1
|
Lu J, Rao SR, Knowles H, Zhan H, Gamez B, Platt E, Frost LR, Allen TJ, Marshall G, Huber KV, Bauer LG, Vendrell I, Kessler B, Horne A, Reid IR, Bountra C, Kirkland JL, Khosla S, Hal Ebetino F, Roldan E, Russell RGG, Edwards JR. Bisphosphonates Trigger Anti-Ageing Effects Across Multiple Cell Types and Protect Against Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645228. [PMID: 40196558 PMCID: PMC11974835 DOI: 10.1101/2025.03.25.645228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bisphosphonates (BPs) have been the major class of medicines used to treat disorders of excessive bone loss for over five decades. Recently it has been recognized that BPs may also have additional significant beneficial extra-skeletal effects. These include a reduction of all-cause mortality and of conditions commonly linked to ageing, such as cancer and cardiovascular disease. Here we show that bisphosphonates co-localize with lysosomal and endosomal organelles in non-skeletal cells and stimulate cell growth at low doses. In vivo spatial transcriptomic analysis revealed differentially expressed senescence markers in multiple organs of aged BP-treated mice, and a shift in cellular composition toward those of young counterparts. Similarly, a 5000-plex plasma proteome analysis from osteopenic patients before and after BP-treatment showed significant alterations in ~400 proteins including GTPase regulators and markers of senescence, autophagy, apoptosis, and inflammatory responses. Furthermore, treatment with BPs protected against the onset of senescence in vitro. Proteome-wide target deconvolution using 2D thermal profiling revealed novel BP-binding targets (PHB2, ASAH1), and combined with RNA- and ATAC-seq of BP-treated cells and patient data, suggests downstream regulation of the MEF2A transcription factor within the heart. Collectively, these results indicate how BPs may beneficially modify the human plasma proteome, and directly impact multiple non-skeletal cell types through previously unidentified proteins, thereby influencing a range of pathways related to senescence and ageing.
Collapse
Affiliation(s)
- Jinsen Lu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Srinivasa Rao Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Helen Knowles
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Haoqun Zhan
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Beatriz Gamez
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | | | | | - Kilian V.M. Huber
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ludwig G. Bauer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anne Horne
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NZ
| | - Ian R Reid
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NZ
| | - Chas Bountra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - F Hal Ebetino
- BioVinc LLC, Pasadena, CA, US; Chemistry Dept, University of Rochester, Rochester, NY, USA
| | | | - R Graham G Russell
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Mellanby Centre for Bone Research, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield Medical School, Sheffield, UK
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Li X, Yin J, Song Q, Yang Q, Li C, Gao H. The novel ginseng Rh2 derivative 2-deoxy-Rh2, exhibits potent anticancer effect via the AMPK/mTOR/autophagy signaling pathway against breast cancer. Chem Biol Interact 2025; 409:111422. [PMID: 39961461 DOI: 10.1016/j.cbi.2025.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Breast cancer is the most prevalent cancer and the second leading cause of cancer-related mortality among women globally, resulting in considerable psychological and physical distress for patients. Our previous study synthesized a novel derivative, 2-Deoxy-Rh2, which exhibited anticancer properties by influencing glycolysis and mitochondrial respiration. The objective of the current study was to investigate the anti-proliferative effects and underlying mechanisms of 2-Deoxy-Rh2 on human breast cancer cell lines MCF-7 and MDA-MB-231. In our experiments, we observed that 2-Deoxy-Rh2 reduced cell viability and induced cell cycle arrest, reactive oxygen species accumulation, and mitochondrial dysfunction. Furthermore, treatment with 2-Deoxy-Rh2 affected autophagic flux and induction, leading to increased expression of microtubule-associated protein light chain 3B (LC3B) and decreased expression of sequestosome 1 (P62) expression in both two breast cancer cell lines, which could be reversed by 3-Methyladenine (3-MA). Additionally, the AMPK signaling pathway plays a crucial role in 2-Deoxy-Rh2-induced autophagy. 2-Deoxy-Rh2 modulated the expression levels of mTOR and AMPK in MCF-7 and MDA-MB-231 cells, resulting in the cellular homeostasis disruption, autophagy and apoptosis, which was further corroborated by compound C (CC). Finally, the study validated the antitumor activity and mechanism of 2-Deoxy-Rh2 in vivo using Balb/c mice bearing 4T1 tumor cells. Overall, the results suggest that 2-Deoxy-Rh2 can induce apoptosis and autophagic cell death through the AMPK/mTOR signaling pathway, positioning it as a promising candidate for an antitumor agent against breast cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Qing Song
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qi Yang
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China; State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, China; Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
Nosalova N, Majirska M, Keselakova A, Martinkova M, Fabianova D, Mirossay A, Pilatova MB, Kello M. Pyrrolidine SS13 induces oxidative stress and autophagy-mediated cell death in colorectal cancer cells. Eur J Pharm Sci 2025; 205:106982. [PMID: 39644983 DOI: 10.1016/j.ejps.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Pyrrolidines, nitrogenous organic compounds, are among the most intensively studied agents because of their antibacterial, antiviral, neurological, and promising antitumor effects. Moreover, many medicinal drugs contain pyrrolidine moiety such as sunitinib (anticancer drug), telaprevir and ombitasvir (antiviral drugs) or ramipril (antihypertensive drug). RATIONALE OF THE STUDY Based on the pro-apoptotic effect of pyrrolidine SS13, this study focuses on the pro-oxidative properties of the tested pyrrolidine SS13 on colorectal cancer cells to deepen the understanding of its mechanisms of action. RESEARCH HYPOTHESIS We hypothesize that SS13 induces oxidative stress and autophagy activation in HCT116 and Caco-2 cell lines, thus contributing to antiproliferative effects. METHODS Flow cytometry, western blot, fluorescence microscopy and qRT-PCR were used to evaluate the effect of pyrrolidine SS13. CONCLUSION AND FUTURE DIRECTIONS Pyrrolidine SS13 induced oxidative stress through the accumulation of reactive oxygen and nitrogen species in both cell lines and the modulation of both superoxide dismutase isoenzymes (SOD1, SOD2). Oxidative stress was also associated with the activation of DNA damage response system and modulation of stress/survival pathways. We demonstrated for the first time that pyrrolidine SS13 is involved in the induction of autophagy accompanied by increased levels of autophagic markers (p-AMPK, p-ULK, LC3I/II and ATG7) and a significant decrease in p62 protein levels in both cell lines. Finally, chloroquine, an inhibitor of autophagy, enhanced cell survival and suppressed the cytotoxic effect of SS13 in HCT116 and Caco-2 cells, indicating that SS13 contributes to autophagy-mediated cell death. Taken together, our results suggest that oxidative stress and autophagy participate in the antiproliferative effect of pyrrolidine SS13 on colorectal cancer cells. Further research using primary cell cultures obtained from different animal tissues as well as performing in vivo experiments is needed to understand these processes in detail and to investigate the potential therapeutic application of new pyrrolidine derivatives.
Collapse
Affiliation(s)
- Natalia Nosalova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Monika Majirska
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Alexandra Keselakova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Miroslava Martinkova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Dominika Fabianova
- Institute of Chemical Sciences, Department of Organic Chemistry, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| | - Andrej Mirossay
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martina Bago Pilatova
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
4
|
Qin Z, Xie H, Su P, Song Z, Xu R, Guo S, Fu Y, Zhang P, Jiang H. Targeting endoplasmic reticulum stress-induced lymphatic dysfunction for mitigating bisphosphonate-related osteonecrosis. Clin Transl Med 2024; 14:e70082. [PMID: 39521624 PMCID: PMC11550091 DOI: 10.1002/ctm2.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bisphosphonates (BPs) are the first-line treatment to stop bone resorption in diseases, including osteoporosis, Paget's disease, multiple myeloma and bone metastases of cancer. However, BPs-related osteonecrosis of the jaw (BRONJ), characterized by local inflammation and jawbone necrosis, is a severe intractable complication. The cumulative inflammatory burden often accompanies impaired lymphatic drainage, but its specific impact on BRONJ and the underlying mechanisms remain unclear. METHODS The mouse BRONJ model was established to assess the integrity and drainage function of lymphatic vessels by tissue clearing techniques, injected indocyanine green lymphatic clearance assay, flow cytometry analysis and histopathological staining. RNA sequencing, metabolome analysis, transmission electron microscopy and Western blotting were utilized to analyze the impacts of Zoledronate acid (ZA) on endoplasmic reticulum stress (ERS) and function of lymphatic endothelial cells (LECs). By constructing Lyve1creERT; SIRT6f/f and Lyve1creERT; ATG5f/f mice, we evaluated the role of ERS-induced LECs apoptosis in the progression of BRONJ. Additionally, we developed a nanoparticle-loaded ZA and rapamycin (ZDPR) to enhance autophagy and evaluated its potential in mitigating BRONJ. RESULTS The mouse BRONJ model displayed impaired lymphatic drainage, accompanied by significant local inflammation and bone necrosis. The prolonged stimulation of ZA resulted in the extension of ERS and the inhibition of autophagy in LECs, ultimately leading to apoptosis. Mechanistically, ZA activated XBP1s through the NAD+/SIRT6 pathway, initiating ERS-induced apoptosis in LECs. The conditional knockout mouse models demonstrated that the deletion of SIRT6 or ATG5 significantly worsened lymphatic drainage and inflammatory infiltration in BRONJ. Additionally, the innovative nanoparticle ZDPR alleviated ERS-apoptosis in LECs and enhanced lymphatic function, facilitating inflammation resolution. CONCLUSION Our study has elucidated the role of the NAD+/SIRT6/XBP1s pathway in ERS-induced apoptosis in ZA-treated LECs, and further confirmed the therapeutic potential of ZDPR in restoring endothelial function and improving lymphatic drainage, thereby effectively mitigating BRONJ. KEY POINTS Bisphosphonate-induced lymphatic drainage impairment exacerbates bone necrosis. Zoledronate acid triggers endoplasmic reticulum stress and apoptosis in lymphatic endothelial cells via the NAD+/SIRT6/XBP1s pathway. Novel nanoparticle-loaded Zoledronate acid and rapamycin enhances autophagy, restores lymphatic function, and mitigates bisphosphonates-related osteonecrosis of the jaw progression.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Hanyu Xie
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Pengcheng Su
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Zesheng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingChina
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Yuan L, Jiang X, Jia G, Li Z, Wang M, Hu S, Yang J, Liang F, Zhang F, Gao L, Gao N. Minnelide exhibits antileukemic activity by targeting the Ars2/miR-190a-3p axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155724. [PMID: 38759317 DOI: 10.1016/j.phymed.2024.155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The identification of a novel and effective strategy for the clinical treatment of acute leukemia (AL) is a long-term goal. Minnelide, a water-soluble prodrug of triptolide, has recently been evaluated in phase I and II clinical trials in patients with multiple cancers and has shown promise as an antileukemic agent. However, the molecular mechanism underlying minnelide's antileukemic activity remains unclear. PURPOSE To explore the molecular mechanisms by which minnelide exhibits antileukemic activity. METHODS AL cells, primary human leukemia cells, and a xenograft mouse model were treated with triptolide and minnelide. The molecular mechanism was elucidated using western blotting, immunoprecipitation, flow cytometry, GSEA and liquid chromatography-mass spectrometry analysis. RESULTS Minnelide was highly effective in inhibiting leukemogenesis and improving survival in two complementary AL mouse models. Triptolide, an active form of minnelide, causes cell cycle arrest in G1 phase and induces apoptosis in both human AL cell lines and primary AL cells. Mechanistically, we identified Ars2 as a new chemotherapeutic target of minnelide for AL treatment. We found that triptolide directly targeted Ars2, resulting in the downregulation of miR-190a-3p, which led to the disturbance of PTEN/Akt signaling and culminated in G1 cell cycle arrest and apoptosis. CONCLUSIONS Our findings demonstrate that targeting Ars2/miR-190a-3p signaling using minnelide could represent a novel chemotherapeutic strategy for AL treatment and support the evaluation of minnelide for the treatment of AL in clinical trials.
Collapse
Affiliation(s)
- Liang Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Xiuxing Jiang
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Guanfei Jia
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Zhiqiang Li
- College of Pharmacy, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Siyi Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China
| | - Lu Gao
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, PR China.
| |
Collapse
|
6
|
Zhang M, Yang DY, He ZY, Wu Y, Tian XY, Huang QY, Ma WB, Deng M, Wang QZ, Yan SJ, Zheng HL. Auranofin inhibits the occurrence of colorectal cancer by promoting mTOR-dependent autophagy and inhibiting epithelial-mesenchymal transformation. Anticancer Drugs 2024; 35:129-139. [PMID: 37615540 DOI: 10.1097/cad.0000000000001540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Dong-Yuan Yang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Zhi-Yi He
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Xiu-Yun Tian
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qing-Yang Huang
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Wang-Bo Ma
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Min Deng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qi-Zhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Shan-Jun Yan
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Hai-Lun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
7
|
Peng Y, Liu QZ, Xu D, Fu JY, Zhang LX, Qiu L, Lin JG. M 4IDP stimulates ROS elevation through inhibition of mevalonate pathway and pentose phosphate pathway to inhibit colon cancer cells. Biochem Pharmacol 2023; 217:115856. [PMID: 37838274 DOI: 10.1016/j.bcp.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Maintaining redox homeostasis is an essential feature of cancer cells, and disrupting this homeostasis to cause oxidative stress and induce cell death is an important strategy in cancer therapy. M4IDP, a zoledronic acid derivative, can cause the death of human colorectal cancer cells by increasing the level of intracellular reactive oxygen species (ROS). However, its potential molecular mechanism is unclear. Our in vitro studies showed that treatment with M4IDP promoted oxidative stress in HCT116 cells, as measured by the decreased ratios of GSH/GSSG and NADPH/NADP+ and increased level of MDA. M4IDP could cause the decrease of GSH content, the increase of GSSG content, the decrease of NADPH content and pentose phosphate pathway flux, the downregulation of G6PD expression, the upregulation of unprenylated Rap1A and total expression of RhoA and CDC42. The increase of ROS and cytotoxicity induced by M4IDP could be reversed by the supplementation of NADPH, the overexpression of G6PD and the supplementation of GGOH. In vivo studies showed that M4IDP inhibited tumor growth in the human colorectal cancer xenograft mouse model, which was accompanied with a decreased [18F]FDG uptake. Collectively, these results provide evidence that M4IDP can promote oxidation in colon cancer cells by inhibiting mevalonate pathway and pentose phosphate pathway and produce therapeutic effect. This study revealed for the first time a possible mechanism of bisphosphonate-induced increase of ROS in malignant tumor cells. This is helpful for the development of new molecular therapeutic targets and can provide new ideas for the combined therapy of bisphosphonates in tumors.
Collapse
Affiliation(s)
- Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing-Zhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jia-Yu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li-Xia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian-Guo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
8
|
Kaboudin B, Daliri P, Faghih S, Esfandiari H. Hydroxy- and Amino-Phosphonates and -Bisphosphonates: Synthetic Methods and Their Biological Applications. Front Chem 2022; 10:890696. [PMID: 35721002 PMCID: PMC9200139 DOI: 10.3389/fchem.2022.890696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphonates and bisphosphonates are stable analogs of phosphates and pyrophosphates that are characterized by one and two carbon–phosphorus bonds, respectively. Among the various phosphonates and bisphosphonates, hydroxy and amino substitutes are of interest as effective in medicinal and industrial chemistry. For example, hydroxy bisphosphonates have proven to be effective for the prevention of bone loss, especially in osteoporotic disease. On the other hand, different substitutions on the carbon atom connected to phosphorus have led to the synthesis of many different hydroxy- and amino-phosphonates and -bisphosphonates, each with its distinct physical, chemical, biological, therapeutic, and toxicological characteristics. Dialkyl or aryl esters of phosphonate and bisphosphonate compounds undergo the hydrolysis process readily and gave valuable materials with wide applications in pharmaceutical and agriculture. This review aims to demonstrate the ongoing preparation of various classes of hydroxy- and amino-phosphonates and -bisphosphonates. Furthermore, the current review summarizes and comprehensively describes articles on the biological applications of hydroxyl- and amino-phosphonates and -bisphosphonates from 2015 until today.
Collapse
|
9
|
Zhang Y, Ding Y, Li M, Yuan J, Yu Y, Bi X, Hong H, Ye J, Liu P. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharm Sin B 2022; 12:2374-2390. [PMID: 35646533 PMCID: PMC9136534 DOI: 10.1016/j.apsb.2021.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and β-myosin heavy chain (β-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 3′ UTR, 3′ untranslated region
- ANF, atrial natriuretic factor
- ATG4B
- ATG4B, autophagy related gene 4B
- Autophagic flux
- Autophagy
- BNP, brain natriuretic polypeptide
- Baf A1, bafilomycin A1
- CQ, Chloroquine
- EF, ejection fraction
- FS, fractional shortening
- GFP, green fluorescent protein
- HE, hematoxylin–eosin
- ISO, isoprenaline
- IVS,d: interventricular septal wall dimension at end-diastole, IVS,s: interventricular septal well dimension at end-systole
- Isoprenaline
- LC3
- LC3, microtubule-associated protein 1 light chain 3
- LV Vol,d, left ventricular end-diastolic volume
- LV Vol,s, left ventricular end-systolic volume
- LVID,d, left ventricular end-diastolic internal diameter
- LVID,s, left ventricular end-systolic internal diameter
- LVPW,d, left ventricular end-diastolic posterior wall thickness
- LVPW,s, left ventricular end-systolic posterior wall thickness
- Mice
- NS, normal saline
- Neonatal rat cardiomyocytes
- PSR, Picric–Sirius red
- Pathological cardiac hypertrophy
- mTOR, mammalian target of rapamycin
- miR-34c-5p
- miRNA, microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- β-AR, β-adrenergic receptor
- β-MHC, beta-myosin heavy chain
Collapse
|
10
|
The Overexpression of TOB1 Induces Autophagy in Gastric Cancer Cells by Secreting Exosomes. DISEASE MARKERS 2022; 2022:7925097. [PMID: 35465266 PMCID: PMC9019440 DOI: 10.1155/2022/7925097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
We previously confirmed that transducer of ERBB2, 1 (TOB1) gene, can induce autophagy in gastric cancer cells. Studies have shown the biogenesis of exosomes overlaps with different autophagy processes, which helps to maintain the self-renewal and homeostasis of body cells. This study is aimed at verifying whether overexpressing TOB1 induces autophagy by secreting exosomes in gastric cancer cells and its underlying mechanisms. Differential ultracentrifugation was used to extracted the exosomes from the culture medium of gastric cancer cell line AGS-TOB1 ectopically overexpressing TOB1 (exo-AGS-TOB1, experimental group) and AGS-empty-vector cell line with low expression of endogenous TOB1 (exo-AGS-Vector, control group). Exosomal markers CD9 and TSG101 were determined in both the cell supernatants of exo-AGS-TOB1 and exo-AGS-Vector by Western blot. Under the transmission electron microscope (TEM), the exosomes were round and saucer-like vesicles with double-layer membrane structure, and the vesicles showed different translucency due to different contents. The peak size of exosomes detected by nanoparticle tracking analysis (NTA) was about 100 nm. When the exosomes of exo-AGS-TOB1 and exo-AGS-Vector were cocultured with TOB1 knockdown gastric cancer cell line HGC-27-TOB1-6E12 for 48 hours, the conversion of autophagy-related protein LC3-I to LC3-II in HGC-27-TOB1-6E12 gastric cancer cells cocultured with exo-AGS-TOB1 was significantly higher than that in the control group, and the ratio of LC3-II/LC3-I was statistically different (P < 0.05). More autophagosomes in HGC-27-TOB1-6E12 cells cocultured with exo-AGS-TOB1 for 48 hours were observed under TEM, while fewer autophagosomes were found in the control group. Lastly, miRNAs were differentially expressed by cell supernatant-exosomal whole transcriptome sequencing. Thus, our results provide new insights into TOB1-induced autophagy in gastric cancer.
Collapse
|
11
|
Xu J, Su Z, Cheng X, Hu S, Wang W, Zou T, Zhou X, Song Z, Xia Y, Gao Y, Zheng Q. High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell Int 2022; 22:115. [PMID: 35277179 PMCID: PMC8917761 DOI: 10.1186/s12935-022-02508-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Adaptive resistance and side effects of sorafenib treatment result in unsatisfied survival of patients with hepatocellular carcinoma (HCC). Palmitoyl-protein thioesterase 1 (PPT1) plays a critical role in progression of various cancers. However, its role on prognosis and immune infiltrates in HCC remains unclarified. METHODS By data mining in the Cancer Genome Atlas databases, the role of PPT1 in HCC were initially investigated. Furthermore, HCC cell lines Hep 3B and Hep 1-6 were treated with DC661 or siRNA against PPT1. The biological function of PPT1 was determined by CCK-8 test, colony formation assay, TUNEL staining, immunofluorescence staining, Western blot test, and PI-Annexin V apoptosis assays in vitro. Animal models of subcutaneous injection were applied to investigate the therapeutic role of targeting PPT1. RESULTS We found that PPT1 levels were significantly upregulated in HCC tissues compared with normal tissues and were significantly associated with a poor prognosis. Multivariate analysis further confirmed that high expression of PPT1 was an independent risk factor for poor overall survival of HCC patients. We initially found that PPT1 was significantly upregulated in sorafenib-resistant cell lines established in this study. Upon sorafenib treatment, HCC cells acquired adaptive resistance by inducing autophagy. We found that DC661, a selective and potent small-molecule PPT1-inhibitor, induced lysosomal membrane permeability, caused lysosomal deacidification, inhibited autophagy and enhanced sorafenib sensitivity in HCC cells. Interestingly, this sensitization effect was also mediated by the induction mitochondrial pathway apoptosis. In addition, the expression level of PPT1 was associated with the immune infiltration in the HCC tumor microenvironment, and PPT1 inhibitor DC661 significantly enhanced the anti-tumor immune response by promoting dendritic cell maturation and further promoting CD8+ T cell activation. Moreover, DC661 combined with sorafenib was also very effective at treating tumor models in immunized mice. CONCLUSIONS Our findings suggest that targeting PPT1 with DC661 in combination with sorafenib might be a novel and effective alternative therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Zhe Su
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Xiang Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Wenjie Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Tianhao Zou
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Xing Zhou
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China
| | - Yun Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China.
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Liberation Avenue, Jianghan District, Wuhan, 430022, China.
| |
Collapse
|
12
|
Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021; 26:512-533. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms of two programmed cell death pathways, autophagy, and apoptosis, are extensively focused areas of research in the context of cancer. Both the catabolic pathways play a significant role in maintaining cellular as well as organismal homeostasis. Autophagy facilitates this by degradation and elimination of misfolded proteins and damaged organelles, while apoptosis induces canonical cell death in response to various stimuli. Ideally, both autophagy and apoptosis have a role in tumor suppression, as autophagy helps in eliminating the tumor cells, and apoptosis prevents their survival. However, as cancer proceeds, autophagy exhibits a dual role by enhancing cancer cell survival in response to stress conditions like hypoxia, thereby promoting chemoresistance to the tumor cells. Thus, any inadequacy in either of their levels can lead to tumor progression. A complex array of biomarkers is involved in maintaining coordination between the two by acting as either positive or negative regulators of one or both of these pathways of cell death. The resulting crosstalk between the two and its role in influencing the survival or death of malignant cells makes it quintessential, among other challenges facing chemotherapeutic treatment of cancer. In view of this, the present review aims to highlight some of the factors involved in maintaining their diaphony and stresses the importance of inhibition of cytoprotective autophagy and deletion of the intermediate pathways involved to facilitate tumor cell death. This will pave the way for future prospects in designing drug combinations facilitating the synergistic effect of autophagy and apoptosis in achieving cancer cell death.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Nidhi Shukla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Sapana Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
13
|
Hu C, Cao Y, Li P, Tang X, Yang M, Gu S, Xiong K, Li T, Xiao T. Oleanolic Acid Induces Autophagy and Apoptosis via the AMPK-mTOR Signaling Pathway in Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8281718. [PMID: 34326874 PMCID: PMC8310446 DOI: 10.1155/2021/8281718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
AIMS The purpose of this study was to explore the biological functions of the mTOR and AMPK signaling pathways in colon cancer (CC). The potential molecular mechanisms by which oleanolic acid (OA) induces autophagy and apoptosis were also investigated. METHODS The biological functions of mTOR were analyzed by GeneCards, the Search Tool for the Retrieval of Interacting Genes (STRING), and the Database for Annotation, Visualization and Integrated Discovery (DAVID). Least absolute shrinkage and selection operator (LASSO) regression analysis was used to obtain prognostic and survival data of CC patients from the Gene Expression Omnibus (GEO) database. The effects of OA on the CC cell lines HCT-116 and SW-480 were analyzed by CCK-8, colony formation assay, and high-content system (HCS) array scan. The apoptosis rate of SW-480 and HCT-116 cells was detected by flow cytometry. The mRNA and protein expression levels in HCT-116 and SW-480 cells and NCM-460 normal colonic epithelial cells were detected by RT-PCR and Western blotting. RESULTS mTOR was highly expressed in CC patients and acted as an oncogene. The AMPK signaling pathway mediated by mTOR predicted the poor prognosis of CC patients. OA effectively inhibited the proliferation and viability of CC cells. Furthermore, the apoptosis rate of CC cells was clearly increased following OA administration. Regarding the molecular mechanism of OA, the results indicated that mTOR and the antiapoptosis gene Bcl-2 were downregulated by OA. In addition, regulator genes of autophagy and apoptosis, including BAX, caspase-9, caspase-8, and caspase-3, were significantly upregulated by OA. Moreover, OA upregulated AMPK and its downstream proteins, including TSC2, BAX, Beclin 1, LC3B-II, and ULK1, to induce autophagy and apoptosis in CC cells. CONCLUSION The findings from this study demonstrate that OA could effectively inhibit the proliferation and viability of CC cells. The anti-CC activity of OA is closely related to the activation of the AMPK-mTOR signaling pathway. Activation of AMPK and inhibition of mTOR are involved in the induction of autophagy and apoptosis by OA. OA induced autophagy and apoptosis mainly in an AMPK activation-dependent manner in CC cells.
Collapse
Affiliation(s)
- Changxiao Hu
- College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Yibo Cao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Ping Li
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Xiaorong Tang
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Minhui Yang
- College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Shengliang Gu
- College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Kai Xiong
- College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| | - Tian Li
- Fourth Military Medical University, No. 169 Changle West Rd, Xi'an 710032, China
| | - Tianbao Xiao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
14
|
Zhang Q, Li HS, Li R, Du JH, Jiao C. Autophagy dysregulation mediates the damage of high glucose to retinal pigment epithelium cells. Int J Ophthalmol 2021; 14:805-811. [PMID: 34150534 DOI: 10.18240/ijo.2021.06.04] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
AIM To observe the role and mechanism of autophagy in retinal pigment epithelial cell (RPE) damaged by high glucose, so as to offer a new idea for the treatment of diabetic retinopathy (DR). METHODS ARPE-19, a human RPE cell line cultured in vitro was divided into the normal control (NC), autophagy inhibitor 3-methyladenine (3-MA), high-glucose (HG), and HG+3-MA groups. Cell viability was detected by CCK-8 assay and the apoptosis rate was measured by flow cytometry. The protein expressions of apoptosis markers, including Bax, Bcl-2, and Caspase-3, as well as autophagy marker including microtubule-related protein 1 light chain 3 (LC3), p62, and mechanistic target of rapamycin (mTOR) were detected by Western blotting. Autophagic flux was detected by transfection with Ad-mCherry-GFP-LC3B. RESULTS Under high glucose conditions, the viability of ARPE-19 was decreased, and the apoptosis rate increased, the protein expressions of Bax, Caspase-3, and LC3-II/LC3-I were all increased and the expressions of Bcl-2, p62 and p-mTOR decreased, and autophagic flux was increased compared with that of the controls. Treatment with 3-MA reversed all these changes caused by high glucose. CONCLUSION The current study demonstrates the mechanisms of cell damage of ARPE-19 through high glucose/mTOR/autophagy/apoptosis pathway, and new strategies for DR may be developed based on autophagy regulation to manage cell death of RPE cells.
Collapse
Affiliation(s)
- Qian Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hong-Song Li
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Rong Li
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Jun-Hui Du
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Cong Jiao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| |
Collapse
|
15
|
Zheng W, Wu C, Wu X, Cai Y, Liu B, Wang C. Genetic variants of autophagy-related genes in the PI3K/Akt/mTOR pathway and risk of gastric cancer in the Chinese population. Gene 2021; 769:145190. [PMID: 33053421 DOI: 10.1016/j.gene.2020.145190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Autophagic dysfunction could lead to tumorigenesis and affect tumor progression and prognosis. The PI3K/Akt/mTOR signaling pathway plays an important role in autophagy. The aim of the studies was to explore the association between genetic variants of autophagy-related genes in the PI3K/Akt/mTOR pathway and gastric cancer risk. METHODS We selected candidate genes via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO), then used Ensemble, HaploView, and 1000 Genomes Project datasets to extract single nucleotide polymorphisms (SNPs) in the candidate genes. We screened the differently distributed SNPs in 96 gastric cancer patients and 96 healthy controls as candidate SNPs using SNP Array and verified the candidate SNPs in 622 patients and 622 healthy controls using time-of-flight mass spectrometry. RESULTS Candidate SNPs located in, IRS1 (rs10205233 C > T), PIK3CD (rs3934934 A > G), PIK3R1 (rs706711 A > G), and AKT1 (rs35285446 ->T), were selected. IRS1 (rs10205233 C > T) was significantly associated with gastric cancer risk (adjusted OR = 0.76, 95%CI = 0.59-0.97, p = 0.031 in co-dominant model; adjusted OR = 0.76, 95%CI = 0.60-0.97, p = 0.029 in dominant model). There were no significant associations between the rest of candidate SNPs and gastric cancer risk. CONCLUSION The IRS1 (rs10205233 C > T) could be a specific biomarker for gastric cancer patients in Xianyou County, a rural area with a high prevalence of gastric cancer in Fujian Province.
Collapse
Affiliation(s)
- Weiwei Zheng
- Gastroenterology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian Province, People's Republic of China; The First Clinical Medical College, Fujian Medical University, Fuzhou, 350005 Fujian Province, People's Republic of China
| | - Chuancheng Wu
- School of Public Health of Fujian Medical University, Fuzhou, 350001 Fujian Province, People's Republic of China
| | - Xiaoli Wu
- School of Public Health of Fujian Medical University, Fuzhou, 350001 Fujian Province, People's Republic of China
| | - Yuanhuan Cai
- Xianyou County Hospital of Fujian Province, Fuzhou, 351200 Fujian Province, People's Republic of China
| | - Baoying Liu
- School of Public Health of Fujian Medical University, Fuzhou, 350001 Fujian Province, People's Republic of China.
| | - Chengdang Wang
- Gastroenterology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian Province, People's Republic of China; The First Clinical Medical College, Fujian Medical University, Fuzhou, 350005 Fujian Province, People's Republic of China.
| |
Collapse
|
16
|
Peng Y, Liu Q, Xu D, Li K, Li H, Qiu L, Lin J. Inhibition of zoledronic acid derivatives with extended methylene linkers on osteoclastogenesis involve downregulation of JNK and Akt pathways. Cell Biol Int 2021; 45:1015-1029. [PMID: 33404170 DOI: 10.1002/cbin.11546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/09/2020] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Bisphosphonates (BPs), especially zoledronic acid (ZOL), are clinically used to treat osteolytic bone lesions. However, serious side-effects may be also induced during the therapeutic process. To improve the BPs drugs, here, we investigated the effects of a series of ZOL derivatives with increasing number of methylene linker between the imidazole ring and the P-C-P backbone named IPrDP, IBDP, IPeDP, and IHDP on cell viability and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation, function and apoptosis induction in mouse bone marrow-derived macrophages (BMMs). Our results suggested that IPeDP and IHDP, which contains 4 and 5 methylene linkers, respectively, exerted lower toxicity on BMMs compared with ZOL, IPrDP, and IBDP, which contains 1, 2, and 3 methylene linkers respectively. At concentrations below cytotoxicity threshold, IPeDP and IHDP possessed strong abilities of antiosteoclast formation, antibone absorption, and inducing osteoclast apoptosis, which were similar to ZOL and more powerful than IPrDP and IBDP. The mechanism behind these effects of IPeDP and IHDP might involve the interference of small GTPases prenylation through suppression of mevalonate pathway. The downregulation of JNK and Akt phosphorylation and subsequent inhibition of the expression of c-Fos and NFATc1 might also be involved. Our results supported the potential usage of IPeDP and IHDP to treat bone-related disorders involving increased osteoclastogenesis. Our attempt to extend the methylene linker between the imidazole ring and the P-C-P backbone of ZOL also reveals some regularities between the structure and properties of the BPs drugs.
Collapse
Affiliation(s)
- Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Hang Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.,School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.,School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Xie Q, Liu Y, Li X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl Oncol 2020; 13:100871. [PMID: 32950931 PMCID: PMC7509232 DOI: 10.1016/j.tranon.2020.100871] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Autophagy and apoptosis play crucial roles in tumorigenesis. Recent studies have shown that autophagy and apoptosis have a cross-talk relationship in anti-tumor therapy. It is well established that apoptosis is one of the main pathways of tumor cell death. While autophagy can occurs in tumors with opposite function: protective autophagy and lethal autophagy. Protective autophagy can inhibit tumor apoptosis induced by anticancer drugs, while lethal autophagy can induce tumor cell apoptosis in cooperation with anticancer drugs. Hence, autophagy and apoptosis have synergistic and antagonistic effects in tumor. Colorectal cancer is a common malignant tumor with high morbidity and mortality. In recent years, colorectal carcinoma has achieved improved clinical efficacy with drug treatment. Nonetheless, increasing drug-resistance limit the treatment efficacy, highlighting the urgency of exploring the molecular events that drive drug resistance. Researchers have found that autophagy is one of the major factors leading to drug resistance in colon cancer. Therefore, elucidating the interaction between autophagy and apoptosis is helpful to improve the efficacy of anticancer drugs in clinical treatment of colorectal cancer. This review attaches great importance to the relationship between autophagy and apoptosis and related factors in colorectal cancer.
Collapse
Affiliation(s)
- Qingqiang Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China,Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, PR China,Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China,Corresponding author at: The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
18
|
Wei C, Pan Y, Zhang Y, Dai Y, Jiang L, Shi L, Yang W, Xu S, Zhang Y, Xu W, Zhang Y, Lin X, Zhang S. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell Death Dis 2020; 11:755. [PMID: 32934215 PMCID: PMC7492405 DOI: 10.1038/s41419-020-02956-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Autophagy can be dynamically induced in response to stresses and is an essential, ubiquitous intracellular recycling system that impacts the fate of damaged resident cells, thereby influencing wound healing. Endometrial fibrosis is a form of abnormal wound healing that causes intrauterine adhesion (IUA) and infertility. We previously demonstrated that overactivated sonic hedgehog (SHH) signaling exacerbated endometrial fibrosis, but the role of autophagy in this process is still unknown. Here, we report that impaired autophagy participates in SHH pathway-induced endometrial fibrosis. Endometrial stroma-myofibroblast transition accompanied by autophagy dysfunction was present in both endometrial biopsies of IUA patients and Amhr2cre/+R26-SmoM2+/− (AM2) transgenic mouse. Mechanistically, SHH pathway negatively regulated autophagy through pAKT-mTORC1 in a human endometrial stromal cell line (T-HESCs). Furthermore, SHH pathway-mediated fibrosis was partly counteracted by autophagy modulation in both T-HESCs and the murine IUA model. Specifically, the impact of SHH pathway inhibition (GANT61) was reversed by the pharmacological autophagy inhibitor chloroquine (CQ) or RNA interference of autophagy-related gene ATG5 or ATG7. Similar results were obtained from the murine IUA model treated with GANT61 and CQ. Moreover, promoting autophagy with rapamycin reduced fibrosis in the AM2 IUA model to baseline levels. In summary, defective autophagy is involved in SHH pathway-driven endometrial fibrosis, suggesting a potential novel molecular target for IUA treatment.
Collapse
Affiliation(s)
- Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
19
|
Wei Y, Han X, Zhao C. PDK1 regulates the survival of the developing cortical interneurons. Mol Brain 2020; 13:65. [PMID: 32366272 PMCID: PMC7197138 DOI: 10.1186/s13041-020-00604-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
Inhibitory interneurons are critical for maintaining the excitatory/inhibitory balance. During the development cortical interneurons originate from the ganglionic eminence and arrive at the dorsal cortex through two tangential migration routes. However, the mechanisms underlying the development of cortical interneurons remain unclear. 3-Phosphoinositide-dependent protein kinase-1 (PDK1) has been shown to be involved in a variety of biological processes, including cell proliferation and migration, and plays an important role in the neurogenesis of cortical excitatory neurons. However, the function of PDK1 in interneurons is still unclear. Here, we reported that the disruption of Pdk1 in the subpallium achieved by crossing the Dlx5/6-Cre-IRES-EGFP line with Pdk1fl/fl mice led to the severely increased apoptosis of immature interneurons, subsequently resulting in a remarkable reduction in cortical interneurons. However, the tangential migration, progenitor pools and cell proliferation were not affected by the disruption of Pdk1. We further found the activity of AKT-GSK3β signaling pathway was decreased after Pdk1 deletion, suggesting it might be involved in the regulation of the survival of cortical interneurons. These results provide new insights into the function of PDK1 in the development of the telencephalon.
Collapse
Affiliation(s)
- Yongjie Wei
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaoning Han
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
20
|
Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, Dong W, Liu X, Wang S, Zhong W, Liu Y, Jiang R, Piao M, Wang B, Cao H. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 2019; 469:456-467. [PMID: 31734354 DOI: 10.1016/j.canlet.2019.11.019] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Gut microbiota dysbiosis is closely involved in intestinal carcinogenesis. A marked reduction in butyrate-producing bacteria has been observed in patients with colorectal cancer (CRC); nevertheless, the potential benefit of butyrate-producing bacteria against intestinal tumor development has not been fully investigated. We found that Clostridium butyricum (C. butyricum, one of the commonly used butyrate-producing bacteria in clinical settings) significantly inhibited high-fat diet (HFD)-induced intestinal tumor development in Apcmin/+ mice. Moreover, intestinal tumor cells treated with C. butyricum exhibited decreased proliferation and increased apoptosis. Additionally, C. butyricum suppressed the Wnt/β-catenin signaling pathway and modulated the gut microbiota composition, as demonstrated by decreases in some pathogenic bacteria and bile acid (BA)-biotransforming bacteria and increases in some beneficial bacteria, including short-chain fatty acid (SCFA)-producing bacteria. Accordingly, C. butyricum decreased the fecal secondary BA contents, increased the cecal SCFA quantities, and activated G-protein coupled receptors (GPRs), such as GPR43 and GPR109A. The anti-proliferative effect of C. butyricum was blunted by GPR43 gene silencing using small interfering RNA (siRNA). The analysis of clinical specimens revealed that the expression of GPR43 and GPR109A gradually decreased from human normal colonic tissue to adenoma to carcinoma. Together, our results show that C. butyricum can inhibit intestinal tumor development by modulating Wnt signaling and gut microbiota and thus suggest the potential efficacy of butyrate-producing bacteria against CRC.
Collapse
Affiliation(s)
- Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Duochen Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Shumin Huang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Yi Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, PR China
| | - Ruihuan Jiang
- Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, PR China
| | - Meiyu Piao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, PR China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, PR China.
| |
Collapse
|
21
|
Xiao L, Xu J, Weng Q, Zhou L, Wang M, Liu M, Li Q. Mechanism of a Novel Camptothecin-Deoxycholic Acid Derivate Induced Apoptosis against Human Liver Cancer HepG2 Cells and Human Colon Cancer HCT116 Cells. Recent Pat Anticancer Drug Discov 2019; 14:370-382. [PMID: 31644410 DOI: 10.2174/1574892814666191016162346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Camptothecin (CPT) is known as an anticancer drug in traditional Chinese medicine. However, due to the lack of targeting, low solubility, and instability of CPT, its therapeutic applications are hampered. Therefore, we synthesized a series of CPT-bile acid analogues that obtained a national patent to improve their tumour-targeting chemotherapeutic effects on liver or colon cancers. Among these analogues, the compound G2 shows high antitumor activity with enhanced liver targeting and improved oral absorption. It is significant to further investigate the possible anticancer mechanism of G2 for its further clinical research and application. OBJECTIVE We aimed to unearth the anticancer mechanism of G2 in HepG2 and HCT116 cells. METHODS Cell viability was measured using MTT assay; cell cycle, Mitochondrial Membrane Potential (MMP), and cell apoptosis were detected by flow cytometer; ROS was measured by Fluorescent Microplate Reader; the mRNA and protein levels of cell cycle-related and apoptosis-associated proteins were examined by RT-PCR and western blot, respectively. RESULTS We found that G2 inhibited cells proliferation of HepG2 and HCT116 remarkably in a dosedependent manner. Moreover, G2-treatment led to S and G2/M phase arrest in both cells, which could be elucidated by the change of mRNA levels of p21, p27 and Cyclin E and the increased protein level of p21. G2 also induced dramatically ROS accumulated and MMP decreased, which contributed to the apoptosis through activation of both the extrinsic and intrinsic pathways via changing the genes and proteins expression involved in apoptosis pathway in both of HepG2 and HCT116 cells. CONCLUSION These findings suggested that the apoptosis in both cell lines induced by G2 was related to the extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Linxia Xiao
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jialin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Leilei Zhou
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Mengke Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miao Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
22
|
Hao Y, Xu W, Gao J, Zhang Y, Yang Y, Tao L. Roundup-Induced AMPK/mTOR-Mediated Autophagy in Human A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11364-11372. [PMID: 31542934 DOI: 10.1021/acs.jafc.9b04679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticide caused an amount of pressure on the environment and increased the potential human health risk. Glyphosate-based herbicide (GBH) is one of the most widely used pesticides based on a 5-enolpyruvylshikimate-3-phosphate synthase target, which does not exist in vertebrates. Here, we study autophagic effects of the most famous commercial GBH Roundup (RDP) on human A549 cells in vitro. Intracellular biochemical assay indicated opening of mitochondrial permeability transition pore, LC3-II conversion, up-regulation of beclin-1, down-regulation of p62, and the changes in the phosphorylation of AMPK and mTOR induced by RDP in A549 cells. Further experimental results indicated that all the effects induced by RDP were related to its adjuvant polyethoxylated tallow amine, not its herbicidal active ingredient glyphosate isopropylamine salt. All these results showed that RDP has the ability to induce AMPK/mTOR-mediated cell autophagy in human A549 cells. This study would provide a theoretical basis for understanding RDP's autophagic effects on human A549 cells and attract attention on the potential human health risks induced by the adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jufang Gao
- College of Life Sciences , Shanghai Normal University , Shanghai 200234 , China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
23
|
Wang LL, Zhang L, Cui XF. Downregulation of long noncoding RNA LINC01419 inhibits cell migration, invasion, and tumor growth and promotes autophagy via inactivation of the PI3K/Akt1/mTOR pathway in gastric cancer. Ther Adv Med Oncol 2019; 11:1758835919874651. [PMID: 31579114 PMCID: PMC6759708 DOI: 10.1177/1758835919874651] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Accumulating evidence has highlighted the crucial role of long noncoding RNAs (lncRNAs) in the tumorigenesis of gastric cancer (GC), which is the most common gastrointestinal malignancy. The present study aimed to identify the capacity of lncRNA LINC01419 (LINC01419) in GC progression, with the potential mechanism explored. Methods: Highly expressed lncRNAs were identified by in silico analysis, with the LINC01419 expression in GC tissues measured using reverse transcription-quantitative PCR (RT-qPCR). The GC cells were subsequently transfected with siRNA against LINC01419 or Rapamycin (the inhibitor of the mTOR pathway), or both, in order to measure cell migration and invasion in vitro as well as tumor growth and metastasis in vivo. Moreover, the expression of PI3K/Akt1/mTOR pathway-associated factors was determined. Results: LINC01419, highly expressed in GC samples of the Gene Expression Omnibus database, was observed to be markedly upregulated in GC tissues. Moreover, LINC01419 silencing, or PI3K/Akt1/mTOR pathway inhibition, exhibited an inhibitory role in GC cell migration and invasion in vitro, coupled with promoted cell autophagy in vitro, and inhibited tumor growth and metastasis in vivo. It was also revealed that LINC01419 silencing blocked the PI3K/Akt1/mTOR pathway, as proved by decreased extents of Akt1 and mTOR phosphorylation. Conclusions: In conclusion, LINC01419 inhibition may suppress GC cell invasion and migration, and promote autophagy via inhibition of the PI3K/Akt1/mTOR pathway. This provides significant theoretical basis and possibilities for further elucidation of the molecular mechanism of GC and finding new molecular-targeted therapeutic regimens.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Xiao-Feng Cui
- Department of Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province 130033, China
| |
Collapse
|
24
|
Liu R, Chen Z, Yi X, Huang F, Hu G, Liu D, Li X, Zhou H, Liu Z. 9za plays cytotoxic and proapoptotic roles and induces cytoprotective autophagy through the PDK1/Akt/mTOR axis in non-small-cell lung cancer. J Cell Physiol 2019; 234:20728-20741. [PMID: 31004362 DOI: 10.1002/jcp.28679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is an aggressive subtype of pulmonary carcinomas with high mortality. However, chemotherapy drug resistance and high recurrence rates hinder the curative effect of platinum-based first-line chemotherapy, which makes it urgent to develop new antitumor drugs for NSCLC. 9za, a new candidate drug synthesized by our research group, has been verified with potent antilung cancer activity in preliminary experiments. However, the underlying molecular mechanism of 9za remains largely vague. This work revealed that 9za could play important cytotoxic and proapoptotic roles in NSCLC cells. Moreover, 9za could induce autophagy and promote autophagy flux. Interestingly, the cytotoxic and proapoptotic roles were significantly dependent on 9za-induced cytoprotective autophagy. That is, the coadministration of 9za with an autophagy inhibitor such as chloroquine or 3-methyladenine exhibited increased cytotoxic and proapoptotic effects compared with 9za treatment alone. In addition, 9za exposure suppressed the phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1), protein kinase B (Akt), mammalian targets of rapamycin (mTOR), p70 S6 kinase, and 4E binding protein 1 by a dose-dependent way, manifesting that the Akt/mTOR axis was implicated in 9za-induced autophagy. In addition, the overexpression of PDK1 resulted in increased phosphorylation of PDK1 and Akt and blocking of 9za-mediated autophagy. These data showed that the PDK1/Akt/mTOR pathway was involved in 9za-induced autophagy. Hence, this work provides a theoretical basis for exploiting 9za as a new antilung cancer candidate drug and hints that the combination of 9za with an autophagy inhibitor is a feasible alternative approach for the therapy of NSCLC.
Collapse
Affiliation(s)
- Rangru Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xinan Yi
- The United Laboratory for Neurosciences of Hainan Medical University and the Fourth Military Medical University, Haikou, Hainan, China
| | - Fengying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Li R, Du J, Yao Y, Yao G, Wang X. Adiponectin inhibits high glucose‐induced angiogenesis via inhibiting autophagy in RF/6A cells. J Cell Physiol 2019; 234:20566-20576. [PMID: 30982980 DOI: 10.1002/jcp.28659] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Rong Li
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| | - Junhui Du
- Department of Ophthalmology Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University Xi'an Shaanxi People's Republic of China
| | - Yang Yao
- Department of Central Laboratory The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| | - Guomin Yao
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| | - Xiaodi Wang
- Department of Ophthalmology The First Affiliated Hospital of Xi'an Medical University Xi'an Shaanxi People's Republic of China
| |
Collapse
|
26
|
Chen X, Hu Y, Zhang W, Chen K, Hu J, Li X, Liang L, Cai X, Hu J, Wang K, Huang A, Tang N. Cisplatin induces autophagy to enhance hepatitis B virus replication via activation of ROS/JNK and inhibition of the Akt/mTOR pathway. Free Radic Biol Med 2019; 131:225-236. [PMID: 30550853 DOI: 10.1016/j.freeradbiomed.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation.
Collapse
Affiliation(s)
- Xuemei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jieli Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Wang Y, Zhang Y, Chen X, Hong Y, Wu Z. [Combined treatment with myo-inositol and luteolin selectively suppresses growth of human lung cancer A549 cells possibly by suppressing activation of PDK1 and Akt]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1378-1383. [PMID: 30514689 DOI: 10.12122/j.issn.1673-4254.2018.11.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study the effects of myo-inositol and luteolin on human lung cancer A549 cells and explore the possible mechanisms. METHODS A549 cells were treated with different concentrations of myo-inositol and luteolin, either alone or in combination, and the cell viability was examined using MTT assay. A549 cells and human bronchial epithelial Beas-2B cells were treated for 48 h with 10 mmol/L myo-inositol and 20 μmol/L luteolin, alone or in combination, and the cell proliferation was detected using MTT assay; the colony formation and migration of the cells were examined with colony formation assay and wound healing assay, respectively. The protein expression levels in A549 cells were detected using Western blotting. RESULTS Both myo-inositol and luteolin could dose-dependently inhibit the viability of A549 cells. Treatments with 10 mmol/L myo-inositol, 20 μmol/L luteolin, and both for 48 h caused significant reduction in the cell viability (92%, 83% and 70% of the control level, respectively) and colony number (79%, 73% and 43%, respectively), and significantly lowered the wound closure rate (24.61%, 13.08% and 8.65%, respectively, as compared with 29.99% in the control group). Similar treatments with myoinositol and luteolin alone or in combination produced no significant inhibitory effect on the growth, colony formation or migration of Beas-2B cells. The expressions of p-PDK1 and p-Akt in myo-inositol-treated A549 cells and the expression of pPDK1 in luteolin-treated cells were significantly decreased (P < 0.05), and the decrements were more obvious in the combined treatment group (P < 0.05). CONCLUSIONS Luteolin combined with myo-inositol can selectively inhibit the proliferation and migration of A549 cells, and these effects are probably mediated, at least in part, by suppressing the activation of PDK1 and Akt.
Collapse
Affiliation(s)
- Yun Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Yuyuan Zhang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Xue Chen
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Yun Hong
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Zhengdong Wu
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
28
|
Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X, Ling H, Zeng T. Autophagy and its role in gastric cancer. Clin Chim Acta 2018; 489:10-20. [PMID: 30472237 DOI: 10.1016/j.cca.2018.11.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Autophagy, which is tightly regulated by a series of autophagy-related genes (ATGs), is a vital intracellular homeostatic process through which defective proteins and organelles are degraded and recycled under starvation, hypoxia or other specific cellular stress conditions. For both normal cells and tumour cells, autophagy not only sustains cell survival but can also promote cell death. Autophagy-related signalling pathways include mTOR-dependent pathways, such as the AMPK/mTOR and PI3K/Akt/mTOR pathways, and non-mTOR dependent pathways, such as the P53 pathway. Additionally, autophagy plays a dual role in gastric carcinoma (GC), including a tumour-suppressor role and a tumour-promoter role. Long-term Helicobacter pylori infection can impair autophagy, which may eventually promote tumourigenesis of the gastric mucosa. Moreover, Beclin1, LC3 and P62/SQSTM1 are regarded as autophagy-related markers with GC prognostic value. Autophagy inhibitors and autophagy inducers show promise for GC treatment. This review describes research progress regarding autophagy and its significant role in gastric cancer.
Collapse
Affiliation(s)
- Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Zhihong Cai
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Xi Zeng
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China.
| | - Tiebing Zeng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China; Institute of Pathogenic Biology, Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
29
|
Synthesis, biological evaluation and structure-activity relationship of a novel class of PI3Kα H1047R mutant inhibitors. Eur J Med Chem 2018; 158:707-719. [DOI: 10.1016/j.ejmech.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/24/2022]
|
30
|
Yu ZK, Yang B, Zhang Y, Li LS, Zhao JN, Hao W. Modified Huangqi Chifeng decoction inhibits excessive autophagy to protect against Doxorubicin-induced nephrotic syndrome in rats via the PI3K/mTOR signaling pathway. Exp Ther Med 2018; 16:2490-2498. [PMID: 30210600 PMCID: PMC6122515 DOI: 10.3892/etm.2018.6492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate whether modified Huangqi Chifeng decoction (MHCD) could be an effective treatment against Doxorubicin-induced nephrosis in rats and whether it regulates autophagy via the phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathway. A total of 40 male Sprague-Dawley rats were randomly divided into blank, model, telmisartan and MHCD groups. The rat model of nephrosis was induced by intragastric administration of Doxorubicin for 8 weeks. Rats were housed in metabolic cages and urine was collected once every 2 weeks to measure 24-h protein levels. Blood samples were obtained from the abdominal aorta and levels of albumin (ALB), total cholesterol (TCH), triacylglyceride (TG) and serum creatinine (Scr) were assessed. Renal pathological changes were examined using hematoxylin-eosin, Masson's trichome and periodic acid-Schiff staining. Podocytes and autophagosomes were observed using an electron microscope. The expression and distribution of microtubule-associated proteins 1A/1B light chain 3B (LC3), LC3-I, LC3-II, beclin-1, PI3K and mTOR were determined using immunohistochemistry and western blotting. At weeks 6 and 8, 24-h proteinuria significantly decreased in the MHCD group compared with the model group (P<0.05). Compared with the model group, the MHCD group exhibited significantly reduced levels of TG, TCH and Scr, as well as significantly increased ALB levels (P<0.05). MHCD was demonstrated to prevent glomerular and podocyte injury. The number of autophagosomes was significantly decreased and the expression of beclin-1, LC3, LC3-I and LC3-II was inhibited following MHCD treatment compared with the model group (P<0.05). MHCD treatment significantly increased the expression of PI3K and mTOR in Doxorubicin nephrotic rats compared with the model group (P<0.05). In conclusion, MHCD was demonstrated to ameliorate proteinuria and protect against glomerular and podocyte injury by inhibiting excessive autophagy via the PI3K/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zi-Kai Yu
- Department of Nephropathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Yu Zhang
- Department of Nephropathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Liu-Sheng Li
- Department of Nephropathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Jin-Ning Zhao
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Wei Hao
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
31
|
Zoledronic acid induces micronuclei formation, mitochondrial-mediated apoptosis and cytostasis in kidney cells. Life Sci 2018; 203:305-314. [PMID: 29729261 DOI: 10.1016/j.lfs.2018.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/11/2018] [Accepted: 04/30/2018] [Indexed: 11/21/2022]
Abstract
AIMS Zoledronic acid (ZA), a FDA approved drug has used widely in the treatment of bone metastasis complications, has been linked to renal toxicity with unclear mechanism. The present study is aimed at investigating the genotoxic and cytotoxic effects of ZA in renal epithelial cells. MAIN METHODS The genotoxic effect of ZA in Vero and MDCK cells determined by cytokinesis block micronucleus (CBMN) assay. The cytotoxic effect assessed by analysing cell cycle profile, cell death and mitochondrial membrane potential by flow cytometry using propidium iodide, AnnexinV-FITC/PI and JC1 dye staining, respectively, BAX and Bcl-2 expression by Western blotting and caspase activity by spectrofluorimetry. KEY FINDINGS The cytotoxic effect of ZA based on MTT assay revealed variable sensitivities of Vero and MDCK cells, with IC50 values of 7.41 and 109.58 μM, respectively. The CBMN assay has shown prominent dose-dependent (IC10-50) induction of micronuclei formation in both cells, indicating ZA's clastogenic and aneugenic potential. Further, the ZA treatment led the cells to apoptosis, evident from dose-dependent increase in the percentage of cells in subG1 phase and display of membranous phosphatidylserine translocation. Studies also confirmed apoptosis through mitochondria, evident from the prominent increase in BAX/Bcl-2 ratio, mitochondrial membrane depolarization and caspase-3/7 activity. In addition, ZA reduces cytokinetic activity of renal cells, evident from dose-wise lowered replicative indices. SIGNIFICANCE The study depict ZA's potential genotoxic effect along with cytotoxic effect in renal epithelial cells, could be key factors for the development of renal complications associated with it, which prompts renal safety measures in lieu with ZA usage.
Collapse
|
32
|
Ding GB, Sun J, Wu G, Li B, Yang P, Li Z, Nie G. Robust Anticancer Efficacy of a Biologically Synthesized Tumor Acidity-Responsive and Autophagy-Inducing Functional Beclin 1. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5227-5239. [PMID: 29359549 DOI: 10.1021/acsami.7b17454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a potent autophagy inducer, Beclin 1 is essential for the initiation of autophagic cell death, and triggering extensive autophagy by targeted delivery of Beclin 1 to tumors has enormous potential to inhibit tumor growth. Yet, the therapeutic application of Beclin 1 is hampered by its inability to internalize into cells and nonselective biodistribution in vivo. To tackle this challenge, we employed a novel Beclin 1 delivery manner by constructing a functional protein (Trx-pHLIP-Beclin 1, TpB) composed of a thioredoxin (Trx) tag, a pH low insertion peptide (pHLIP), and an evolutionarily conserved motif of Beclin 1. This protein could effectively transport Beclin 1 to breast and ovarian cancer cell lines under weakly acidic conditions (pH 6.5), markedly inhibit tumor cell growth and proliferation, and induce obvious autophagy. Furthermore, the in vivo antitumor efficacy of the functional Beclin 1 against an SKOV3 xenograft tumor mouse model was tested via intravenous injection. TpB preferentially accumulated in tumors and exhibited a significantly higher tumor growth inhibition than the nontargeted Beclin 1 control, whereas no overt side effects were observed. Taken together, this study sheds light on the potential application of TpB as a highly efficient yet safe antitumor agent for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| |
Collapse
|