1
|
Huang L, Lin R, Zhang C, Zheng S, Wang Y, Wu Z, Chen S, Shen Y, Zhang G, Qi Y, Lin L. The Neuroprotective and Anxiolytic Effects of Magnesium Sulfate on Retinal Dopaminergic Neurons in 6-OHDA-Induced Parkinsonian Rats: A Pilot Study. Brain Sci 2024; 14:861. [PMID: 39335357 PMCID: PMC11430011 DOI: 10.3390/brainsci14090861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the protective effects of magnesium sulfate on dopamine neurons in the retinas of rats with 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD). Rapidly progressing cognitive decline often precedes or coincides with the motor symptoms associated with PD. PD patients also frequently exhibit visual function abnormalities. However, the specific mechanisms underlying visual dysfunction in PD patients are not yet fully understood. Therefore, this study aims to investigate whether magnesium homeostasis affects dopaminergic neurons in the retina of PD rats. Thirty-six rats were divided into four groups: (1) control, (2) control with magnesium sulfate (control/MgSO4), (3) Parkinson's disease (PD), and (4) Parkinson's disease with magnesium sulfate (PD/MgSO4). The apomorphine-induced (APO) rotation test assessed the success of the PD models. The open-field experiment measured the rats' anxiety levels. Tyrosine hydroxylase (TH) and glutamate levels, indicators of dopamine neuron survival, were detected using immunofluorescence staining. Protein levels of solute carrier family 41 A1 (SCL41A1), magnesium transporter 1 (MagT1), and cyclin M2 (CNNM2) in the retina were analyzed using Western blot. Results showed that, compared to the PD group, rats in the PD/MgSO4 group had improved psychological states and motor performance at two and four weeks post-surgery. The PD/MgSO4 group also exhibited significantly higher TH fluorescence intensity in the left retinas and lower glutamate fluorescence intensity than the PD group. Additional experiments indicated that the protein levels of SLC41A1, MagT1, and CNNM2 were generally higher in the retinas of the PD/MgSO4 group, along with an increase in retinal magnesium ion content. This suggests that magnesium sulfate may reduce glutamate levels and protect dopamine neurons in the retina. Thus, magnesium sulfate might have therapeutic potential for visual functional impairments in PD patients.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| | - Renxi Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
- Experimental Teaching Center of Basic Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Chunying Zhang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
| | - Shaoqing Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Yiyang Wang
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Zeyu Wu
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Sihao Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Yihan Shen
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Guoheng Zhang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
2
|
Cibulka M, Brodnanova M, Halasova E, Kurca E, Kolisek M, Grofik M. The Role of Magnesium in Parkinson's Disease: Status Quo and Implications for Future Research. Int J Mol Sci 2024; 25:8425. [PMID: 39125993 PMCID: PMC11312984 DOI: 10.3390/ijms25158425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| |
Collapse
|
3
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
4
|
Beedkar–Pawase A, Raut SV, Kulkarni GR. Neuroprotective Effect of Magnesium Oxide Nanoparticles on SH-SY-5Y Cell Line. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Butler MG, Cowen N, Bhatnagar A. Prader-Willi syndrome, deletion subtypes, and magnesium: Potential impact on clinical findings. Am J Med Genet A 2022; 188:3278-3286. [PMID: 36190479 PMCID: PMC9548494 DOI: 10.1002/ajmg.a.62928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Prader-Willi syndrome is a complex neurodevelopmental genetic imprinting disorder with severe congenital hypotonia, failure to thrive with learning and behavioral problems, and hyperphagia with obesity developing in early childhood. Those with the typical 15q11-q13 Type I deletion compared with the smaller Type II deletion have more severe neurobehavioral problems and differ by the absence of four genes in the 15q11.2 BP1-BP2 region. Two of the genes encode magnesium transporters supporting brain and neurological function and we report on magnesium levels in the two deletion groups of PWS participants. We measured baseline plasma magnesium and analyzed data from a PWS cohort with and without the Type I or Type II deletion. Significantly lower plasma magnesium levels were found in PWS participants with the larger Type I deletion and more so with females with Type I deletion compared with females having the Type II deletion, although magnesium levels remained within normal range in both subgroups. Those with PWS and the larger 15q11-q13 Type I deletion were more clinically affected than those with the smaller Type II deletion. Two of the four genes missing in those with the larger deletion code for magnesium transporters and may impact magnesium levels. Our study showed lower magnesium levels in those with the larger deletion which could contribute to neurobehavioral differences seen in the two separate 15q11-q13 deletion subtypes and in addition affect both glucose and insulin metabolism impacting comorbidities but will require more research.
Collapse
Affiliation(s)
- Merlin G Butler
- Department of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Neil Cowen
- Soleno Therapeutics, Inc., Redwood City, California, USA
| | | |
Collapse
|
6
|
Effects of Combining Biofactors on Bioenergetic Parameters, Aβ Levels and Survival in Alzheimer Model Organisms. Int J Mol Sci 2022; 23:ijms23158670. [PMID: 35955803 PMCID: PMC9368976 DOI: 10.3390/ijms23158670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Increased amyloid beta (Aβ) levels and mitochondrial dysfunction (MD) in the human brain characterize Alzheimer disease (AD). Folic acid, magnesium and vitamin B6 are essential micro-nutrients that may provide neuroprotection. Bioenergetic parameters and amyloid precursor protein (APP) processing products were investigated in vitro in human neuroblastoma SH-SY5Y-APP695 cells, expressing neuronal APP, and in vivo, in the invertebrate Caenorhabditis elegans (CL2006 & GMC101) expressing muscular APP. Model organisms were incubated with either folic acid and magnesium-orotate (ID63) or folic acid, magnesium-orotate and vitamin B6 (ID64) in different concentrations. ID63 and ID64 reduced Aβ, soluble alpha APP (sAPPα), and lactate levels in SH-SY5Y-APP695 cells. The latter might be explained by enhanced expression of lactate dehydrogenase (LDHA). Micronutrient combinations had no effects on mitochondrial parameters in SH-SY5Y-APP695 cells. ID64 showed a significant life-prolonging effect in C. elegans CL2006. Incubation of GMC101 with ID63 significantly lowered Aβ aggregation. Both combinations significantly reduced paralysis and thus improved the phenotype in GMC101. Thus, the combinations of the tested biofactors are effective in pre-clinical models of AD by interfering with Aβ related pathways and glycolysis.
Collapse
|
7
|
Cibulka M, Brodnanova M, Grendar M, Necpal J, Benetin J, Han V, Kurca E, Nosal V, Skorvanek M, Vesely B, Stanclova A, Lasabova Z, Pös Z, Szemes T, Stuchlik S, Grofik M, Kolisek M. Alzheimer's Disease-Associated SNP rs708727 in SLC41A1 May Increase Risk for Parkinson's Disease: Report from Enlarged Slovak Study. Int J Mol Sci 2022; 23:ijms23031604. [PMID: 35163527 PMCID: PMC8835868 DOI: 10.3390/ijms23031604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
SLC41A1 (A1) SNPs rs11240569 and rs823156 are associated with altered risk for Parkinson's disease (PD), predominantly in Asian populations, and rs708727 has been linked to Alzheimer's disease (AD). In this study, we have examined a potential association of the three aforementioned SNPs and of rs9438393, rs56152218, and rs61822602 (all three lying in the A1 promoter region) with PD in the Slovak population. Out of the six tested SNPs, we have identified only rs708727 as being associated with an increased risk for PD onset in Slovaks. The minor allele (A) in rs708727 is associated with PD in dominant and completely over-dominant genetic models (ORD = 1.36 (1.05-1.77), p = 0.02, and ORCOD = 1.34 (1.04-1.72), p = 0.02). Furthermore, the genotypic triplet GG(rs708727) + AG(rs823156) + CC(rs61822602) might be clinically relevant despite showing a medium (h ≥ 0.5) size difference (h = 0.522) between the PD and the control populations. RandomForest modeling has identified the power of the tested SNPs for discriminating between PD-patients and the controls to be essentially zero. The identified association of rs708727 with PD in the Slovak population leads us to hypothesize that this A1 polymorphism, which is involved in the epigenetic regulation of the expression of the AD-linked gene PM20D1, is also involved in the pathoetiology of PD (or universally in neurodegeneration) through the same or similar mechanism as in AD.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Jan Necpal
- Clinic of Neurology, AGEL Hospital in Zvolen, 96001 Zvolen, Slovakia;
| | - Jan Benetin
- Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, 83303 Bratislva, Slovakia;
| | - Vladimir Han
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Egon Kurca
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Vladimir Nosal
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Matej Skorvanek
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Branislav Vesely
- Clinic of Neurology, Faculty Hospital in Nitra, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia;
| | - Andrea Stanclova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zora Lasabova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zuzana Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Stanislav Stuchlik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
| | - Milan Grofik
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
- Correspondence: (M.G.); (M.K.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
- Correspondence: (M.G.); (M.K.)
| |
Collapse
|
8
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Xie J, Cheng CS, Zhu XY, Shen YH, Song LB, Chen H, Chen Z, Liu LM, Meng ZQ. Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging (Albany NY) 2020; 11:2681-2698. [PMID: 31076559 PMCID: PMC6535063 DOI: 10.18632/aging.101940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
The aim of this study was to identify the function of the Mg2+ transporter protein solute carrier family 41 member 1 SLC41A1 in pancreatic ductal adenocarcinoma and the underlying mechanisms. A total of 27 solute carrier proteins were differentially expressed in pancreatic ductal adenocarcinoma. Three of these proteins were correlated with clinical outcomes in patients, among which SLC41A1 was downregulated in tumour. Overexpression of SLC41A1 suppressed orthotopic tumour growth in a mouse model and reduced the cell proliferation, colony formation, and invasiveness of KP3 and Panc-1 cells, which may have been associated with the increased population of apoptotic-prone cells. Overexpression of SLC41A1 reduced the mitochondrial membrane potential, induced Bax while suppressed Bcl-2 expression. Suppression of Bax abrogated the tumour-suppressive effects of SLC41A1. Furthermore, overexpression of SLC41A1 promoted Mg2+ efflux and suppressed Akt/mTOR activity, which is the upstream regulator of Bax and Bcl-2. An increase in Akt activity and supplementation with Mg2+ abolished SLC41A1-induced tumour suppression. The results of this study suggest that SLC41A1 may be a potential target for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao Yan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ye Hua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Li Bin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhi Qiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
McCarty MF, Lerner A. Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson's Disease. Int J Mol Sci 2020; 21:3624. [PMID: 32455532 PMCID: PMC7279222 DOI: 10.3390/ijms21103624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors-most prominently peroxynitrite-which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which act on microglia via a range of receptors to amplify microglial activation. Since peroxynitrite is a key mediator in this process, it is proposed that nutraceutical measures which either suppress microglial production of peroxynitrite, or which promote the scavenging of peroxynitrite-derived oxidants, should have value for the prevention and control of PD. Peroxynitrite production can be quelled by suppressing activation of microglial NADPH oxidase-the source of its precursor superoxide-or by down-regulating the signaling pathways that promote microglial expression of inducible nitric oxide synthase (iNOS). Phycocyanobilin of spirulina, ferulic acid, long-chain omega-3 fatty acids, good vitamin D status, promotion of hydrogen sulfide production with taurine and N-acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic dietary fiber, and probiotics may have potential for blunting microglial iNOS induction. Scavenging of peroxynitrite-derived radicals may be amplified with supplemental zinc or inosine. Astaxanthin has potential for protecting the mitochondrial respiratory chain from peroxynitrite and environmental mitochondrial toxins. Healthful programs of nutraceutical supplementation may prove to be useful and feasible in the primary prevention or slow progression of pre-existing PD. Since damage to the mitochondria in dopaminergic neurons by environmental toxins is suspected to play a role in triggering the self-sustaining inflammation that drives PD pathogenesis, there is also reason to suspect that plant-based diets of modest protein content, and possibly a corn-rich diet high in spermidine, might provide protection from PD by boosting protective mitophagy and thereby aiding efficient mitochondrial function. Low-protein diets can also promote a more even response to levodopa therapy.
Collapse
Affiliation(s)
| | - Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| |
Collapse
|
11
|
Magnesium Supplement and the 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome: A Potential Treatment? Int J Mol Sci 2019; 20:ijms20122914. [PMID: 31207912 PMCID: PMC6627575 DOI: 10.3390/ijms20122914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
The 15q11.2 BP1–BP2 microdeletion (Burnside–Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid psychosis), ataxia, seizures, poor coordination, congenital anomalies, and abnormal brain imaging. This microdeletion was reported as the most common cytogenetic finding when using ultra-high- resolution chromosomal microarrays in patients presenting for genetic services due to autism with or without additional clinical features. Additionally, those individuals with Prader–Willi or Angelman syndromes having the larger typical 15q11–q13 type I deletion which includes the 15q11.2 BP1–BP2 region containing the four genes, show higher clinical severity than those having the smaller 15q11–q13 deletion where these four genes are intact. Two of the four genes (i.e., NIPA1 and NIPA2) are expressed in the brain and encode magnesium transporters. Magnesium is required in over 300 enzyme systems that are critical for multiple cellular functions, energy expenditure, protein synthesis, DNA transcription, and muscle and nerve function. Low levels of magnesium are found in those with seizures, depression, and acute or chronic brain diseases. Anecdotally, parents have administered magnesium supplements to their children with the 15q11.2 BP1–BP2 microdeletion and have observed improvement in behavior and clinical presentation. These observations require more attention from the medical community and should include controlled studies to determine if magnesium supplements could be a treatment option for this microdeletion syndrome and also for a subset of individuals with Prader–Willi and Angelman syndromes.
Collapse
|
12
|
Lin L, Yan M, Wu B, Lin R, Zheng Z. Expression of magnesium transporter SLC41A1 in the striatum of 6-hydroxydopamine-induced parkinsonian rats. Brain Res Bull 2018; 142:338-343. [DOI: 10.1016/j.brainresbull.2018.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
|
13
|
The Central Role of Biometals Maintains Oxidative Balance in the Context of Metabolic and Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8210734. [PMID: 28751933 PMCID: PMC5511683 DOI: 10.1155/2017/8210734] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
Abstract
Traditionally, oxidative stress as a biological aspect is defined as an imbalance between the free radical generation and antioxidant capacity of living systems. The intracellular imbalance of ions, disturbance in membrane dynamics, hypoxic conditions, and dysregulation of gene expression are all molecular pathogenic mechanisms closely associated with oxidative stress and underpin systemic changes in the body. These also include aspects such as chronic immune system activation, the impairment of cellular structure renewal, and alterations in the character of the endocrine secretion of diverse tissues. All of these mentioned features are crucial for the correct function of the various tissue types in the body. In the present review, we summarize current knowledge about the common roots of metabolic and neurodegenerative disorders induced by oxidative stress. We discuss these common roots with regard to the way that (1) the respective metal ions are involved in the maintenance of oxidative balance and (2) the metabolic and signaling disturbances of the most important biometals, such as Mg2+, Zn2+, Se2+, Fe2+, or Cu2+, can be considered as the central connection point between the pathogenesis of both types of disorders and oxidative stress.
Collapse
|