1
|
Xu Y, Zhang H, Jiao X, Zhang Y, Yin G, Wang C, Du Z, Liang M, Gao X, Gu Z, Jiang Y, Du B, Bi X. Dysregulations of C1QA, C1QB, C1QC and C5AR1 as candidate biomarkers of vascular dementia. NPJ AGING 2025; 11:42. [PMID: 40414977 DOI: 10.1038/s41514-025-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/22/2025] [Indexed: 05/27/2025]
Abstract
Vascular dementia (VaD) is the second most common cause of dementia. Few bioinformatic analysis has been done to explore its biomarkers. This study aimed to excavate potential biomarkers for VaD using bioinformatic analysis and validate them at both animal and patient levels. Based on microarray data of GSE122063, bioinformatic analysis revealed 502 DEGs in the frontal and 674 DEGs in the temporal cortex of VaD patients. Afterward, the hub genes between two regions, including C1QA, C1QB, C1QC, and C5AR1, were dugout. Interestingly, compared with sham mice or controls, the above four complements were highly expressed in the cortices of VaD animals and in the peripheral serum of VaD patients. Moreover, receiver operating characteristic curve analysis conformed to good diagnostic powers of these complements, with C1QB having the most prominent capacity (AUC = 0.799, 95%CI 0.722-0.875). That means the complements, especially subunits of C1Q, might be used as specific early VaD diagnostic biomarkers.
Collapse
Affiliation(s)
- Yawen Xu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, PR China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xuehao Jiao
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ge Yin
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian, PR China
| | - Zengkan Du
- Faculty of Basic Medical Sciences, Second Military Medical University, Shanghai, PR China
| | - Meng Liang
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xin Gao
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yan Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, PR China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China.
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Disease, Fudan University, Shanghai, PR China.
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
2
|
Lin YT, Chen HD, Ai QD, Yang YT, Zhang Z, Chu SF, Chen NH. Characteristics and pathogenesis of chemokines in the post-stroke stage. Int Immunopharmacol 2023; 116:109781. [PMID: 36720195 DOI: 10.1016/j.intimp.2023.109781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Chemokines, as small molecular proteins, play a crucial role in the immune and inflammatory responses after stroke. A large amount of evidence showed chemokines and their receptors were increasingly recognized as potential targets for stroke treatment, which were involved in the processing of neovascularization, neurogenesis, and neural network reconstruction. In this review, we summarized the characteristics of chemokine alterations throughout the post-stroke nerve repair phase to gain insight into the pathological mechanisms of chemokines and find effective therapeutic targets for stroke.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Dong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qi-di Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan-Tao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast 2023; 2023:4637073. [PMID: 36644710 PMCID: PMC9833910 DOI: 10.1155/2023/4637073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/06/2023] Open
Abstract
CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.
Collapse
|
4
|
Zhou Y, Zhang L, Hao Y, Yang L, Fan S, Xiao Z. FKN/CX3CR1 axis facilitates migraine-Like behaviour by activating thalamic-cortical network microglia in status epilepticus model rats. J Headache Pain 2022; 23:42. [PMID: 35382731 PMCID: PMC8981829 DOI: 10.1186/s10194-022-01416-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
The incidence of migraines is higher among individuals with epilepsy than in healthy individuals, and these two diseases are thought to shared pathophysiological mechanisms. Excitation/inhibition imbalance plays an essential role in the comorbidity of epilepsy and migraine. Microglial activation is crucial for abnormal neuronal signal transmission. However, it remains unclear whether and how microglia are activated and their role in comorbidities after being activated. This study aimed to explore the characteristics and mechanism of microglial activation after seizures and their effect on migraine.
Methods
Model rats of status epilepticus (SE) induced by intraperitoneal injection of lithium chloride (LiCl)-pilocarpine and migraine induced by repeated dural injections of inflammatory soup (IS) were generated, and molecular and histopathologic evidence of the microglial activation targets of fractalkine (FKN) signalling were examined. HT22-BV2 transwell coculture assays were used to explore the interaction between neurons and microglia. LPS (a microglial agonist) and FKN stimulation of BV2 microglial cells were used to evaluate changes in BDNF levels after microglial activation.
Results
Microglia were specifically hyperplastic and activated in the temporal lobe cortex, thalamus, and spinal trigeminal nucleus caudalis (sp5c), accompanied by the upregulation of FKN and CX3CR1 four days after seizures. Moreover, SE-induced increases in nociceptive behaviour and FKN/CX3CR1 axis expression in migraine model rats. AZD8797 (a CX3CR1 inhibitor) prevented the worsening of hyperalgesia and microglial activation in migraine model rats after seizures, while FKN infusion in migraine model rats exacerbated hyperalgesia and microglial activation associated with BDNF-Trkb signalling. Furthermore, in neuron-microglia cocultures, microglial activation and FKN/CX3CR1/BDNF/iba1 expression were increased compared with those in microglial cultures alone. Activating microglia with LPS and FKN increased BDNF synthesis in BV2 microglia.
Conclusions
Our results indicated that epilepsy facilitated migraine through FKN/CX3CR1 axis-mediated microglial activation in the cortex/thalamus/sp5c, which was accompanied by BDNF release. Blocking the FKN/CX3CR1 axis and microglial activation are potential therapeutic strategies for preventing and treating migraine in patients with epilepsy.
Collapse
|
5
|
CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci 2022; 300:120564. [DOI: 10.1016/j.lfs.2022.120564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
|
6
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
7
|
Park J, Kim JY, Kim YR, Huang M, Chang JY, Sim AY, Jung H, Lee WT, Hyun YM, Lee JE. Reparative System Arising from CCR2(+) Monocyte Conversion Attenuates Neuroinflammation Following Ischemic Stroke. Transl Stroke Res 2021; 12:879-893. [PMID: 33409730 PMCID: PMC8421302 DOI: 10.1007/s12975-020-00878-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Monocytes recruitment from the blood to inflamed tissues following ischemic stroke is an important immune response to wound healing and tissue repair. Mouse monocytes can be endogenously divided into two distinct populations: pro-inflammatory or classical monocytes that express CCR2highCX3CR1low and circulate in blood, and anti-inflammatory or non-classical monocytes that express CCR2lowCX3CR1high and patrol locally. In this study of transgenic mice with functional CX3CR1GFP/+ or CX3CR1GFP/+-CCR2RFP/+, we found that CCR2highCX3CR1low monocytes recruited to the injured brain were cytokine-dependently converted into CCR2lowCX3CR1high macrophages, especially under the influence of IL-4 and IL-13, thereby attenuating the neuroinflammation following sterile ischemic stroke. The overall data suggest that (1) the regulation of monocyte-switching is one of the ultimate reparative strategies in ischemic stroke, and (2) the adaptation of monocytes in a locally inflamed milieu is vital to alleviating the effects of ischemic stroke through innate immunity.
Collapse
Affiliation(s)
- Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Rim Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Meiying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2021; 231:107989. [PMID: 34492237 DOI: 10.1016/j.pharmthera.2021.107989] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.
Collapse
Affiliation(s)
- Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
9
|
Xue Z, Zhao K, Sun Z, Wu C, Yu B, Kong D, Xu B. Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cε/Nrf2/HO-1 signaling pathway. Brain Behav 2021; 11:e02143. [PMID: 34102010 PMCID: PMC8323036 DOI: 10.1002/brb3.2143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Isorhapontigenin (ISO) has been shown to have antioxidant activity. This study aimed to investigate the antioxidant effects of ISO on cerebral ischemia/reperfusion (I/R) injury and its possible molecular mechanisms. METHODS Focal cerebral ischemia-reperfusion injury (MCAO/R) model and primary cortical neurons were established an oxygen-glucose deprivation (OGD / R) injury model. After 24 hr of reperfusion, the neurological deficits of the rats were analyzed and HE staining was performed, and the infarct volume was calculated by TTC staining. In addition, the reactive oxygen species (ROS) in rat brain tissue, the content of 4-Hydroxynonenal (4-HNE), and 8-hydroxy2deoxyguanosine (8-OHdG) were detected. Neuronal cell viability was determined by MTT assay. Western blot analysis was determined for protein expression. RESULTS ISO treatment significantly improved neurological scores, reduced infarct volume, necrotic neurons, ROS production, 4-HNE, and 8-OHdG levels. At the same time, ISO significantly increased the expression of Nrf2 and HO-1. The neuroprotective effects of ISO can be eliminated by knocking down Nrf2 and HO-1. In addition, knockdown of the PKCε blocked ISO-induced nuclear Nfr2, HO-1 expression. CONCLUSION ISO protected against oxidative damage induced by brain I/R, and its neuroprotective mechanism may be related to the PKCε/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zhe Xue
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| | - Kai Zhao
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| | - Zhenghui Sun
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| | - Chen Wu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| | - Bowen Yu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| | - Dongsheng Kong
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| | - Bainan Xu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
10
|
Triviño JJ, von Bernhardi R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Int 2021; 144:104982. [PMID: 33556444 DOI: 10.1016/j.neuint.2021.104982] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Microglia serve key functions in the central nervous system (CNS), participating in the establishment and regulation of synapses and the neuronal network, and regulating activity-dependent plastic changes. As the neuroimmune system, they respond to endogenous and exogenous signals to protect the CNS. In aging, one of the main changes is the establishment of inflamm-aging, a mild chronic inflammation that reduces microglial response to stressors. Neuroinflammation depends mainly on the increased activation of microglia. Microglia over-activation may result in a reduced capacity for performing normal functions related to migration, clearance, and the adoption of an anti-inflammatory state, contributing to an increased susceptibility for neurodegeneration. Oxidative stress contributes both to aging and to the progression of neurodegenerative diseases. Increased production of reactive oxygen species (ROS) and neuroinflammation associated with age- and disease-dependent mechanisms affect synaptic activity and neurotransmission, leading to cognitive dysfunction. Astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by transforming growth factor β1 (TGFβ1). However, TGFβ1-Smad3 pathway is impaired in aging, and the age-related impairment of TGFβ signaling can reduce protective activation while facilitating cytotoxic activation of microglia. A critical analysis on the effect of aging microglia on neuronal function is relevant for the understanding of age-related changes on neuronal function. Here, we present evidence in the context of the "microglial dysregulation hypothesis", which leads to the reduction of the protective functions and increased cytotoxicity of microglia, to discuss the mechanisms involved in neurodegenerative changes and Alzheimer's disease.
Collapse
Affiliation(s)
- Juan José Triviño
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile
| | - Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile; Faculty of Health Sciences, Universidad San Sebastián, Lota 2465, Santiago, Chile.
| |
Collapse
|
11
|
Mao M, Xu Y, Zhang XY, Yang L, An XB, Qu Y, Chai YN, Wang YR, Li TT, Ai J. MicroRNA-195 prevents hippocampal microglial/macrophage polarization towards the M1 phenotype induced by chronic brain hypoperfusion through regulating CX3CL1/CX3CR1 signaling. J Neuroinflammation 2020; 17:244. [PMID: 32819407 PMCID: PMC7439693 DOI: 10.1186/s12974-020-01919-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Microglial polarization is a dynamic response to acute brain hypoxia induced by stroke and traumatic brain injury (TBI). However, studies on the polarization of microglia in chronic cerebral circulation insufficiency (CCCI) are limited. Our objective was to investigate the effect of CCCI on microglial polarization after chronic brain hypoperfusion (CBH) and explore the underlying molecular mechanisms. METHODS CBH model was established by bilateral common carotid artery occlusion (2-vessel occlusion, 2VO) in rats. Using the stereotaxic injection technique, lenti-pre-miR-195 and anti-miR-195 oligonucleotide fragments (lenti-pre-AMO-miR-195) were injeted into the CA1 region of the hippocampus to construct animal models with high or low expression of miR-195. Immunofluorescence staining and flow cytometry were conducted to examine the status of microglial polarization. In vitro, Transwell co-culture system was taken to investigate the role of miR-195 on neuronal-microglial communication through CX3CL1-CX3CR1 signaling. Quantitative real-time PCR was used to detect the level of miR-195 and inflammatory factors. The protein levels of CX3CL1 and CX3CR1 were evaluated by both western blot and immunofluorescence staining. RESULTS CBH induced by 2VO initiated microglial/macrophage activation in the rat hippocampus from 1 week to 8 weeks, as evaluated by increased ratio of (CD68+ and CD206+)/Iba-1 immunofluorescence. And the microglial/macrophage polarization was shifted towards the M1 phenotype at 8 weeks following CBH. The expression of CX3CL1 and CX3CR1 was increased in the hippocampus of 2VO rats at 8 weeks. An in vitro study in a Transwell co-culture system demonstrated that transfection of either primary-cultured neonatal rat neurons (NRNs) or microglial BV2 cells with AMO-195-induced M1 polarization of BV2 cells and increased CX3CL1 and CX3CR1 expression and that these effects were reversed by miR-195 mimics. Furthermore, the upregulation of miR-195 induced by lenti-pre-miR-195 injection prevented microglial/macrophage polarization to M1 phenotype triggered by hippocampal injection of lenti-pre-AMO-miR-195 and 2VO surgery. CONCLUSIONS Our findings conclude that downregulation of miR-195 in the hippocampus is involved in CBH-induced microglial/macrophage polarization towards M1 phenotype by governing communication between neurons and microglia through the regulation of CX3CL1 and CX3CR1 signaling. This indicates that miR-195 may provide a new strategy for clinical prevention and treatment of CBH.
Collapse
Affiliation(s)
- Meng Mao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xin-Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ya-Ni Chai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yan-Ru Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ting-Ting Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
12
|
Angelopoulou E, Paudel YN, Shaikh MF, Piperi C. Fractalkine (CX3CL1) signaling and neuroinflammation in Parkinson’s disease: Potential clinical and therapeutic implications. Pharmacol Res 2020; 158:104930. [DOI: 10.1016/j.phrs.2020.104930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
|
13
|
Anti-mouse CX3CR1 Antibody Alleviates Cognitive Impairment, Neuronal Loss and Myelin Deficits in an Animal Model of Brain Ischemia. Neuroscience 2020; 438:169-181. [PMID: 32417340 DOI: 10.1016/j.neuroscience.2020.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
White matter lesions are common when global cerebral ischemia (GCI) occurs in the elderly, and cause damage to neurological and psychological functions. Remyelination often fails because of the limited recruitment of oligodendrocyte progenitor cells (OPCs) to the demyelinated site or the inefficient differentiation of OPCs to mature oligodendrocytes (OLs). The activation of microglia, the most important immune cells in the central nervous system, and subsequent inflammation have been implicated in myelination repair disorder. Little is known about the role of the Fractalkine/CX3CR1 signaling pathway, the key regulator of microglia activation, on myelin in microglia. In this study, a GCI animal model was generated through bilateral common carotid artery occlusion to induce ischemic inflammation and white matter damage; then, we downregulated CX3CR1 by intracerebroventricular administration of neutralizing antibody anti-FKR. Downregulation of CX3CR1 significantly reversed the depression-like behavior and cognitive impairment in GCI mice. Activation of microglia was inhibited, and the peripheral inflammatory responses were also ameliorated as revealed by decreased serum levels of IL-1β, IL-6 and TNF-α. CX3CR1 block substantially reversed demyelination in striatum, cortex and hippocampus and promoted differentiation and maturation of OPCs into mature OLs in the hippocampus. No effect was found on myelin in the corpus callosum. Besides, hippocampal neurons were protected by anti-FKR treatment after GCI. Collectively, our data demonstrated that downregulating of the Fractalkine/CX3CR1 signaling pathway had an anti-depressant and cognition-improvement effect by inhibiting microglia activation, promoting OPCs maturation and remyelination.
Collapse
|
14
|
Chen G, Zhou Z, Sha W, Wang L, Yan F, Yang X, Qin X, Wu M, Li D, Tian S, Chen G. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med 2020; 45:1373-1384. [PMID: 32323731 PMCID: PMC7138267 DOI: 10.3892/ijmm.2020.4509] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate the effect of the CX3CR1 inhibitor AZD8797 in early recovery after acute SCI and elucidate its potential mechanism in blocking inflammation and apoptosis. Adult rats were sacrificed after 3, 7, 10, or 14 days of SCI. The injured spinal tissues were collected for assessing C-X3-C motif chemokine ligand 1(CX3CL1)/C-X3-C motif chemokine receptor 1 (CX3CR1) expression at each time point via western blotting (WB) and quantitative PCR. The cellular localization of the proteins was detected by immunofluorescence. Another batch of rats (subdivided into sham, injury model, AZD8797 and methylprednisolone groups) were used to evaluate locomotive recovery with a Basso Beattie Bresnahan score. Based on the expression level of CX3CR1, these rats were sacrificed at the most prominent stage of CX3CR1 expression (10 days after SCI), for assessing the serum levels of tumor necrosis factor-α/interleukin (IL)-6/IL-1β and the expression of CX3CL1/CX3CR1/caspase 3/Bcl-2/Bax in the spinal cord tissues through WB and ELISA. Additionally, apoptosis and necrosis in the injured spinal cord were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining/fluoro-jade B staining. Expression levels of both CX3CR1 and CX3CL1 reached their peak 10 days after the injury, followed by a dramatic downward trend at 14 days. The enhanced expression of CX3CR1 was detected in astrocytes and microglia of the injured spinal cord. AZD8797 improved locomotive recovery after 10 days of SCI and was as effective as methylprednisolone. The effect of AZD8797 was mediated by suppressing apoptosis, necrosis and inflammatory responses, as assessed by WB/ELISA and morphological examinations. The current study has demonstrated that AZD8797 can effectively block overwhelming inflammation, apoptosis and necrosis after SCI and facilitate early recovery of locomotive function.
Collapse
Affiliation(s)
- Guozhao Chen
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Zhiping Zhou
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Weiping Sha
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Liming Wang
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Fei Yan
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xia Qin
- Department of ICU, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Di Li
- Department of Neurosurgery and Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shoujin Tian
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital ofSoochow University, Suzhou, Jiangsu 215031, P.R. China
| |
Collapse
|
15
|
Lehner C, Spitzer G, Gehwolf R, Wagner A, Weissenbacher N, Deininger C, Emmanuel K, Wichlas F, Tempfer H, Traweger A. Tenophages: a novel macrophage-like tendon cell population expressing CX3CL1 and CX3CR1. Dis Model Mech 2019; 12:dmm.041384. [PMID: 31744815 PMCID: PMC6918766 DOI: 10.1242/dmm.041384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022] Open
Abstract
Tendon disorders frequently occur and recent evidence has clearly implicated the presence of immune cells and inflammatory events during early tendinopathy. However, the origin and properties of these cells remain poorly defined. Therefore, the aim of this study was to determine the presence of cells in healthy rodent and human tendon tissue fulfilling macrophage-like functions. Using various transgenic reporter mouse models, we demonstrate the presence of tendon-resident cells in the dense matrix of the tendon core expressing the fractalkine (Fkn) receptor CX3CR1 and its cognate ligand CX3CL1/Fkn. Pro-inflammatory stimulation of 3D tendon-like constructs in vitro resulted in a significant increase in the expression of IL-1β, IL-6, Mmp3, Mmp9, CX3CL1 and epiregulin, which has been reported to contribute to inflammation, wound healing and tissue repair. Furthermore, we demonstrate that inhibition of the Fkn receptor blocked tendon cell migration in vitro, and show the presence of CX3CL1/CX3CR1/EREG-expressing cells in healthy human tendons. Taken together, we demonstrate the presence of CX3CL1+/CX3CR1+ 'tenophages' within the healthy tendon proper, which potentially fulfill surveillance functions in tendons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christine Lehner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gabriel Spitzer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Nadja Weissenbacher
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Christian Deininger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Department of Orthopedics and Traumatology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Katja Emmanuel
- Department of Orthopedics and Traumatology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Florian Wichlas
- Department of Orthopedics and Traumatology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria .,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
16
|
Yang G, Liu Z, Wang L, Chen X, Wang X, Dong Q, Zhang D, Yang Z, Zhou Q, Sun J, Xue L, Wang X, Gao M, Li L, Yi R, Ilgiz G, Ai J, Zhao S. MicroRNA-195 protection against focal cerebral ischemia by targeting CX3CR1. J Neurosurg 2019; 131:1445-1454. [PMID: 30497184 DOI: 10.3171/2018.5.jns173061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/29/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It has been reported that microRNA-195 (miR-195) protects against chronic brain injury induced by chronic brain hypoperfusion. However, neither the expression profile of miR-195 nor its potential role during acute ischemic stroke has been investigated. In this study, the authors' aim was to verify the mechanism of miR-195 in acute ischemic stroke. METHODS The plasma levels of miR-195 expression were assessed using real-time PCR in 96 patients with acute ischemic stroke, and the correlation with the National Institutes of Health Stroke Scale score was evaluated. In addition, cerebral infarct volume, neurological score, and levels of miR-195 and CX3CL1/CX3CR1 mRNA and protein expression were assessed in mice subjected to middle cerebral artery occlusion (MCAO) with or without intra-cerebroventricular infusion of lentiviral vector. The inflammatory cytokines tumor necrosis factor-α (TNFα), interleukin (IL)-1β, and IL-6 of mouse brains after MCAO and BV2 cells treated with oxygen-glucose deprivation were measured using enzyme-linked immunosorbent assay, and apoptotic proteins were examined by Western blotting. Direct targeting of CX3CL1/CX3CR1 by miR-195 was determined by immunoblotting and dual luciferase assay. RESULTS In ischemic stroke patients, miR-195 was significantly downregulated and expression levels of miR-195 in these patients negatively correlated with the National Institutes of Health Stroke Scale score. In mice after MCAO, miR-195 overexpression decreased infarct volume, alleviated neurological deficits, and most importantly, suppressed an inflammatory response. Meanwhile, miR-195 suppressed the expression of the inflammatory cytokines TNFα, IL-1β, and IL-6 in vitro and in vivo. The authors further discovered that both CX3CL1 and CX3CR1 are direct targets of miR-195, but miR-195 exerts neuroprotective roles mainly through inhibiting CX3CR1-mediated neuroinflammation and subsequent neuronal cell apoptosis. CONCLUSIONS Taken together, these findings suggest that miR-195 promotes neuronal cell survival against chronic cerebral ischemic damage by inhibiting CX3CR1-mediated neuroinflammation. This indicates that miR-195 may represent a novel target that regulates neuroinflammation and brain injury, thus offering a new treatment strategy for cerebral ischemic disorders.
Collapse
Affiliation(s)
- Guang Yang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Zhendong Liu
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Lu Wang
- 3Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin
| | - Xin Chen
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Xiaoxiong Wang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Qi Dong
- 4Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Daming Zhang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Zhao Yang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Qi Zhou
- 5Research Administration Office, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Jingxian Sun
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Linmeng Xue
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Xinzhuang Wang
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Ming Gao
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| | - Lili Li
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
| | - Ran Yi
- 6Department of Endocrinology and Metabolism, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gareev Ilgiz
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 7Department of Medical Rehabilitation with courses of Neurosurgery and Acupuncture IAPE, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia; and
| | - Jing Ai
- 8Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- 1Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin
- 2Institute of Brain Science, Harbin Medical University, Harbin
| |
Collapse
|
17
|
Baba N, Wang F, Iizuka M, Shen Y, Yamashita T, Takaishi K, Tsuru E, Matsushima S, Miyamura M, Fujieda M, Tsuda M, Sagara Y, Maeda N. Induction of regional chemokine expression in response to human umbilical cord blood cell infusion in the neonatal mouse ischemia-reperfusion brain injury model. PLoS One 2019; 14:e0221111. [PMID: 31483787 PMCID: PMC6726228 DOI: 10.1371/journal.pone.0221111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Regenerative medicine using umbilical cord blood (UCB) cells shows promise for the treatment of cerebral palsy. Although the efficacy of this therapy has been seen in the clinic, the mechanisms by which UCB cells interact and aid in the improvement of symptoms are not clear. We explored the chemokine expression profile in damaged brain tissue in the neonatal mouse ischemia-reperfusion (IR) brain injury model that was infused with human UCB (hUCB) cells. IR brain injury was induced in 9-day-old NOD/SCID mice. hUCB cells were administered 3 weeks post brain injury. Chemokine expression profiles in the brain extract were determined at various time points. Inflammatory chemokines such as CCL1, CCL17, and CXCL12 were transiently upregulated by 24 hours post brain injury. Upregulation of other chemokines, including CCL5, CCL9, and CXCL1 were prolonged up to 3 weeks post brain injury, but most chemokines dissipated over time. There were marked increases in levels of CCL2, CCL12, CCL20, and CX3CL1 in response to hUCB cell treatment, which might be related to the new recruitment and differentiation of neural stem cells, leading to the induction of tissue regeneration. We propose that the chemokine expression profile in the brain shifted from responding to tissue damage to inducing tissue regeneration. hUCB cell administration further enhanced the production of chemokines, and chemokine networks may play an active role in tissue regeneration in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Nobuyasu Baba
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- * E-mail:
| | - Feifei Wang
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Michiro Iizuka
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Yuan Shen
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tatsuyuki Yamashita
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kimiko Takaishi
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Emi Tsuru
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Institute for Laboratory Animal Research, Science Research Center, Kochi University, Kochi, Japan
| | - Sachio Matsushima
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masayuki Tsuda
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Institute for Laboratory Animal Research, Science Research Center, Kochi University, Kochi, Japan
| | - Yusuke Sagara
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nagamasa Maeda
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
18
|
Ji CL, Nomi A, Li B, Shen C, Song BC, Zhang JG. Increased Plasma Soluble Fractalkine in Patients with Chronic Heart Failure and Its Clinical Significance. Int Heart J 2019; 60:701-707. [PMID: 31019174 DOI: 10.1536/ihj.18-422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fractalkine has been reported to play an important role in the pathophysiology of various cardiovascular disorders. This research aims to study the change of soluble fractalkine (sFKN) in plasma level of patients with chronic heart failure (CHF) and evaluate its prognostic value.A total of 96 patients with CHF and 45 healthy subjects were included in this study. The plasma levels of sFKN, brain natriuretic peptide (BNP), and Interleukin-18 (IL-18) were determined by ELISA kits when they were first admitted to the hospital. Left ventricular ejection fraction (LVEF) was measured by echocardiogram. Rehospitalization status within 1 year after the first hospitalization was also recorded.The plasma levels of sFKN, BNP, and IL-18 in patients with CHF were significantly higher than in the control group (P < 0.05). The concentrations of sFKN and BNP were increased with the severity of heart failure classified by NYHA classification (P < 0.05). There were no statistical differences among all CHF subgroups classified by etiology (P > 0.05). Plasma sFKN level in CHF group was positively correlated with BNP (r = 0.441, P < 0.001) and IL-18 (r = 0.592, P < 0.001). Receiver operating characteristic curve analysis showed that area under the curve values of FKN, BNP, and IL-18 were 0.885 (95%CI: 0.810 to 0.960, P < 0.001), 0.889 (95%CI: 0.842 to 0.956, P < 0.001), and 0.878 (95%CI: 0.801-0.954, P < 0.001), respectively. The concentrations of sFKN and BNP were increased in patients readmitted more than once within 1 year (P < 0.05).
Collapse
Affiliation(s)
- Cui-Ling Ji
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| | - Adnan Nomi
- Teaching and Research Section of International Students, Jining Medical University
| | - Bin Li
- Department of Cardiology IV, The Affiliated Hospital of Jining Medical University
| | - Cheng Shen
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| | - Bing-Chun Song
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| | - Jin-Guo Zhang
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| |
Collapse
|
19
|
Galán-Ganga M, García-Yagüe ÁJ, Lastres-Becker I. Role of MSK1 in the Induction of NF-κB by the Chemokine CX3CL1 in Microglial Cells. Cell Mol Neurobiol 2019; 39:331-340. [PMID: 30830503 PMCID: PMC11469855 DOI: 10.1007/s10571-019-00664-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
Microglial cells are essential mediators of neuroinflammatory processes involved in several pathologies. Moreover, the chemokine fractalkine (CX3CL1) is essential in the crosstalk between neurons and microglia. However, the exact roles of CX3CL1, CX3CL1 receptor (CX3CR1) and microglia signalling are not fully understood in neuroinflammation. In addition, the findings reported on this subject are controversial. In this work, we investigated whether CX3CL1 induced pro-inflammatory signalling activation through NF-κB pathway. We were able to show that CX3CL1 activates the pro-inflammatory pathway mediated by the transcription factor NF-κB as an early response in microglial cells. On the other side, CX3CR1-deficient microglia showed impaired NF-κB axis. Phospho-kinase assay proteome profiles indicated that CX3CL1 induced several kinases such as MAPK's (ERK and JNK), SRC-family tyrosine kinases (YES, FGR, LCK and LYN) and most interesting and also related to NF-κB, the mitogen- and stress-activated kinase-1 (MSK1). Knockdown of MSK1 with short interfering RNAs decreased partially MSK1 protein levels (about 50%), enough to decrease the mRNA levels of Il-1β, Tnf-α and iNos triggered by stimulation with CX3CL1. These results indicate the relevance of CX3CL1 in the activation of the pro-inflammatory NF-κB signalling pathway through MSK1 in microglial cells.
Collapse
Affiliation(s)
- Marcos Galán-Ganga
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel J García-Yagüe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, C/ Arturo Duperier, 4, 28029, Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, C/ Arturo Duperier, 4, 28029, Madrid, Spain.
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
He F, Zhang N, Lv Y, Sun W, Chen H. Low‑dose lipopolysaccharide inhibits neuronal apoptosis induced by cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1 signaling pathway in rats. Mol Med Rep 2019; 19:1443-1452. [PMID: 30628689 PMCID: PMC6390019 DOI: 10.3892/mmr.2019.9827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/03/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of low‑dose lipopolysaccharide (LPS) on ischemia/reperfusion (I/R)‑induced brain injury, and to explore the mechanism of phosphoinositide 3‑kinase (PI3K)/Akt/forkhead box protein (Fox)O1 signaling pathway. Male Sprague‑Dawley rats were divided into control group (control), ischemia/reperfusion surgery group (I/R) and low‑dose LPS treatment group (LPS). An I/R model was established and the hemodynamic parameters were recorded at the end of I/R injury. The brain tissues were observed by hematoxylin and eosin staining, immunohistochemistry and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling staining. Microglia were treated with LPS following hypoxia/reoxygenation. The cellular viability was detected by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. The apoptotic rate of microglia was detected using AnnexinV/propidium iodide staining. The expression of B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated X (Bax), and caspase‑3 were detected by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Akt, phosphorylated (p)‑Akt, FoxO1 and p‑FoxO1 expression were detected by western blotting. It was previously reported that, following I/R injury, neuronal cells were disorderly and brain injury markers (neuron‑specific enolase and S100 β), inflammatory cytokines [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α] levels were significantly upregulated. In the present study, the expression levels of Bax, caspase‑3 Akt and p‑Akt were significantly higher, while that of Bcl‑2, FoxO1 and p‑FoxO1 were significantly lower in the I/R group. LPS treatment significantly increased the viability of neuronal cells and decreased the rate of neuronal cell apoptosis. Following the addition of PI3K signaling pathway inhibitor LY294002 to microglia, LPS reduced the levels of activated Akt, increased the downstream regulatory gene phosphorylation of FoxO1 and reduced microglia apoptosis. It was concluded that LPS can alleviate I/R‑induced brain injury, inhibit neuronal cells apoptosis and protect neuronal cells via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Fan He
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Nannan Zhang
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Lv
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Wenhao Sun
- Department of Neurology, The General Hospital of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Huisheng Chen
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
21
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Hickey K, Stabenfeldt SE. Using biomaterials to modulate chemotactic signaling for central nervous system repair. Biomed Mater 2018; 13:044106. [PMID: 29411713 PMCID: PMC5991092 DOI: 10.1088/1748-605x/aaad82] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotaxis enables cellular communication and movement within the body. This review focuses on exploiting chemotaxis as a tool for repair of the central nervous system (CNS) damaged from injury and/or degenerative diseases. Chemokines and factors alone may initiate repair following CNS injury/disease, but exogenous administration may enhance repair and promote regeneration. This review will discuss critical chemotactic molecules and factors that may promote neural regeneration. Additionally, this review highlights how biomaterials can impact the presentation and delivery of chemokines and growth factors to alter the regenerative response.
Collapse
Affiliation(s)
- Kassondra Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | | |
Collapse
|
23
|
Al Mamun A, Yu H, Romana S, Liu F. Inflammatory Responses are Sex Specific in Chronic Hypoxic-Ischemic Encephalopathy. Cell Transplant 2018; 27:1328-1339. [PMID: 29692197 PMCID: PMC6168990 DOI: 10.1177/0963689718766362] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is increasingly recognized as a sexually dimorphic disease. Male infants are not only more vulnerable to ischemic insult; they also suffer more long-term cognitive deficits compared with females with comparable brain damage. The innate immune response plays a fundamental role in mediating acute neonatal HIE injury. However, the mechanism underlying the sex difference in chronic HIE is still elusive. The present study investigated the sex difference in HIE outcomes and inflammatory response in the chronic stage (30 days after HIE). Postnatal day 10 (P10) male and female C57BL/6 pups were subjected to 60-min Rice-Vanucci model (RVM) to induce HIE. Brain atrophy and behavioral deficits were analyzed to measure stroke outcomes at 30 days of HIE. Flow cytometry (FC) was performed to examine central (microglial activation) and peripheral immune responses. Serum levels of cytokines and sex hormones were determined by enzyme-linked immunosorbent assay (ELISA). Neurogenesis was quantified by 5-Bromo-2'-deoxyuridine (BrdU) incorporation with neurons. Results showed males had worse HIE outcomes than females at the endpoint. Female microglia exhibited a more robust anti-inflammatory response that was corresponding to an enhanced expression of CX3C chemokine receptor 1 (CX3CR1) than males. More infiltration of peripheral lymphocytes was seen in male vs. female HIE brains. Cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-10 were more upregulated in males and females respectively than their counterparts. Neurogenesis was more highly induced in females vs. males. No significant difference in circulating hormonal level was found between males and females after HIE. We conclude that a sex dichotomy in pro- and anti-inflammatory response underlies the sex-specific chronic HIE outcomes, and an enhanced neurogenesis in females also contribute to the sex difference.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Haifu Yu
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.,2 Department of Neurology, Shanghai Jiaotong University Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Sharmeen Romana
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Fudong Liu
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
24
|
Huart J, Krzesinski JM, Jouret F. Genetic susceptibility to delayed graft function following kidney transplantation: a systematic review of the literature. Clin Kidney J 2018; 11:586-596. [PMID: 30090630 PMCID: PMC6070034 DOI: 10.1093/ckj/sfy020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Delayed graft function (DGF) is defined as the need for dialysis within 7 days following kidney transplantation (KTx). DGF is associated with increased costs, higher risk for acute rejection and decreased long-term graft function. Renal ischaemia/reperfusion (I/R) injury plays a major role in DGF occurrence. Single nucleotide polymorphisms (SNPs) in certain genes may aggravate kidney susceptibility to I/R injury, thereby worsening post-transplant outcomes. The present article proposes an extensive review of the literature about the putative impact of donor or recipient SNPs on DGF occurrence in kidney transplant recipients (KTRs). Among 30 relevant PubMed reports, 16 articles identified an association between 18 SNPs and DGF. These polymorphisms concern 14 different well-known genes and one not-yet-identified gene located on chromosome 18. They have been categorized into five groups according to the role of the corresponding proteins in I/R cascade: (i) oxidative stress, (ii) telomere shortening, (iii) chemokines, (iv) T-cell homeostasis and (v) metabolism of anti-inflammatory molecules. The remaining 14 studies failed to demonstrate any association between the studied SNPs and the occurrence of DGF. A better understanding of the genetic susceptibility to renal I/R injury may help prevent DGF and improve clinical outcomes in KTRs.
Collapse
Affiliation(s)
- Justine Huart
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| |
Collapse
|