1
|
Li YL, Zhang Y, Chen N, Yan YX. The role of m 6A modification in type 2 diabetes: A systematic review and integrative analysis. Gene 2024; 898:148130. [PMID: 38181926 DOI: 10.1016/j.gene.2024.148130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
This study focuses on the latest developments in the studies of m6A modification and provides an up-to-date summary of the association between m6A modification and type 2 diabetes (T2D). The possible mechanisms of m6A related to T2D were summarized by literature review. The differentially expressed genes (DEGs) of m6A methylase in T2D were analyzed from 12 datasets in Gene Expression Omnibus (GEO). The associations between m6A level and T2D were explored in four electronic databases, including PubMed, EmBase, Web of Science and CNKI. Standard mean difference (SMD) and 95 % confidence interval (95 %CI) was calculated to assess the total effect in integrative analysis. Differential expression genes detected in at least three of six tissues were ZC3H13, YTHDC1/2, and IGF2BP2. LRPPRC were differentially expressed in five tissues except in arterial tissue. A total of 6 studies were included for integrative analysis. The mean m6A levels were significantly lower in T2D than those in normal controls (SMD = -1.35, 95 %CI: -2.58 to -0.11). This systematic review and integrative analysis summarize the previous studies on the association between m6A modification and T2D and the possible role of m6A modification in the progression of T2D, such as abnormal blood glucose, abnormal pancreatic β-cell function, insulin resistance, and abnormal lipid metabolism. The integrative analysis showed that decreased level of m6A was associated with T2D. These findings provide new targets for early detection and treatment for T2D.
Collapse
Affiliation(s)
- Yan-Ling Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Ning Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
2
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
3
|
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10:2351-2365. [PMID: 37554175 PMCID: PMC10404889 DOI: 10.1016/j.gendis.2022.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Geng X, Li Z, Yang Y. Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Front Endocrinol (Lausanne) 2022; 13:907060. [PMID: 35692393 PMCID: PMC9184717 DOI: 10.3389/fendo.2022.907060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM) and its related complications are among the leading causes of disability and mortality worldwide. Substantial studies have explored epigenetic regulation that is involved in the modifications of DNA and proteins, but RNA modifications in diabetes are still poorly investigated. In recent years, posttranscriptional epigenetic modification of RNA (the so-called 'epitranscriptome') has emerged as an interesting field of research. Numerous modifications, mainly N6 -methyladenosine (m6A), have been identified in nearly all types of RNAs and have been demonstrated to have an indispensable effect in a variety of human diseases, such as cancer, obesity, and diabetes. Therefore, it is particularly important to understand the molecular basis of RNA modifications, which might provide a new perspective for the pathogenesis of diabetes mellitus and the discovery of new therapeutic targets. In this review, we aim to summarize the recent progress in the epitranscriptomics involved in diabetes and diabetes-related complications. We hope to provide some insights for enriching the understanding of the epitranscriptomic regulatory mechanisms of this disease as well as the development of novel therapeutic targets for future clinical benefit.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesity–associated protein promotes liver steatosis by targeting PPARα. Lipids Health Dis 2022; 21:29. [PMID: 35282837 PMCID: PMC8918283 DOI: 10.1186/s12944-022-01640-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The fat mass and obesity–associated protein (FTO) has been shown to be involved in obesity; however, its role in NAFLD and the underlying molecular mechanisms remain largely unknown. Methods FTO expression was first examined in the livers of patients with NAFLD and animal and cellular models of NAFLD by real-time PCR and Western blotting. Next, its role in lipid accumulation in hepatocytes was assessed both in vitro and in vivo via gene overexpression and knockdown studies. Results FTO expression was obviously elevated in the livers of mice and humans with hepatic steatosis, probably due to its decreased ubiquitination. FTO overexpression in HepG2 cells induced triglyceride accumulation, whereas FTO knockdown exerted an opposing effect. Consistent with the findings of in vitro studies, adeno-associated viruses 8 (AAV8)-mediated FTO overexpression in the liver promoted hepatic steatosis in C57BL/6J mice. Mechanistically, FTO inhibited the mRNA of peroxisome proliferator-activated receptor α (PPARα) in hepatocytes. Activation of PPARα by its agonist GW7647 reversed lipid accumulation in hepatocytes induced by FTO overexpression. Conclusions Overall, FTO expression is increased in NAFLD, and it promotes hepatic steatosis by targeting PPARα. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01640-y.
Collapse
|
6
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
7
|
Dynamic regulation of N 6,2'-O-dimethyladenosine (m 6Am) in obesity. Nat Commun 2021; 12:7185. [PMID: 34893620 PMCID: PMC8664860 DOI: 10.1038/s41467-021-27421-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/05/2021] [Indexed: 01/30/2023] Open
Abstract
The prevalent m6Am mRNA cap modification was recently identified as a valid target for removal by the human obesity gene FTO along with the previously established m6A mRNA modification. However, the deposition and dynamics of m6Am in regulating obesity are unknown. Here, we investigate the liver m6A/m methylomes in mice fed on a high fat Western-diet and in ob/ob mice. We find that FTO levels are elevated in fat mice, and that genes which lost m6Am marking under obesity are overly downregulated, including the two fatty-acid-binding proteins FABP2, and FABP5. Furthermore, the cellular perturbation of FTO correspondingly affect protein levels of its targets. Notably, generally m6Am- but not m6A-methylated genes, are found to be highly enriched in metabolic processes. Finally, we deplete all m6A background via Mettl3 knockout, and unequivocally uncover the association of m6Am methylation with increased mRNA stability, translation efficiency, and higher protein expression. Together, these results strongly implicate a dynamic role for m6Am in obesity-related translation regulation.
Collapse
|
8
|
Mizuno TM, Lew PS. Regulation of Activating Transcription Factor 4 (ATF4) Expression by Fat Mass and Obesity-Associated (FTO) in Mouse Hepatocyte Cells. ACTA ENDOCRINOLOGICA-BUCHAREST 2021; 17:26-32. [PMID: 34539907 DOI: 10.4183/aeb.2021.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Context Abnormally increased hepatic glucose production contributes to hyperglycemia in diabetes. Interventions that suppress hepatic gluconeogenesis should be beneficial in improving glycemic control in patients with diabetes. Objectives It has been suggested that hepatic FTO is involved in glycemic control by regulating gluconeogenesis. Both FTO and activating transcription factor 4 (ATF4) positively regulate the expression of gluconeogenic genes in the liver, suggesting the possibility that ATF4 mediates the stimulatory effect of FTO on hepatic gluconeogenesis. The present study aimed to determine the effect of altered expression or activity of FTO on Atf4 and gluconeogenic gene expression in hepatocyte cells. Methods Mouse hepatocyte AML12 cells were treated with the FTO inhibitor rhein or transfected with an FTO-expressing plasmid. Levels of gluconeogenic glucose-6-phosphatase (G6pc) and Atf4 mRNA and protein were measured. Results Rhein treatment significantly reduced G6pc mRNA levels as well as Atf4 mRNA and protein levels. Conversely, enhanced FTO expression caused an increase in G6pc and Atf4 mRNA levels. Conclusions These findings support the hypothesis that hepatic FTO participates in the regulation of hepatic gluconeogenic gene and ATF4 expression. Reducing the activity of the hepatic FTO-ATF4 pathway may be beneficial in reducing hepatic glucose production and ameliorating hyperglycemia in diabetes.
Collapse
Affiliation(s)
- T M Mizuno
- University of Manitoba, Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada
| | - P S Lew
- University of Manitoba, Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Zhang H, Lu P, Tang HL, Yan HJ, Jiang W, Shi H, Chen SY, Gao MM, Zeng XD, Long YS. Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain. Cell Mol Neurobiol 2021; 41:1257-1269. [PMID: 32500354 PMCID: PMC11448698 DOI: 10.1007/s10571-020-00895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Valproate (VPA), a widely-used antiepileptic drug, is a selective inhibitor of histone deacetylase (HDAC) that play important roles in epigenetic regulation. The patient with different diseases receiving this drug tend to exhibit weight gain and abnormal metabolic phenotypes, but the underlying mechanisms remain largely unknown. Here we show that VPA increases the Fto mRNA and protein expression in mouse hypothalamic GT1-7 cells. Interestingly, VPA promotes histone H3/H4 acetylation and the FTO expression which could be reversed by C646, an inhibitor for histone acetyltransferase. Furthermore, VPA weakens the FTO's binding and enhances the binding of transcription factor TAF1 to the Fto promoter, and C646 leads to reverse effect of the VPA, suggesting an involvement of the dynamic of histone H3/H4 acetylation in the regulation of FTO expression. In addition, the mice exhibit an increase in the food intake and body weight at the beginning of 2-week treatment with VPA. Simultaneously, in the hypothalamus of the VPA-treated mice, the FTO expression is upregulated and the H3/H4 acetylation is increased; further the FTO's binding to the Fto promoter is decreased and the TAF1's binding to the promoter is enhanced, suggesting that VPA promotes the assembly of the basal transcriptional machinery of the Fto gene. Finally, the inhibitor C646 could restore the effects of VPA on FTO expression, H3/H4 acetylation, body weight, and food intake; and loss of FTO could reverse the VPA-induced increase of body weight and food intake. Taken together, this study suggests an involvement of VPA in the epigenetic upregulation of hypothalamic FTO expression that is potentially associated with the VPA-induced weight gain.
Collapse
Affiliation(s)
- Huan Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Hua-Juan Yan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Wei Jiang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Hang Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Si-Yu Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiang-Da Zeng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
10
|
The role of m 6A modification in physiology and disease. Cell Death Dis 2020; 11:960. [PMID: 33162550 PMCID: PMC7649148 DOI: 10.1038/s41419-020-03143-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Similar to DNA epigenetic modifications, multiple reversible chemical modifications on RNAs have been uncovered in a new layer of epigenetic modification. N6-methyladenosine (m6A), a modification that occurs in ~30% transcripts, is dynamically regulated by writer complex (methylase) and eraser (RNA demethylase) proteins, and is recognized by reader (m6A-binding) proteins. The effects of m6A modification are reflected in the functional modulation of mRNA splicing, export, localization, translation, and stability by regulating RNA structure and interactions between RNA and RNA-binding proteins. This modulation is involved in a variety of physiological behaviors, including neurodevelopment, immunoregulation, and cellular differentiation. The disruption of m6A modulations impairs gene expression and cellular function and ultimately leads to diseases such as cancer, psychiatric disorders, and metabolic disease. This review focuses on the mechanisms and functions of m6A modification in a variety of physiological behaviors and diseases.
Collapse
|
11
|
Kucher AN. The FTO Gene and Diseases: The Role of Genetic Polymorphism, Epigenetic Modifications, and Environmental Factors. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420090136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Hepatic FTO is dispensable for the regulation of metabolism but counteracts HCC development in vivo. Mol Metab 2020; 42:101085. [PMID: 32956847 PMCID: PMC7560164 DOI: 10.1016/j.molmet.2020.101085] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Single-nucleotide polymorphisms in the FTO gene encoding an m6Am and an m6A demethylase are associated with obesity. Moreover, recent studies have linked a dysregulation of m6A modifications and its machinery, including FTO, to the development of several forms of cancers. However, the functional role of hepatic FTO in metabolism and the development and progression of hepatocellular carcinoma (HCC), a proteotypic obesity-associated cancer, remains unclear. Thus, we aimed to reveal the role of hepatic FTO in metabolism and in the initiation and progression of HCC in vivo. Methods We generated mice with hepatic FTO deficiency (FTOL−KO). The effect of hepatic FTO on metabolism was investigated by extensive metabolic phenotyping. To determine the impact of hepatic FTO on HCC development, FTOL−KO and Ctrl mice were subjected to long-term diethylnitrosamine (DEN)-induced HCC-development and the tumor initiation phase was examined via a short-term DEN protocol. Results In long-term DEN experiments, FTOL−KO mice exhibit increased HCC burden compared to Ctrl mice. In the tumor initiation phase, Ctrl mice display a dynamic regulation of FTO upon induction of liver damage, while this response is abrogated in FTO-deficient mice. Proteomic analyses revealed that liver damage-induced increases in FTO expression reduce CUL4A protein abundance. Functionally, simultaneous knockdown of Cul4a reverses the increased hepatocyte proliferation observed upon loss of FTO. Conclusion Collectively, our study demonstrates that hepatic FTO is dispensable for the control of energy homeostasis and glucose metabolism. However, we show a protective function of FTO in liver carcinogenesis and suggest the FTO-dependent dynamic mRNA demethylation of Cul4a in the initiation of HCC development contributes to this effect. Hepatic FTO is dispensable for whole body metabolism. FTO is dynamically regulated upon acute liver damage and controls proliferation. Hepatic FTO function protects against the development of hepatocellular carcinoma (HCC). Cul4a is a downstream target of FTO, and Cul4a knockdown reduces damage-induced proliferation in FTOL−KO livers.
Collapse
|
13
|
Liu SJ, Tang HL, He Q, Lu P, Fu T, Xu XL, Su T, Gao MM, Duan S, Luo Y, Long YS. FTO is a transcriptional repressor to auto-regulate its own gene and potentially associated with homeostasis of body weight. J Mol Cell Biol 2020; 11:118-132. [PMID: 29771336 DOI: 10.1093/jmcb/mjy028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 01/11/2023] Open
Abstract
Fat mass and obesity-associated (FTO) protein is a ferrous ion (Fe2+)/2-oxoglutarate (2-OG)-dependent demethylase preferentially catalyzing m6A sites in RNA. The FTO gene is highly expressed in the hypothalamus with fluctuation in response to various nutritional conditions, which is believed to be involved in the control of whole body metabolism. However, the underlying mechanism in response to different nutritional cues remains poorly understood. Here we show that ketogenic diet-derived ketone body β-hydroxybutyrate (BHB) transiently increases FTO expression in both mouse hypothalamus and cultured cells. Interestingly, the FTO protein represses Fto promoter activity, which can be offset by BHB. We then demonstrate that FTO binds to its own gene promoter, and Fe2+, but not 2-OG, impedes this binding and increases FTO expression. The BHB-induced occupancy of the promoter by FTO influences the assembly of the basal transcriptional machinery. Importantly, a loss-of-function FTO mutant (I367F), which induces a lean phenotype in FTOI367F mice, exhibits augmented binding and elevated potency to repress the promoter. Furthermore, FTO fails to bind to its own promoter that promotes FTO expression in the hypothalamus of high-fat diet-induced obese and 48-h fasting mice, suggesting a disruption of the stable expression of this gene. Taken together, this study uncovers a new function of FTO as a Fe2+-sensitive transcriptional repressor dictating its own gene switch to form an auto-regulatory loop that may link with the hypothalamic control of body weight.
Collapse
Affiliation(s)
- Shu-Jing Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian He
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Fu
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xu-Ling Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shumin Duan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Luo
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Jia D, Li ZW, Zhou X, Gao Y, Feng Y, Ma M, Wu Z, Li W. A novel berberine-metformin hybrid compound exerts therapeutic effects on obese type 2 diabetic rats. Clin Exp Pharmacol Physiol 2019; 46:533-544. [PMID: 30883863 DOI: 10.1111/1440-1681.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the biological activities of a novel berberine-metformin hybrid compound (BMH473) as an anti-diabetic agent. BMH473 exhibited significant anti-hyperglycaemic and anti-hyperlipidaemic effects on T2DM rats. In white adipose tissue, BMH473 reduced the perirenal and epididymal adipose tissue mass and modulated the lesions in perirenal adipose tissue, by inhibiting the protein expressions of PPAR-Ɣ, C/EBP-α and SREBP-1c as well as the mRNA expressions of lipogenic genes. Moreover, BMH473 downregulated the levels of pro-inflammatory cytokines in perirenal adipose tissue through the suppression of p-NF-κB. In liver, BMH473 reduced liver ectopic fat accumulation, by regulating the protein expression levels of SREBP-1c and PPAR-α as well as the mRNA expression levels of lipogenic genes. In addition, BMH473 inhibited hepatic gluconeogenesis by promoting the phosphorylation levels of AMPK α and ACC, and down-regulating the mRNA expression levels of FBPase, G6Pase and PEPCK. Furthermore, BMH473 exhibited significant inhibitory effects on lipogenesis and lipid accumulation in 3T3-L1 adipocytes by modulating the protein expression levels of PPAR-Ɣ, C/EBP-α and SREBP-1 c as well as the mRNA expression levels of lipogenic genes. In conclusion, our results suggest that the newly synthesized BMH473 is beneficial for maintaining glucose and lipid homeostasis in type 2 diabetic rats, and exhibits better anti-hyperlipidaemic effects compared to metformin and berberine.
Collapse
Affiliation(s)
- Dan Jia
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zi Wen Li
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Xinxin Zhou
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Feng
- Central Laboratory of Guangdong Pharmaceutical University, GuangZhou, China
| | - Min Ma
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Weimin Li
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacol Ther 2019; 193:178-193. [DOI: 10.1016/j.pharmthera.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Fat Mass and Obesity Associated ( FTO) Gene and Hepatic Glucose and Lipid Metabolism. Nutrients 2018; 10:nu10111600. [PMID: 30388740 PMCID: PMC6266206 DOI: 10.3390/nu10111600] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 01/17/2023] Open
Abstract
Common genetic variants of the fat mass and obesity associated (FTO) gene are strongly associated with obesity and type 2 diabetes. FTO is ubiquitously expressed. Earlier studies have focused on the role of hypothalamic FTO in the regulation of metabolism. However, recent studies suggest that expression of hepatic FTO is regulated by metabolic signals, such as nutrients and hormones, and altered FTO levels in the liver affect glucose and lipid metabolism. This review outlines recent findings on hepatic FTO in the regulation of metabolism, with particular focus on hepatic glucose and lipid metabolism. It is proposed that abnormal activity of hepatic signaling pathways involving FTO links metabolic impairments such as obesity, type 2 diabetes and nonalcoholic fatty liver disease (NAFLD). Therefore, a better understanding of these pathways may lead to therapeutic approaches to treat these metabolic diseases by targeting hepatic FTO. The overall goal of this review is to place FTO within the context of hepatic regulation of metabolism.
Collapse
|
17
|
Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Ir J Med Sci 2017; 187:393-402. [DOI: 10.1007/s11845-017-1686-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022]
|
18
|
Yang Y, Liu B, Xia W, Yan J, Liu HY, Hu L, Liu SM. FTO Genotype and Type 2 Diabetes Mellitus: Spatial Analysis and Meta-Analysis of 62 Case-Control Studies from Different Regions. Genes (Basel) 2017; 8:E70. [PMID: 28208657 PMCID: PMC5333059 DOI: 10.3390/genes8020070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global health problem that results from the interaction of environmental factors with genetic variants. Although a number of studies have suggested that genetic polymorphisms in the fat mass and obesity-associated (FTO) gene are associated with T2DM risk, the results have been inconsistent. To investigate whether FTO polymorphisms associate with T2DM risk and whether this association is region-related, we performed this spatial analysis and meta-analysis. More than 60,000 T2DM patients and 90,000 controls from 62 case-control studies were included in this study. Odds ratios (ORs), 95% confidence intervals (CIs) and Moran's I statistic were used to estimate the association between FTO rs9939609, rs8050136, rs1421085, and rs17817499, and T2DM risk in different regions. rs9939609 (OR = 1.15, 95% CI 1.11-1.19) and rs8050136 (OR = 1.14, 95% CI 1.10-1.18) conferred a predisposition to T2DM. After adjustment for body mass index (BMI), the association remained statistically significant for rs9939609 (OR = 1.11, 95% CI 1.05-1.17) and rs8050136 (OR = 1.08, 95% CI 1.03-1.12). In the subgroup analysis of rs9939609 and rs8050136, similar results were observed in East Asia, while no association was found in North America. In South Asia, an association for rs9939609 was revealed but not for rs8050136. In addition, no relationship was found with rs1421085 or rs17817499 regardless of adjustment for BMI. Moran's I statistic showed that significant positive spatial autocorrelations existed in rs9939609 and rs8050136. Studies on rs9939609 and rs8050136 focused on East Asia and South Asia, whereas studies on rs1421085 and rs17817499 were distributed in North America and North Africa. Our data suggest that the associations between FTO rs9939609, rs8050136 and T2DM are region-related, and the two single-nucleotide polymorphisms contribute to an increased risk of T2DM. Future studies should investigate this issue in more regions.
Collapse
Affiliation(s)
- Ying Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| | - Boyang Liu
- Department of Geography, Wilkeson Hall, State University of New York at Buffalo, Buffalo, NY 14261, USA.
| | - Wei Xia
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Jing Yan
- Hubei Meteorological Information and Technology Support Center, Wuhan 430074, China.
| | - Huan-Yu Liu
- Department of Clinical Medicine, Hubei University of Medicine, Hubei 442000, China.
| | - Ling Hu
- Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| |
Collapse
|