 cells after γ-irradiation. Antagonists of A2B receptor and CD73, or knockdown with small interfering RNA (siRNA), suppressed γ-radiation-induced DDR and promoted γ-radiation-induced cell death, as well as suppressing γ-radiation-induced cell migration and actin remodeling. These results suggest that activation of A2B receptor by extracellular adenosine generated via CD73 promotes γ-radiation-induced DDR, leading to recovery from DNA damage, and also enhances cell migration and actin remodeling. The CD73-A2B receptor pathway may be a promising target for overcoming radiation resistance and the acquisition of malignant phenotypes during radiotherapy of glioblastoma.
Collapse
Affiliation(s)
- Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
26
|
Willingham SB, Hotson AN, Miller RA. Targeting the A2AR in cancer; early lessons from the clinic. Curr Opin Pharmacol 2020; 53:126-133. [PMID: 33002857 DOI: 10.1016/j.coph.2020.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
The immunosuppressive tumor microenvironment (TME) represents a challenge that all immunotherapies must overcome to enable a robust and durable anti-tumor response. One of the dominant mechanisms of immunosuppression in the TME is hypoxia and the generation of extracellular adenosine [1]. Pioneering work from Drs Ohta and Sitkovsky demonstrating that adenosine signaling through the adenosine 2A receptor (A2AR) inhibits T cells has led to the development of several agents designed to inhibit the production or downstream signaling of adenosine [2••,3••]. This review will focus on the safety, efficacy, and biomarkers associated with A2AR antagonists in clinical development.
Collapse
|
27
|
Zhang J, Yan W, Duan W, Wüthrich K, Cheng J. Tumor Immunotherapy Using A 2A Adenosine Receptor Antagonists. Pharmaceuticals (Basel) 2020; 13:ph13090237. [PMID: 32911819 PMCID: PMC7558881 DOI: 10.3390/ph13090237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The A2A adenosine receptor (A2AAR) plays critical roles in human physiology and pathophysiology, which makes it an important drug target. Previous drug-discovery efforts targeting the A2AAR have been focused on the use of A2AAR antagonists for the treatment of Parkinson's disease. More recently, the A2AAR has attracted additional attention for its roles in immuno-oncology, and a number of A2AAR antagonists are currently used as lead compounds for antitumor drugs in both preclinical models and clinical trials. This review surveys recent advances in the development of A2AAR antagonists for cancer immunotherapy. The therapeutic potential of representative A2AAR antagonists is discussed based on both animal efficacy studies and clinical data.
Collapse
Affiliation(s)
- Jinfeng Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (J.Z.); (W.Y.); (W.D.); (K.W.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (J.Z.); (W.Y.); (W.D.); (K.W.)
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (J.Z.); (W.Y.); (W.D.); (K.W.)
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (J.Z.); (W.Y.); (W.D.); (K.W.)
- Department of Integrated Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; (J.Z.); (W.Y.); (W.D.); (K.W.)
- Correspondence: ; Tel.: +86-21-20685237
| |
Collapse
|
28
|
Characterization of cancer-related somatic mutations in the adenosine A2B receptor. Eur J Pharmacol 2020; 880:173126. [DOI: 10.1016/j.ejphar.2020.173126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023]
|
29
|
Mallo-Abreu A, Prieto-Díaz R, Jespers W, Azuaje J, Majellaro M, Velando C, García-Mera X, Caamaño O, Brea J, Loza MI, Gutiérrez-de-Terán H, Sotelo E. Nitrogen-Walk Approach to Explore Bioisosteric Replacements in a Series of Potent A 2B Adenosine Receptor Antagonists. J Med Chem 2020; 63:7721-7739. [PMID: 32573250 DOI: 10.1021/acs.jmedchem.0c00564] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A systematic exploration of bioisosteric replacements for furan and thiophene cores in a series of potent A2BAR antagonists has been carried out using the nitrogen-walk approach. A collection of 42 novel alkyl 4-substituted-2-methyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-3-carboxylates, which contain 18 different pentagonal heterocyclic frameworks at position 4, was synthesized and evaluated. This study enabled the identification of new ligands that combine remarkable affinity (Ki < 30 nM) and exquisite selectivity. The structure-activity relationship (SAR) trends identified were substantiated by a molecular modeling study, based on a receptor-driven docking model and including a systematic free energy perturbation (FEP) study. Preliminary evaluation of the CYP3A4 and CYP2D6 inhibitory activity in optimized ligands evidenced weak and negligible activity, respectively. The stereospecific interaction between hA2BAR and the eutomer of the most attractive novel antagonist (S)-18g (Ki = 3.66 nM) was validated.
Collapse
Affiliation(s)
| | | | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE 75124, Sweden
| | | | | | | | | | | | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María I Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
30
|
Lindemann M, Moldovan RP, Hinz S, Deuther-Conrad W, Gündel D, Dukic-Stefanovic S, Toussaint M, Teodoro R, Juhl C, Steinbach J, Brust P, Müller CE, Wenzel B. Development of a Radiofluorinated Adenosine A 2B Receptor Antagonist as Potential Ligand for PET Imaging. Int J Mol Sci 2020; 21:ijms21093197. [PMID: 32366046 PMCID: PMC7246765 DOI: 10.3390/ijms21093197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/22/2023] Open
Abstract
The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.
Collapse
Affiliation(s)
- Marcel Lindemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Sonja Hinz
- Pharma Center Bonn, Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (S.H.); (C.E.M.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Sladjana Dukic-Stefanovic
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
- ROTOP Pharmaka GmbH, 01328 Dresden, Germany;
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | | | - Jörg Steinbach
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
| | - Christa E. Müller
- Pharma Center Bonn, Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (S.H.); (C.E.M.)
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (M.L.); (R.-P.M.); (W.D.-C.); (D.G.); (S.D.-S.); (M.T.); (R.T.); (J.S.); (P.B.)
- Correspondence: ; Tel.: +49-341-2341794637
| |
Collapse
|
31
|
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Zeng Z, Xiong W. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer 2020; 19:19. [PMID: 32000802 PMCID: PMC6993488 DOI: 10.1186/s12943-020-1144-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in a variety of tumors, but resistance during treatment is a major issue. In this review, we describe the utility of PD-L1 expression levels, mutation burden, immune cell infiltration, and immune cell function for predicting the efficacy of PD-1/PD-L1 blockade therapy. Furthermore, we explore the mechanisms underlying immunotherapy resistance caused by PD-L1 expression on tumor cells, T cell dysfunction, and T cell exhaustion. Based on these mechanisms, we propose combination therapeutic strategies. We emphasize the importance of patient-specific treatment plans to reduce the economic burden and prolong the life of patients. The predictive indicators, resistance mechanisms, and combination therapies described in this review provide a basis for improved precision medicine.
Collapse
Affiliation(s)
- Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ye
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ziheng He
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chunwei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaoxu Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Yi Y, Zhou Y, Chu X, Zheng X, Fei D, Lei J, Qi H, Dai Y. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J Cancer 2020; 11:421-431. [PMID: 31897237 PMCID: PMC6930437 DOI: 10.7150/jca.31245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine A2b receptor (A2bR) is a member of the G protein-coupled receptor superfamily members, which has been considered involved in the pathogenesis of various cancers. However, little is known about the role of A2bR renal cell carcinoma (RCC). The A2bR expression levels in RCC 769-P and Caki-1 cell lines compared with HK-2 were analyzed by qRT-PCR. 769-P and Caki-1 cells were transfected with shRNA-A2bR to knock down the expression of A2bR. Cell proliferation was detected by MTT assays and colony formation assays. Wounding healing assays and transwell assays were used to evaluate the effects of A2bR on cell capacity of invasion and migration. Finally, potential mechanisms involved in A2bR blockade's effects on altered tumor behaviors were evaluated by western blotting. We showed that A2bR were significantly up-regulated in RCC cells compared to HK-2 cell. Functionally, MRS1754, a selective A2bR antagonist, and knocking-down the expression of A2bR by shRNA reduced proliferation and migration in vitro and tumor growth in vivo. Furthermore, we demonstrated that A2bR blockade inhibited tumor progression in part via the MAPK/JNK pathway. Conclusion: Our findings suggest the A2bR potentially plays an important role in RCC progression and A2bR blockade may be a promising candidate for therapeutic intervention for renal cell carcinoma.
Collapse
Affiliation(s)
- Ye Yi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yihong Zhou
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xi Chu
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xiaoping Zheng
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Deng Fei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Jun Lei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Huiyue Qi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yingbo Dai
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| |
Collapse
|
33
|
An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc Natl Acad Sci U S A 2019; 117:464-471. [PMID: 31852821 DOI: 10.1073/pnas.1900103117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, we identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. We demonstrate that Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and that Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, our study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation.
Collapse
|
34
|
A 2B Adenosine Receptor and Cancer. Int J Mol Sci 2019; 20:ijms20205139. [PMID: 31627281 PMCID: PMC6829478 DOI: 10.3390/ijms20205139] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
There are four subtypes of adenosine receptors (ARs), named A1, A2A, A2B and A3, all of which are G protein-coupled receptors (GPCRs). Locally produced adenosine is a suppressant in anti-tumor immune surveillance. The A2BAR, coupled to both Gαs and Gαi G proteins, is one of the several GPCRs that are expressed in a significantly higher level in certain cancer tissues, in comparison to adjacent normal tissues. There is growing evidence that the A2BAR plays an important role in tumor cell proliferation, angiogenesis, metastasis, and immune suppression. Thus, A2BAR antagonists are novel, potentially attractive anticancer agents. Several antagonists targeting A2BAR are currently in clinical trials for various types of cancers. In this review, we first describe the signaling, agonists, and antagonists of the A2BAR. We further discuss the role of the A2BAR in the progression of various cancers, and the rationale of using A2BAR antagonists in cancer therapy.
Collapse
|
35
|
Cruz FF, Pereira TCB, Altenhofen S, da Costa KM, Bogo MR, Bonan CD, Morrone FB. Characterization of the adenosinergic system in a zebrafish embryo radiotherapy model. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108572. [PMID: 31306805 DOI: 10.1016/j.cbpc.2019.108572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Adenosine is a nucleoside that acts as a signaling molecule by activating P1 purinergic receptors (A1, A2A, A2B and A3). This activation is involved in immune responses, inflammation, and tissue remodeling and tumor progression. Gamma rays are a type of ionizing radiation widely adopted in radiotherapy of tumors. Although it brings benefits to the success of the therapeutic scheme, it can trigger cellular damages, inducing a perpetual inflammatory response that culminates in adverse effects and severe toxicity. Our study aims to characterize the adenosinergic system in a zebrafish embryo radiotherapy model, relating the adenosine signaling to the changes elicited by radiation exposure. To standardize the radiotherapy procedure, we established a toxicological profile after exposure. Zebrafish were irradiated with different doses of gamma rays (2, 5, 10, 15 and 20 Gy) at 24 hpf. Survival, hatching rate, heartbeats, locomotor activity and morphological changes were determined during embryos development. Although without significant difference in survival, gamma-irradiated embryos had their heartbeats increased and presented decreased hatching time, changes in locomotor activity and important morphological alterations. The exposure to 10 Gy disrupted the ecto-5'-nucleotidase/CD73 and adenosine deaminase/ADA enzymatic activity, impairing adenosine metabolism. We also demonstrated that radiation decreased A2B receptor gene expression, suggesting the involvement of extracellular adenosine in the changes prompted by radiotherapy. Our results indicate that the components of the adenosinergic system may be potential targets to improve radiotherapy and manage the tissue damage and toxicity of ionizing radiation.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kesiane Mayra da Costa
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Jaber AMY. Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: current status and future perspectives. Drug Discov Today 2019; 24:1854-1864. [DOI: 10.1016/j.drudis.2019.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
|
37
|
Role of Mast Cell-Derived Adenosine in Cancer. Int J Mol Sci 2019; 20:ijms20102603. [PMID: 31137883 PMCID: PMC6566897 DOI: 10.3390/ijms20102603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has highlighted the accumulation of mast cells (MCs) in tumors. However, their impact on tumor development remained controversial. Indeed, cumulative data indicate an enigmatic role for MCs in cancer, whereby depending on the circumstances, which still need to be resolved, MCs function to promote or restrict tumor growth. By responding to multiple stimuli MCs release multiple inflammatory mediators, that contribute to the resolution of infection and resistance to envenomation, but also have the potency to promote or inhibit malignancy. Thus, MCs seem to possess the power to define tumor projections. Given this remarkable plasticity of MC responsiveness, there is an urgent need of understanding how MCs are activated in the tumor microenvironment (TME). We have recently reported on the direct activation of MCs upon contact with cancer cells by a mechanism involving an autocrine formation of adenosine and signaling by the A3 adenosine receptor. Here we summarized the evidence on the role of adenosine signaling in cancer, in MC mediated inflammation and in the MC-cancer crosstalk.
Collapse
|
38
|
Alarcón S, Niechi I, Toledo F, Sobrevia L, Quezada C. Glioma progression in diabesity. Mol Aspects Med 2019; 66:62-70. [PMID: 30822432 DOI: 10.1016/j.mam.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
|
39
|
Vecchio EA, White PJ, May LT. The adenosine A 2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther 2019; 198:20-33. [PMID: 30677476 DOI: 10.1016/j.pharmthera.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adenosine A2B receptor (A2BAR) is one of four adenosine receptor subtypes belonging to the Class A family of G protein-coupled receptors (GPCRs). Until recently, the A2BAR remained poorly characterised, in part due to its relatively low affinity for the endogenous agonist adenosine and therefore presumed minor physiological significance. However, the substantial increase in extracellular adenosine concentration, the sensitisation of the receptor and the upregulation of A2BAR expression under conditions of hypoxia and inflammation, suggest the A2BAR as an exciting therapeutic target in a variety of pathological disease states. Here we discuss the pharmacology of the A2BAR and outline its role in pathophysiology including ischaemia-reperfusion injury, fibrosis, inflammation and cancer.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
40
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
41
|
Lindemann M, Hinz S, Deuther-Conrad W, Namasivayam V, Dukic-Stefanovic S, Teodoro R, Toussaint M, Kranz M, Juhl C, Steinbach J, Brust P, Müller CE, Wenzel B. Radiosynthesis and in vivo evaluation of a fluorine-18 labeled pyrazine based radioligand for PET imaging of the adenosine A 2B receptor. Bioorg Med Chem 2018; 26:4650-4663. [PMID: 30104122 DOI: 10.1016/j.bmc.2018.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
On the basis of a pyrazine core structure, three new adenosine A2B receptor ligands (7a-c) were synthesized containing a 2-fluoropyridine moiety suitable for 18F-labeling. Compound 7a was docked into a homology model of the A2B receptor based on X-ray structures of the related A2A receptor, and its interactions with the adenosine binding site were rationalized. Binding affinity data were determined at the four human adenosine receptor subtypes. Despite a rather low selectivity regarding the A1 receptor, 7a was radiolabeled as the most suitable candidate (Ki(A2B) = 4.24 nM) in order to perform in vivo studies in mice with the aim to estimate fundamental pharmacokinetic characteristics of the compound class. Organ distribution studies and a single PET study demonstrated brain uptake of [18F]7a with a standardized uptake value (SUV) of ≈1 at 5 min post injection followed by a fast wash out. Metabolism studies of [18F]7a in mice revealed the formation of a blood-brain barrier penetrable radiometabolite, which could be structurally identified. The results of this study provide an important basis for the design of new derivatives with improved binding properties and metabolic stability in vivo.
Collapse
Affiliation(s)
- Marcel Lindemann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Sonja Hinz
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Vigneshwaran Namasivayam
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | | | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | | | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Christa E Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany.
| |
Collapse
|
42
|
Hinz S, Navarro G, Borroto-Escuela D, Seibt BF, Ammon YC, de Filippo E, Danish A, Lacher SK, Červinková B, Rafehi M, Fuxe K, Schiedel AC, Franco R, Müller CE. Adenosine A 2A receptor ligand recognition and signaling is blocked by A 2B receptors. Oncotarget 2018; 9:13593-13611. [PMID: 29568380 PMCID: PMC5862601 DOI: 10.18632/oncotarget.24423] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The adenosine receptor (AR) subtypes A2A and A2B are rhodopsin-like Gs protein-coupled receptors whose expression is highly regulated under pathological, e.g. hypoxic, ischemic and inflammatory conditions. Both receptors play important roles in inflammatory and neurodegenerative diseases, are blocked by caffeine, and have now become major drug targets in immuno-oncology. By Förster resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), bimolecular fluorescence complementation (BiFC) and proximity ligation assays (PLA) we demonstrated A2A-A2BAR heteromeric complex formation. Moreover we observed a dramatically altered pharmacology of the A2AAR when co-expressed with the A2BAR (A2B ≥ A2A) in recombinant as well as in native cells. In the presence of A2BARs, A2A-selective ligands lost high affinity binding to A2AARs and displayed strongly reduced potency in cAMP accumulation and dynamic mass redistribution (DMR) assays. These results have major implications for the use of A2AAR ligands as drugs as they will fail to modulate the receptor in an A2A-A2B heteromer context. Accordingly, A2A-A2BAR heteromers represent novel pharmacological targets.
Collapse
Affiliation(s)
- Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Benjamin F Seibt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - York-Christoph Ammon
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Elisabetta de Filippo
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Azeem Danish
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Svenja K Lacher
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Barbora Červinková
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anke C Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Massari F, Di Nunno V, Cubelli M, Santoni M, Fiorentino M, Montironi R, Cheng L, Lopez-Beltran A, Battelli N, Ardizzoni A. Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treat Rev 2018; 64:11-20. [PMID: 29407369 DOI: 10.1016/j.ctrv.2017.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Chemotherapy has represented the standard therapy for unresectable or metastatic urothelial carcinoma for more than 20 years. The growing knowledge of the interaction between tumour and immune system has led to the advent of new classes of drugs, the immune-checkpoints inhibitors, which are intended to change the current scenario. To date, immunotherapy is able to improve the overall responses and survival. Moreover, thanks to its safety profile immune-checkpoint inhibitors could be proposed also to patients unfit for standard chemotherapy. No doubts that these agents have started a revolution expected for years, but despite this encouraging results it appears clear that not all subjects respond to these agents and requiring the development of reliable predictive response factors able to isolate patients who can more benefit from these treatments as well as new strategies aimed to improve immunotherapy clinical outcome. In this review we describe the active or ongoing clinical trials involving Programmed Death Ligand 1 (PD-L1), Programmed Death receptor 1 (PD-1) and Cytotoxic-T Lymphocyte Antigen 4 (CTLA 4) inhibitors in urothelial carcinoma focusing our attention on the developing new immune-agents and combination strategies with immune-checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Marta Cubelli
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anto Lopez-Beltran
- Unit of Anatomical Pathology, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | | | - Andrea Ardizzoni
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
44
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
45
|
Gardner JK, Mamotte CD, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules. Ageing Res Rev 2017; 38:40-51. [PMID: 28736117 DOI: 10.1016/j.arr.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/17/2017] [Accepted: 07/17/2017] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) undergo continuous changes throughout life, and there is evidence that elderly DCs have a reduced capacity to stimulate T cells, which may contribute to impaired anti-tumour immune responses in elderly people with cancer. Changes in checkpoint inhibitory molecules/pathways during aging may be one mechanism that impairs the ability of elderly DCs to activate T cells. However, little is currently known regarding the combined effects of aging and cancer on DC and T cell inhibitory molecules/pathways. In this review, we discuss our current understanding of the influence of aging and cancer on key DC and T cell inhibitory molecules/pathways, the potential underlying cellular and molecular mechanisms contributing to their modulation, and the possibility of therapeutically targeting inhibitory molecules in elderly cancer patients.
Collapse
|
46
|
Jones KR, Choi U, Gao JL, Thompson RD, Rodman LE, Malech HL, Kang EM. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development. Sci Rep 2017; 7:44816. [PMID: 28317879 PMCID: PMC5357845 DOI: 10.1038/srep44816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds.
Collapse
Affiliation(s)
- Karlie R. Jones
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Uimook Choi
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | | | - Larry E. Rodman
- Lewis and Clark Pharmaceuticals Inc., Charlottesville, VA 22901, USA
| | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Elizabeth M. Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|