1
|
Pizzo E, Cervantes DO, Ripa V, Filardo A, Berrettoni S, Ketkar H, Jagana V, Di Stefano V, Singh K, Ezzati A, Ghadirian K, Kouril A, Jacobson JT, Bisserier M, Jain S, Rota M. The cAMP/PKA signaling pathway conditions cardiac performance in experimental animals with metabolic syndrome. J Mol Cell Cardiol 2024; 196:35-51. [PMID: 39251059 PMCID: PMC11534532 DOI: 10.1016/j.yjmcc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/20/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Metabolic syndrome (MetS) increases the risk of coronary artery disease, but effects of this condition on the working myocardium remain to be fully elucidated. In the present study we evaluated the consequences of diet-induced metabolic disorders on cardiac function and myocyte performance using female mice fed with Western diet. Animals maintained on regular chow were used as control (Ctrl). Mice on the Western diet (WesD) had increased body weight, impaired glucose metabolism, preserved diastolic and systolic function, but increased left ventricular (LV) mass, with respect to Ctrl animals. Moreover, WesD mice had reduced heart rate variability (HRV), indicative of altered cardiac sympathovagal balance. Myocytes from WesD mice had increased volume, enhanced cell mechanics, and faster kinetics of contraction and relaxation. Moreover, levels of cAMP and protein kinase A (PKA) activity were enhanced in WesD myocytes, and interventions aimed at stabilizing cAMP/PKA abrogated functional differences between Ctrl and WesD cells. Interestingly, in vivo β-adrenergic receptor (β-AR) blockade normalized the mechanical properties of WesD myocytes and revealed defective cardiac function in WesD mice, with respect to Ctrl. Collectively, these results indicate that metabolic disorders induced by Western diet enhance the cAMP/PKA signaling pathway, a possible adaptation required to maintain cardiac function.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Andrea Filardo
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Silvia Berrettoni
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Vineeta Jagana
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Asha Ezzati
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Kash Ghadirian
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Anna Kouril
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, NY, USA; Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - Malik Bisserier
- Department of Physiology, New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Guimarães VHD, Lelis DDF, Oliveira LP, Borém LMA, Guimarães FAD, Farias LC, de Paula AMB, Guimarães ALS, Santos SHS. Comparative study of dietary fat: lard and sugar as a better obesity and metabolic syndrome mice model. Arch Physiol Biochem 2023; 129:449-459. [PMID: 33176505 DOI: 10.1080/13813455.2020.1835986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diet macronutrient heterogeneity hinders animal studies' data extrapolation from metabolic disorders to human diseases. OBJECTIVE The present study aimed to evaluate different fat-diet compositions' effect on inducing lipid/glucose metabolism alterations in mice. METHODS Swiss male mice were fed for 12 weeks with five different diets: Standard Diet (ST), American Institute of Nutrition 93 for growth (AIN93G) high-butter/high-sugar (HBHS), high-lard/high-sugar (HLHS), and high-oil/high-sugar diet (soybean oil) (HOHS). Several parameters, such as serum biochemistry, histology, and liver mRNA expression, were accessed. RESULTS The main findings revealed that the HLHS diet dramatically altered liver metabolism inducing hepatic steatosis and increased total cholesterol, triglycerides, VLDL, increasing liver CCAAT/enhancer binding protein (CEBP-α), Acetyl-CoA carboxylase (ACC) and Catalase (CAT) mRNA expression. Moreover, the HLHS diet increased glucose intolerance and reduced insulin sensitivity. CONCLUSIONS High-fat/high-sugar diets are efficient to induce obesity and metabolic syndrome-associated alterations, and diets enriched with lard and sugar showed more effective results.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Luis Paulo Oliveira
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | | | - Felipe Alberto Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Alfredo Mauricio Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
- Institute of Agricultural Sciences (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brasil
| |
Collapse
|
3
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
5
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2021; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
6
|
Batista-Jorge GC, Barcala-Jorge AS, Silveira MF, Lelis DF, Andrade JMO, de Paula AMB, Guimarães ALS, Santos SHS. Oral resveratrol supplementation improves Metabolic Syndrome features in obese patients submitted to a lifestyle-changing program. Life Sci 2020; 256:117962. [PMID: 32534040 DOI: 10.1016/j.lfs.2020.117962] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
AIMS The aim of the present study was to evaluate the oral resveratrol effects associated with diet and physical training changes on anthropometric and biochemical parameters. MAIN METHODS 25 individuals aged from 30 to 60 years old; with Body Mass Index (BMI) ≥ 30 kg/m2 were included in the study. Following the primary evaluation (anthropometric and clinical), the patients were randomly divided into 2 groups: (1) Placebo: Physical activity program + Diet + Placebo; (2) Resveratrol: Physical activity program + Diet + Resveratrol (RVS) (250 mg/day) for three months. Anthropometric and biochemical parameters were evaluated at baseline and after the treatment period. KEY FINDINGS The main findings showed that the resveratrol supplementation improved total cholesterol (TC), High-density Lipoprotein cholesterol (HDL-c), Very-low density Lipoprotein cholesterol (VLDL-c), urea, creatinine and albumin serum levels. SIGNIFICANCE These findings indicate that this polyphenol may be an option to potentiate the beneficial effects induced by dietary and physical activity programs in the Metabolic Syndrome (MetS) treatment.
Collapse
Affiliation(s)
- G C Batista-Jorge
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - A S Barcala-Jorge
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - M F Silveira
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - D F Lelis
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - J M O Andrade
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - A M B de Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - A L S Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - S H S Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
7
|
A high-salt/high fat diet alters circadian locomotor activity and glucocorticoid synthesis in mice. PLoS One 2020; 15:e0233386. [PMID: 32437460 PMCID: PMC7241774 DOI: 10.1371/journal.pone.0233386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/03/2020] [Indexed: 12/30/2022] Open
Abstract
Salt is an essential nutrient; however, excessive salt intake is a prominent public health concern worldwide. Various physiological functions are associated with circadian rhythms, and disruption of circadian rhythms is a prominent risk factor for cardiovascular diseases, cancer, and immune disease. Certain nutrients are vital regulators of peripheral circadian clocks. However, the role of a high-fat and high-salt (HFS) diet in the regulation of circadian gene expression is unclear. This study aimed to investigate the effect of an HFS diet on rhythms of locomotor activity, caecum glucocorticoid secretion, and clock gene expression in mice. Mice administered an HFS diet displayed reduced locomotor activity under normal light/dark and constant dark conditions in comparison with those administered a normal diet. The diurnal rhythm of caecum glucocorticoid secretion and the expression levels of glucocorticoid-related genes and clock genes in the adrenal gland were disrupted with an HFS diet. These results suggest that an HFS diet alters locomotor activity, disrupts circadian rhythms of glucocorticoid secretion, and downregulates peripheral adrenal gland circadian clock genes.
Collapse
|
8
|
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 2020; 15:367-385. [PMID: 31015582 DOI: 10.1038/s41581-019-0145-4] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive adiposity raises blood pressure and accounts for 65-75% of primary hypertension, which is a major driver of cardiovascular and kidney diseases. In obesity, abnormal kidney function and associated increases in tubular sodium reabsorption initiate hypertension, which is often mild before the development of target organ injury. Factors that contribute to increased sodium reabsorption in obesity include kidney compression by visceral, perirenal and renal sinus fat; increased renal sympathetic nerve activity (RSNA); increased levels of anti-natriuretic hormones, such as angiotensin II and aldosterone; and adipokines, particularly leptin. The renal and neurohormonal pathways of obesity and hypertension are intertwined. For example, leptin increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway, and kidney compression and RSNA contribute to renin-angiotensin-aldosterone system activation. Glucocorticoids and/or oxidative stress may also contribute to mineralocorticoid receptor activation in obesity. Prolonged obesity and progressive renal injury often lead to the development of treatment-resistant hypertension. Patient management therefore often requires multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes and inflammation. If more effective strategies for the prevention and control of obesity are not developed, cardiorenal, metabolic and other obesity-associated diseases could overwhelm health-care systems in the future.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|