1
|
Tuieng RJ, Disney C, Cartmell SH, Kirwan CC, Eckersley A, Newham E, Gupta HS, Hoyland JA, Lee PD, Sherratt MJ. Impact of therapeutic X-ray exposure on collagen I and associated proteins. Acta Biomater 2025; 197:294-311. [PMID: 40058620 DOI: 10.1016/j.actbio.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
Biological tissues are exposed to X-rays in medical applications (such as diagnosis and radiotherapy) and in research studies (for example microcomputed X-ray tomography: microCT). Radiotherapy may deliver doses up to 50Gy to both tumour and healthy tissues, resulting in undesirable clinical side effects which can compromise quality of life. Whilst cellular responses to X-rays are relatively well-characterised, X-ray-induced structural damage to the extracellular matrix (ECM) is poorly understood. This study tests the hypotheses that ECM proteins and ECM-rich tissues (purified collagen I and rat tail tendons respectively) are structurally compromised by exposure to X-ray doses used in breast radiotherapy. Protein gel electrophoresis demonstrated that breast radiotherapy equivalent doses can induce fragmentation of the constituent α chains in solubilised purified collagen I. However, assembly into fibrils, either in vitro or in vivo, prevented X-ray-induced fragmentation but not structural changes (as characterised by LC-MS/MS and peptide location fingerprinting: PLF). In subsequent experiments exposure to higher (synchrotron) X-ray doses induced substantial fragmentation of solubilised and fibrillar (chicken tendon) collagen I. LC-MS/MS and PLF analysis of synchrotron-irradiated tendon identified structure-associated changes in collagens I, VI, XII, proteoglycans including aggrecan, decorin, and fibromodulin, and the elastic fibre component fibulin-1. Thus, exposure to radiotherapy X-rays can affect the structure of key tissue ECM components, although additional studies will be required to understand dose dependent effects. STATEMENT OF SIGNIFICANCE: Biological systems are routinely exposed to X-rays during medical treatments (radiotherapy) and in imaging studies (microCT). Whilst the impact of ionising radiation on cells is well characterised, the interactions between X-rays and the extracellular matrix are not. Here, we show that relatively low dose breast radiotherapy X-rays are sufficient to affect the structure of collagen I in both its solubilised and fibrillar forms. Although the impact of intermediate X-ray doses on extracellular proteins was not determined, the high dose exposures which are achievable using a synchrotron source had an even greater effect on the structure of collagen I molecules and, in tendon, on the structures of many accessory extracellular matrix proteins, The unwanted side effects of radiotherapy may therefore be due to not only cellular damage but also damage to the surrounding matrix.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK; Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415
| | - Catherine Disney
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Sarah H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, The University of Manchester, M13 9PL, Manchester, UK
| | - Cliona C Kirwan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oglesby Cancer Research Building, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4BX, UK; The Nightingale Breast Cancer Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, M23 9LT, Manchester, UK
| | - Alexander Eckersley
- Manchester Cell-Matrix Centre, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Elis Newham
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK; Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Himadri S Gupta
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK.
| |
Collapse
|
2
|
He J, Wang X, Wang Z, Xie R, Zhang Z, Liu TM, Cai Y, Chen L. Interpretable deep learning method to predict wound healing progress based on collagen fibers in wound tissue. Comput Biol Med 2025; 191:110110. [PMID: 40198981 DOI: 10.1016/j.compbiomed.2025.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND AND OBJECTIVE The dynamic evolution of collagen fibers during wound healing is crucial for assessing repair progression, guiding clinical treatment, and drug screening. Current quantitative methods analyzing collagen spatial patterns (density, orientation variance) lack established criteria to both stratify distinct healing periods and detect delayed healing conditions, necessitating the establishment of a novel classification method for wound healing status based on collagen fibers. METHODS We propose a deep learning method to classify various time points of wound healing and delayed healing using histological images of skin tissue. We fine-tune a pre-trained VGG16 model and enhance it with an interpretable framework that combines LayerCAM and Guided Backpropagation, leveraging model gradients and features to visually identify the tissue regions driving model predictions. RESULTS Our model achieved 85 % accuracy in a five-class classification task (normal skin, wound skin at 0, 3, 7, and 10 days) and 78 % in a three-class task (normal skin, wound skin at 0 days, diabetic wound skin at 10 days). Our interpretable framework accurately localizes collagen fibers without pixel-level annotations, demonstrating that our model classifies healing periods and delayed healing based on collagen regions in histological images rather than other less relevant tissue structures. CONCLUSIONS Our deep learning method leverages collagen fiber features to predict various time points of wound healing and delayed healing with high accuracy and visual interpretability, enhancing doctors' trust in model decisions. This could lead to more precise and effective wound treatment practices.
Collapse
Affiliation(s)
- Juan He
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, 999078, Macau; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoyan Wang
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Zhengshan Wang
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, 999078, Macau
| | - Ruitao Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiming Zhang
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Yunpeng Cai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Long Chen
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, 999078, Macau
| |
Collapse
|
3
|
Liu Y, Zhu M, Duan R, Zhang J. Characterization and Biological Evaluation of Composite Nanofibrous Membranes Prepared from Hemp Salmon ( Oncorhynchus keta) Skin Collagen. Cells 2025; 14:537. [PMID: 40214490 PMCID: PMC11989064 DOI: 10.3390/cells14070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Aquatic collagen, a natural macromolecule protein with excellent biocompatibility, has attracted attention in the field of medical materials. Compared to mammalian collagen, aquatic collagen offers unique advantages, including the absence of zoonotic disease risks and religious concerns. In this study, salmon skin collagen nanofiber membrane (GS) was prepared by electrostatic spinning. Then, skin collagen was combined with silk sericin (SS) and sodium hyaluronate (HA) to fabricate composite collagen nanofiber membrane (GF) using electrostatic spinning technology. GF membranes were further cross-linked (GFL) for use in a mouse wound healing model. The physicochemical properties and biocompatibility of GS, GF, and GFL were evaluated. FTIR analysis revealed that GFL exhibited a more stable secondary structure compared to GS and GF. DSC and TGA results indicated that GFL had the highest thermal stability, followed by GF. Cytotoxicity tests confirmed that GS, GF, and GFL were non-cytotoxic, with GF showing the highest cell viability rate of 175.23 ± 1.77%. In the wound healing model, GFL group achieved nearly complete healing by day 14 (98 ± 0.1%), compared to 76.04 ± 0.01% in the blank group. Measurement of TGF-β1 and VEGF levels in the healing tissue on day 14 indicated that the GFL group had progressed to the late stage of healing, whereas the blank group remained in the early stage. These results suggest that GFL holds significant potential as a medical biomaterial for wound healing applications.
Collapse
Affiliation(s)
- Yu Liu
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Mochi Zhu
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Rui Duan
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Junjie Zhang
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Liu X, Fang C, Yu H, Huang L, Feng J, Luo S, Song L, Wu M, Tan Y, Dong J, Gong T, Xiao P. Chondroitin Sulfate-Based Imatinib Nanoparticles Targeting Activated Hepatic Stellate Cells Against Hepatic Fibrosis. Pharmaceutics 2025; 17:351. [PMID: 40143016 PMCID: PMC11944399 DOI: 10.3390/pharmaceutics17030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Activated hepatic stellate cells (aHSCs) play a significant role during the onset of hepatic fibrosis, ultimately leading to excessive deposition of extracellular matrix (ECM) and other typical pathological features, and thus have become a popular target for the treatment of hepatic fibrosis. However, current aHSC-centric therapy strategies achieve unsatisfactory results, mainly due to the lack of approved anti-fibrosis drugs and sufficiently efficient aHSC-targeted delivery systems. In this study, our aim was to develop an Imatinib-loaded nanoparticle delivery system based on a chondroitin sulfate derivative to enhance aHSC targeting efficiency, improve the therapeutic effect for hepatic fibrosis, and investigate the underlying mechanism. Methods: The carboxyl group of chondroitin sulfate and the amino group of 1-hexadecylamine were linked by an amide bond in this study to produce the amphiphilic carrier CS-HDA. Then, the Imatinib-loaded nanoparticles (IM-CS NPs) were designed to efficiently target aHSCs through CD44-mediated endocytosis and effectively inhibit HSC overactivation via PDGF and TGF-β signaling pathways. Results: Both in vitro cellular uptake experiments and in vivo distribution experiments demonstrated that CS-HDA-modified nanoparticles (IM-CS NPs) exhibited a better targeting ability for aHSCs, which were subsequently utilized to treat carbon tetrachloride-induced hepatic fibrosis mouse models. Finally, significant fibrosis resolution was observed in the carbon tetrachloride-induced hepatic fibrosis mouse models after tail vein injection of the IM-CS NPs, along with their outstanding biocompatibility and biological safety. Conclusions: IM-loaded NPs based on an amphiphilic CS derivative have remarkable antifibrotic effects, providing a promising avenue for the clinical treatment of advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Xunzhi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Changlong Fang
- Department of Pharmacy, Chongqing University Fuling Hospital, Chongqing University, Chongqing 408099, China;
| | - Hongling Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Lu Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Jiaxing Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Shiqin Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Li Song
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China;
| | - Mengying Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Jianxia Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (X.L.); (H.Y.); (L.H.); (J.F.); (S.L.); (M.W.); (Y.T.); (T.G.)
| | - Peihong Xiao
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China;
| |
Collapse
|
5
|
Douglas A, Chen Y, Elloso M, Levschuk A, Jeschke MG. Bioprinting-By-Design of Hydrogel-Based Biomaterials for In Situ Skin Tissue Engineering. Gels 2025; 11:110. [PMID: 39996653 PMCID: PMC11854875 DOI: 10.3390/gels11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Burns are one of the most common trauma injuries worldwide and have detrimental effects on the entire body. However, the current standard of care is autologous split thickness skin grafts (STSGs), which induces additional injuries to the patient. Therefore, the development of alternative treatments to replace traditional STSGs is critical, and bioprinting could be the future of burn care. Specifically, in situ bioprinting offers several advantages in clinical applications compared to conventional in vitro bioprinting, primarily due to its ability to deposit bioink directly onto the wound. This review provides an in-depth discussion of the aspects involved in in situ bioprinting for skin regeneration, including crosslinking mechanisms, properties of natural and synthetic hydrogel-based bioinks, various in situ bioprinting methods, and the clinical translation of in situ bioprinting. The current limitations of in situ bioprinting is the ideal combination of bioink and printing mechanism to allow multi-material dispensing or to produce well-orchestrated constructs in a timely manner in clinical settings. However, extensive ongoing research is focused on addressing these challenges, and they do not diminish the significant potential of in situ bioprinting for skin regeneration.
Collapse
Affiliation(s)
- Alisa Douglas
- Department of School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- David Braley Research Institute, Hamilton, ON L8L 2X2, Canada;
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
| | - Yufei Chen
- David Braley Research Institute, Hamilton, ON L8L 2X2, Canada;
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Margarita Elloso
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adam Levschuk
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - Marc G. Jeschke
- Department of School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- David Braley Research Institute, Hamilton, ON L8L 2X2, Canada;
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025; 57:131-150. [PMID: 39741186 PMCID: PMC11799530 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Shi H, Jiang M, Zhang X, Xia G, Shen X. Characteristics and food applications of aquatic collagen and its derivatives: A review. Food Res Int 2025; 202:115531. [PMID: 39967124 DOI: 10.1016/j.foodres.2024.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Collagen and its hydrolysates have high bioavailability, good biocompatibility, biodegradability, and biological activity which has meant that they have been widely used in food, medicine, cosmetics, and other industries. Although the properties and applications of collagen have been reviewed recently, few studies have focused on aquatic collagen. To provide readers with a deeper understanding of aquatic collagen, this review addresses the structure and properties of aquatic collagen and compares them with mammalian collagen, as well as the differences between collagen, gelatin, and collagen peptides. In contrast to mammalian collagen, aquatic collagen prevents zoonotic diseases, reduces environmental pollution, improves the utilization of aquatic resources, and facilitates the extraction and separation of active oligopeptides. Additionally, methods for screening functional peptides using in vitro digestion have been introduced. Finally, the review focuses on the applications of collagen and its derivatives in food preservation (packaging films, coatings, additives, and antifreeze peptides), drug delivery (microcapsules, emulsions, nanoparticles, and hydrogels), nutrition, and healthcare.
Collapse
Affiliation(s)
- Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengqi Jiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China.
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
8
|
Boira C, Chapuis E, Lapierre L, Tiguemounine J, Scandolera A, Reynaud R. Silybum marianum Extract: A Highly Effective Natural Alternative to Retinoids to Prevent Skin Aging Without Side Effects. J Cosmet Dermatol 2025; 24:e16613. [PMID: 39692756 PMCID: PMC11743331 DOI: 10.1111/jocd.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Vitamin A, or retinol, is one of the most effective antiaging molecules, but it presents issues with photo-sensitivity and irritation. Alternatives are emerging, but have so far been less effective. OBJECTIVE Here, we present a Silibum marianum extract (SME) as a retinol-like ingredient providing both safety and efficacy. SME was compared to the reference compound, retinol, and to the main alternative, bakuchiol. METHODS Skin explants from a 58-year-old donor were treated with pure retinol (0.1%), bakuchiol (0.2%), or SME (0.8%). After 5 days, collagen and hyaluronic acid levels were analyzed. A placebo-controlled study involving 57 volunteers was also conducted, with products applied twice daily for 56 days. Results were measured by AEVA-HE and VISA. RESULTS Levels of collagen III were significantly increased by SME, by 23% and 16% compared to bakuchiol and retinol respectively. Compared to bakuchiol, SME treatment increased hyaluronic acid production by 36%. In clinical tests, SME had a significantly stronger anti-wrinkle effect than bakuchiol-reducing the number of wrinkles on the forehead by 21% and their circumference by 17%-producing effects similar to retinol, and better than bakuchiol. In the self-assessment, 43% of volunteers reported discomfort while using retinol compared to 0% for the SME formulation. By enhancing levels of collagen III-the youth collagen-and hyaluronic acid in the skin, SME paves the way for the maturation of collagen I fibrils and skin plumping. CONCLUSION With its stronger efficacy compared to bakuchiol and enhanced safety profile compared to retinol, SME may be the next generation of natural alternatives to retinoids.
Collapse
Affiliation(s)
- Cloe Boira
- Science and TechnologyGivaudan France SASPomacleFrance
| | | | | | | | | | | |
Collapse
|
9
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Fan WM, Yang YQ, Zhang LW, Mei XH, Sun K, Wu DQ, Yang Y, Duan CF, Ye J, Chen RJ. The therapeutic potential of PX-478 in a murine model of pelvic organ prolapse. J OBSTET GYNAECOL 2024; 44:2415669. [PMID: 39494634 DOI: 10.1080/01443615.2024.2415669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Pelvic organ prolapse (POP), characterised by the downward displacement of pelvic organs, is a prevalent disorder that affects adult women. This study explored the therapeutic potential of PX-478, a selective hypoxia-inducible factor-1α (HIF-1α) inhibitor, in a murine POP model. METHODS A murine POP model was established through ovariectomy, mimicking oestrogen deprivation. Fifteen C57BL/6J mice were randomly assigned to control, POP, and PX-478 groups. PX-478, targeting HIF-1α, was administered intravaginally. The analysis of fibroblasts, macrophage and inflammation was performed through Masson staining, immunofluorescence, and ELISA. Collagen distribution was assessed using Sirius Red staining. Expression levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP-1) were determined through immunohistochemistry and western blot. Fibroblast proliferation and apoptosis were evaluated by CCK-8 assay and flow cytometry. RESULTS PX-478 treatment significantly reduced vaginal length, indicating a therapeutic effect on POP severity. Masson staining revealed reduced fibrotic changes and collagen disruption in PX-478-treated mice. Immunofluorescence showed increased fibroblast markers (Vimentin, α-SMA) and collagen fibres by PX-478. Sirius Red staining indicated PX-478 mitigated damage to Type I and Type III collagen fibres. PX-478 significantly reduced MMP-2 and MMP-9 expression while increased TIMP-1. In macrophages, PX-478 decreased M1 and M2 markers (CD80, CD206) and IL-18 secretion. Fibroblasts exhibited increased proliferation, reduced apoptosis, and altered MMP/TIMP expression under PX-478 influence. CONCLUSION PX-478 demonstrates a therapeutic potential in the mice POP model. It reduces vaginal length, attenuates fibrosis, and modulates collagen synthesis. Its immunomodulation is evident through reduced M1 and M2 macrophages and suppressed IL-18 secretion.
Collapse
Affiliation(s)
- Wei-Min Fan
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Qi Yang
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Li-Wen Zhang
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Hui Mei
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ke Sun
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Duan-Qing Wu
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying Yang
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chun-Fang Duan
- Department of Gynecology, Longling People's Hospital, YunNan, LongLing County, China
| | - Jun Ye
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ru-Jun Chen
- Department of Gynecology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Saputra AND, Rizal DM, Septiyorini N, Rahman MN. Type III Collagen RNA Level Expression in Pelvic Organ Prolapse: A Systematic Review and Meta-Analysis. Int Urogynecol J 2024; 35:2097-2106. [PMID: 39352428 DOI: 10.1007/s00192-024-05953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION AND HYPOTHESIS Changes in the expression of type III collagen have been linked to women's predisposition to pelvic organ prolapse (POP); however, the findings of prior studies have been conflicting. This study was aimed at investigating whether changes in the type III collagen gene expression levels occur in POP development. METHODS A systematic review and meta-analysis were conducted on research articles that evaluated type III collagen gene expression levels in patients with POP compared with those without the condition. The articles, published between January 2000 and February 2024, were obtained from PubMed, ScienceDirect, Semantic Scholar, and EBSCO databases. Data were analyzed using fixed-effect models, and the pooled standardized mean difference (SMD) was calculated. Cochrane's Review Manager 5.4 was used for the analysis. The aggregated SMD with 95% confidence interval (CI) regarding type III collagen gene expression levels relative to POP development was the main outcome measure. Results with p < 0.05 were considered statistically significant. RESULTS Six studies were included in our analysis, comprising 229 POP cases and 139 non-POP cases. Our meta-analysis indicated that patients with POP had higher type III collagen gene expression levels than those without POP (SMD = 0.32; 95% CI: 0.07 to 0.56; p = 0.01). CONCLUSION The results of this study provide evidence that a higher type III collagen gene expression levels is significantly associated with POP.
Collapse
Affiliation(s)
- Akbar Novan Dwi Saputra
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dicky Moch Rizal
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Nandia Septiyorini
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Nurhadi Rahman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
14
|
Szalus K, Trzeciak M. The Role of Collagens in Atopic Dermatitis. Int J Mol Sci 2024; 25:7647. [PMID: 39062889 PMCID: PMC11276735 DOI: 10.3390/ijms25147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting both children and adults. The clinical picture of AD manifests in typical skin lesions, such as localized eczema and dry skin, with dominant, persistent itching that leads to sleep disturbances. The pathophysiology of AD has been extensively investigated with respect to epigenetic and genetic factors, skin barrier defects, as well as immunological and microbial disorders. However, to date, the involvement of extracellular matrix (ECM) elements has received limited attention. Collagen, a major component of the ECM, may serve as a therapeutic target for the future treatment of AD. This paper summarizes the role of collagens, which are the most abundant components of the extracellular matrix in AD.
Collapse
Affiliation(s)
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|
15
|
Li J, Chen C, Zeng Y, Lu J, Xiao L. Hyaluronidase inhibits TGF-β-mediated rat periodontal ligament fibroblast expression of collagen and myofibroblast markers: An in vitro exploration of periodontal tissue remodeling. Arch Oral Biol 2024; 163:105980. [PMID: 38692246 DOI: 10.1016/j.archoralbio.2024.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-β, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-β induction. CONCLUSIONS Treatment of rPDLCs with HYAL can inhibit TGF-β-induced collagen matrix formation and myofibroblast transformation.
Collapse
Affiliation(s)
- Junlin Li
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China; Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Chen Chen
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Metabolic Osteopathy, Changsha, Hunan, China
| | - Yunting Zeng
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Lu
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Metabolic Osteopathy, Changsha, Hunan, China
| | - Liwei Xiao
- Department of Orthodontics, Medical Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Chen R, Zou L. Combined analysis of single-cell sequencing and bulk transcriptome sequencing reveals new mechanisms for non-healing diabetic foot ulcers. PLoS One 2024; 19:e0306248. [PMID: 38950058 PMCID: PMC11216623 DOI: 10.1371/journal.pone.0306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Bhuket PRN, Li Y, Yu SM. From Collagen Mimetics to Collagen Hybridization and Back. Acc Chem Res 2024; 57:1649-1657. [PMID: 38795029 PMCID: PMC11472642 DOI: 10.1021/acs.accounts.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Facilitated by the unique triple-helical protein structure, fibrous collagens, the principal proteins in animals, demonstrate a dual function of serving as building blocks for tissue scaffolds and as a bioactive material capable of swift renewal in response to environmental changes. While studies of triple-helical collagen mimetic peptides (CMPs) have been instrumental in understanding the molecular forces responsible for the folding and assembly of triple helices, as well as identifying bioactive regions of fibrous collagen molecules, single-strand CMPs that can specifically target and hybridize to denatured collagens (i.e., collagen hybridizing peptides, CHPs) have proven useful in identifying the remodeling activity of collagen-rich tissues related to development, homeostasis, and pathology. Efforts to improve the utility of CHPs have resulted in the development of new skeletal structures, such as dimeric and cyclic CHPs, as well as the incorporation of artificial amino acids, including fluorinated proline and N-substituted glycines (peptoid residues). In particular, dimeric CHPs were used to capture collagen fragments from biological fluid for biomarker study, and the introduction of peptoid-based collagen mimetics has sparked renewed interest in peptidomimetic research because peptoids enable a stable triple-helical structure and the presentation of an extensive array of side chain structures offering a versatile platform for the development of new collagen mimetics. This Account will cover the evolution of our research from CMPs as biomaterials to ongoing efforts in developing triple-helical peptides with practical theranostic potential in targeting denatured and damaged collagens. Our early efforts in functionalizing natural collagen scaffolds via noncovalent modifications led to the discovery of an entirely new use of CMPs. This discovery resulted in the development of CHPs that are now used by many different laboratories for the investigation of pathologies associated with changes in the structures of extracellular matrices including fibrosis, cancer, and mechanical damage to collagen-rich, load-bearing tissues. Here, we delve into the essential design features of CHPs contributing to their collagen binding properties and practical usage and explore the necessity for further mechanistic understanding of not only the binding processes (e.g., binding domain and stoichiometry of the hybridized complex) but also the biology of collagen degradation, from proteolytic digestion of fibrils to cellular processing of collagen fragments. We also discuss the strengths and weaknesses of peptoid-based triple-helical peptides as applied to collagen hybridization touching on thermodynamic and kinetic aspects of triple-helical folding. Finally, we highlight current limitations and future directions in the use of peptoid building blocks to develop bioactive collagen mimetics as new functional biomaterials.
Collapse
Affiliation(s)
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - S. Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Zhang J, Lin D, Wu Y, Chen L, Ma Z, Wu M, Liu X, Zhang Y, Cao H. Blood-supplementing effect of low molecular weight peptides of E-Jiao on chemotherapy-induced myelosuppression: evaluation of pharmacological activity and identification of bioactive peptides released in vivo. Front Pharmacol 2024; 15:1366407. [PMID: 38904003 PMCID: PMC11188354 DOI: 10.3389/fphar.2024.1366407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Equus asinus L. [Equidae; Asini Corri Colla] (donkey-hide gelatin, E-Jiao) is a traditional Chinese medicine renowned for its exceptional blood-supplementing effect. However, the specific components that contribute to its efficacy remain elusive. This study aimed to demonstrate that peptides are responsible for E-Jiao's blood-supplementing effect and to explore the specific peptides contributing to its efficacy. Methods: The low molecular weight peptides of E-Jiao (LMEJ) were obtained using an in vitro digestion method. LMEJ and peptides in the rat bloodstream were characterized by peptidomics analysis. The blood-supplementing effect of LMEJ was assessed using blood-deficient zebrafish and mouse models. The effect of the peptides detected in rat blood was evaluated using the same zebrafish model, and network pharmacology analysis was performed to investigate the underlying mechanisms. Results: A total of 660 unique peptides were identified within LMEJ. Both E-Jiao and LMEJ significantly alleviated myelosuppression in mice but only LMEJ attenuated myelosuppression in zebrafish. After the administration of E-Jiao to rats, 67 E-Jiao-derived peptides were detected in the bloodstream, 41 of which were identical to those identified in LMEJ. Out of these 41 peptides, five were synthesized. Subsequent verification of their effects revealed that two of them were able to alleviate myelosuppression in zebrafish. Network pharmacology study suggested that E-Jiao may exert a blood-supplementing effect by regulating signaling pathways such as JAK-STAT, IL-17 and others. These results indicated that peptides are at least partially responsible for E-Jiao's efficacy. Conclusion: This study provides a crucial foundation for further exploration of the bioactive components of E-Jiao.
Collapse
Affiliation(s)
- Jinju Zhang
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, China
| | - Danlin Lin
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, China
| | - Yuting Wu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, China
| | - Lixia Chen
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, China
| | - Zhiguo Ma
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, China
| | - Menghua Wu
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, China
- Guangdong Key Laboratory of Traditional Chinese Medicine Information Technology, Guangzhou, China
| | - Xindan Liu
- School of Medicine, Foshan University, Foshan, China
| | - Ying Zhang
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, China
- Guangdong Key Laboratory of Traditional Chinese Medicine Information Technology, Guangzhou, China
| | - Hui Cao
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou, China
- Guangdong Key Laboratory of Traditional Chinese Medicine Information Technology, Guangzhou, China
| |
Collapse
|
19
|
Wang ZN, Ma JC, Xi MF, Yin D, Jiang LF, Qi J. Effects of Nanoparticle-Mediated Dihydromyricetin to Diabetic Wounds: An In Vivo Study. J Burn Care Res 2024; 45:644-654. [PMID: 38236154 DOI: 10.1093/jbcr/irae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 01/19/2024]
Abstract
Diabetic wound is one of the serious complications of diabetes, and the wound is persistent and easily recurring, which seriously endangers the health and life of patients. How to effectively promote the healing of diabetic wounds has been a hot spot and difficult area of clinical research. Some previous studies have shown that dihydromyricetin has the effects of regulating blood glucose, controlling the severity, and inhibiting scarring. In the present study, we used polylactic-co-glycolic acid nanoparticles as a carrier to load dihydromyricetin to make drug-loaded nanoparticles and applied them dropwise (200 µL) to diabetic mice wounds by topical application to observe the healing and scar formation of diabetic wounds. We found that the healing rate of the diabetic mice was faster and the scar formation was less obvious. In addition, the elevated blood glucose level and weight loss of the mice in the treatment group were also reduced. Therefore, nanoparticle-mediated dihydromyricetin may be an effective treatment for diabetic wounds.
Collapse
Affiliation(s)
- Zhao-Nan Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
- Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Jiu-Cheng Ma
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Ming-Fan Xi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Dong Yin
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Li-Fan Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong, Jiangsu 226000, P.R. China
| | - Jun Qi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
20
|
Zhao Q, Lu B, Qian S, Mao J, Zhang L, Zhang Y, Mao X, Cui W, Sun X. Biogenerated Oxygen-Related Environmental Stressed Apoptotic Vesicle Targets Endothelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306555. [PMID: 38477548 PMCID: PMC11132028 DOI: 10.1002/advs.202306555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Indexed: 03/14/2024]
Abstract
The dynamic balance between hypoxia and oxidative stress constitutes the oxygen-related microenvironment in injured tissues. Due to variability, oxygen homeostasis is usually not a therapeutic target for injured tissues. It is found that when administered intravenously, mesenchymal stem cells (MSCs) and in vitro induced apoptotic vesicles (ApoVs) exhibit similar apoptotic markers in the wound microenvironment where hypoxia and oxidative stress co-existed, but MSCs exhibited better effects in promoting angiogenesis and wound healing. The derivation pathway of ApoVs by inducing hypoxia or oxidative stress in MSCs to simulate oxygen homeostasis in injured tissues is improved. Two types of oxygen-related environmental stressed ApoVs are identified that directly target endothelial cells (ECs) for the accurate regulation of vascularization. Compared to normoxic and hypoxic ones, oxidatively stressed ApoVs (Oxi-ApoVs) showed the strongest tube formation capacity. Different oxygen-stressed ApoVs deliver similar miRNAs, which leads to the broad upregulation of EC phosphokinase activity. Finally, local delivery of Oxi-ApoVs-loaded hydrogel microspheres promotes wound healing. Oxi-ApoV-loaded microspheres achieve controlled ApoV release, targeting ECs by reducing the consumption of inflammatory cells and adapting to the proliferative phase of wound healing. Thus, the biogenerated apoptotic vesicles responding to oxygen-related environmental stress can target ECs to promote vascularization.
Collapse
Affiliation(s)
- Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Shutong Qian
- Department of Plastic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| |
Collapse
|
21
|
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy. J Transl Med 2024; 22:382. [PMID: 38659022 PMCID: PMC11040975 DOI: 10.1186/s12967-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Collapse
Affiliation(s)
- Rowie Borst
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
22
|
Wang Z, Lin W, Luo C, Xue H, Wang T, Hu J, Huang Z, Fu D. Early diagnosis of thyroid-associated ophthalmopathy using label-free Raman spectroscopy and multivariate analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123905. [PMID: 38266604 DOI: 10.1016/j.saa.2024.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most common orbital disease in adults, with complex clinical manifestations and significant impacts on the life quality of patients. The current diagnosis of TAO lacks reliable biomarkers for early and non-invasive screening and detection, easily leading to poor prognosis. Therefore, it is essential to explore new methods for accurately predicting TAO development in its early stage. In this study, Raman spectroscopy, with non-destructive, label-free, and high-sensitivity characteristics, was used to analyze the differences in biochemical components of orbital adipocyte and tear samples between TAO and control groups. Furthermore, a multivariate analysis method (i.e., Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA)) was applied for data processing and analysis. Compared with controls, PCA-LDA yielded TAO diagnostic accuracies of 72.7% and 75.0% using orbital adipocytes and tears, respectively. Our proof-of-concept results suggest that Raman spectroscopy holds potential for exploring the underlying pathogenesis of TAO, and its potential application in early screening of other thyroid-associated diseases can be further expanded.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Weiming Lin
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Chenyu Luo
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Honghua Xue
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Tingyin Wang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zufang Huang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Desheng Fu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
23
|
Wu Z, Ding Q, Yue M, Zhang X, Han D, Zhang L. Caspase-3/GSDME-mediated pyroptosis leads to osteogenic dysfunction of osteoblast-like cells. Oral Dis 2024; 30:1392-1402. [PMID: 37004144 DOI: 10.1111/odi.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Cell pyroptosis is implicated in progressive bone loss in dental inflammatory diseases. We induced caspase-3/Gasdermin E (GSDME)-mediated pyroptosis in osteoblast-like cells and evaluated the effects on osteogenesis. MATERIALS AND METHODS Osteoblast-like cells were treated with various concentrations of sodium butyrate (NaB) to identify the most appropriate for inducing caspase-3/GSDME-mediated pyroptosis. Cells were divided into control, NaB and NaB+Ac-DEVD-CHO (specific caspase-3 inhibitor) groups. Pyroptosis level was evaluated by immunofluorescence, morphological observation, flow cytometry, lactate dehydrogenase (LDH) release assays, mRNA and protein levels of pyroptosis-related markers. Then, inflammation level, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) expression and osteogenic function were detected. RESULTS Treatment with 10 mM NaB increased caspase-3 expression, GSDME cleavage, LDH release and the number of pyroptotic cells, with morphologic changes, indicating GSDME-mediated pyroptosis induction. The pyroptosis-related changes were abolished by caspase-3 inhibition. Caspase-3/GSDME-mediated pyroptosis triggered the expression of inflammatory cytokines and RANKL, downregulated alkaline phosphatase (ALP) activity, mineralisation level, mRNA and protein levels of multiple osteogenic markers. These effects were partly reversed by Ac-DEVD-CHO. CONCLUSION Caspase-3/GSDME-mediated pyroptosis induced by NaB activated the inflammatory response, reduced osteogenic differentiation and disturbed OPG/RANKL axis, leading to osteogenic dysfunction in osteoblast-like cells.
Collapse
Affiliation(s)
- Zhixiao Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
24
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
25
|
Ham SY, Pyo MJ, Kang M, Kim YS, Lee DH, Chung JH, Lee ST. HSP47 Increases the Expression of Type I Collagen in Fibroblasts through IRE1α Activation, XBP1 Splicing, and Nuclear Translocation of β-Catenin. Cells 2024; 13:527. [PMID: 38534372 PMCID: PMC10969015 DOI: 10.3390/cells13060527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Heat shock protein 47 (HSP47), also known as SERPINH1, functions as a collagen-specific molecular chaperone protein essential for the formation and stabilization of the collagen triple helix. Here, we delved into the regulatory pathways governed by HSP47, shedding light on collagen homeostasis. Our investigation revealed a significant reduction in HSP47 mRNA levels in the skin tissue of older mice as compared to their younger counterparts. The augmented expression of HSP47 employing lentivirus infection in fibroblasts resulted in an increased secretion of type I collagen. Intriguingly, the elevated expression of HSP47 in fibroblasts correlated with increased protein and mRNA levels of type I collagen. The exposure of fibroblasts to IRE1α RNase inhibitors resulted in the reduced manifestation of HSP47-induced type I collagen secretion and expression. Notably, HSP47-overexpressing fibroblasts exhibited increased XBP1 mRNA splicing. The overexpression of HSP47 or spliced XBP1 facilitated the nuclear translocation of β-catenin and transactivated a reporter harboring TCF binding sites on the promoter. Furthermore, the overexpression of HSP47 or spliced XBP1 or the augmentation of nuclear β-catenin through Wnt3a induced the expression of type I collagen. Our findings substantiate that HSP47 enhances type I collagen expression and secretion in fibroblasts by orchestrating a mechanism that involves an increase in nuclear β-catenin through IRE1α activation and XBP1 splicing. This study therefore presents potential avenues for an anti-skin-aging strategy targeting HSP47-mediated processes.
Collapse
Affiliation(s)
- So Young Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (S.Y.H.); (M.J.P.)
| | - Min Ju Pyo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (S.Y.H.); (M.J.P.)
| | - Moonkyung Kang
- R&D Center, artiCure Inc., Daejeon 34134, Republic of Korea
| | - Yeon-Soo Kim
- R&D Center, artiCure Inc., Daejeon 34134, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (S.Y.H.); (M.J.P.)
| |
Collapse
|
26
|
Wang R, Cheng L, He L, Du C, Wang H, Peng B, Yu X, Liu W, Luo W, Ran H, Yang L. Nitric oxide nano-reactor DNMF/PLGA enables tumor vascular microenvironment and chemo-hyperthermia synergetic therapy. J Nanobiotechnology 2024; 22:110. [PMID: 38481281 PMCID: PMC10938667 DOI: 10.1186/s12951-024-02366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.
Collapse
Affiliation(s)
- Ruoyao Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Long Cheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Lingyun He
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chier Du
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haiyang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Bohao Peng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaoqing Yu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Weiwei Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wenpei Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Lu Yang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
27
|
Jin X, Xu H, Hu Q, Yin Y, Qin M, Xia Z. Early growth response 2, a novel target of pelvic organ prolapse, is highly expressed in anterior vaginal wall tissues with pelvic organ prolapse. Histochem Cell Biol 2024; 161:195-205. [PMID: 37874337 DOI: 10.1007/s00418-023-02240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/25/2023]
Abstract
Pelvic organ prolapse (POP) is a common disorder among women that negatively affects women's quality of life. Early growth response 2 (EGR2) is a transcription factor that regulates cell growth. The present study aimed to explore the role of EGR2 in POP progression and provided a new target for the treatment and prevention of POP. Firstly, we extracted primary vaginal anterior wall fibroblasts from POP tissues and non-POP tissues and then constructed an EGR2-silencing lentivirus for further study. Immunoblotting, qPCR, TUNEL assay, CCK-8 assay, dual luciferase assay, and ELISA assay were carried out. EGR2 expression was much higher in POP tissues than in control tissues, and EGR2 expression positively correlated with cytokine signaling 3 (SOCS3) expression. Knockdown of EGR2 increased cell proliferation, upregulated PCNA expression, and reduced apoptosis in POP fibroblasts. Moreover, we found that the knockdown of EGR2 increased COL1A1, COL3A1, and Elastin expression and decreased MMP2 and MMP9 activities, and knockdown of EGR2 increased TGF-β/Smad pathway activity in POP fibroblasts. Interestingly, the results of dual luciferase assay demonstrated that EGR2 was able to increase SOCS3 transcriptional activity. EGR2 knockdown alleviated the apoptosis of POP fibroblasts by reducing SOCS3 expression and improving the proliferation and collagen synthesis of POP fibroblasts. Overall, our study illustrated that EGR2 was highly expressed in POP tissues, and knockdown of EGR2 alleviated apoptosis and reduced matrix degradation in POP fibroblasts. This study might provide a new insight into the pathogenesis of POP.
Collapse
Affiliation(s)
- Xin Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Qing Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Yitong Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Meiying Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
28
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Md Fadilah NI, Shahabudin NA, Mohd Razif RA, Sanyal A, Ghosh A, Baharin KI, Ahmad H, Maarof M, Motta A, Fauzi MB. Discovery of bioactive peptides as therapeutic agents for skin wound repair. J Tissue Eng 2024; 15:20417314241280359. [PMID: 39398382 PMCID: PMC11468004 DOI: 10.1177/20417314241280359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Shahabudin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Raniya Adiba Mohd Razif
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Arka Sanyal
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | - Anushikha Ghosh
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
31
|
Deng H, Shu X, Wang Y, Zhang J, Yin Y, Wu F, He J. Matrix Stiffness Regulated Endoplasmic Reticulum Stress-mediated Apoptosis of Osteosarcoma Cell through Ras Signal Cascades. Cell Biochem Biophys 2023; 81:839-850. [PMID: 37789235 DOI: 10.1007/s12013-023-01184-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
The modulating effects of matrix stiffness on spreading and apoptosis of tumor cells have been well recognized. Nevertheless, the detail road map leading to the apoptosis and the underlying mechanisms governing the cell apoptosis have remained to be elucidated. To this aim, we provided a tunable elastic hydrogel matrix that promoted cell adhesion by modifying the surface of polyacrylamide with polydopamine, with stiffness value of 1, 10, 30, and 250 kPa, respectively. While the cell spreading increased and the apoptosis decreased with the matrix stiffness, such modulating effect of matrix on cell spreading exhibited different time evolvement behaviors as a function of stiffness, which likely led to surprisingly similar apoptosis rates for the 30 kPa and 250 kPa samples. Matrix stiffness mediated the spreading and apoptosis of MG-63 cells by regulating cell adhesion to matrix and in particular cytoskeletal organization, which was dependent on Ras, Rap1 and PI3K-Akt signaling pathways and finally led to the apoptosis of cancer cells dominated by endoplasmic reticulum stress pathway. Our results provided an insight into the regulation of tumor cell fate by the mechanical clues of ECM, which would have implication for future cancer research and the design of novel anticancer materials.
Collapse
Affiliation(s)
- Huan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yue Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
32
|
Rhode H, Lüse A, Tautkus B, Nabity M, John-Kroegel U, Weigel F, Dost A, Schitke J, Metzing O, Böckhaus J, Rubel D, Kiess W, Gross O. Urinary Protein-Biomarkers Reliably Indicate Very Early Kidney Damage in Children With Alport Syndrome Independently of Albuminuria and Inflammation. Kidney Int Rep 2023; 8:2778-2793. [PMID: 38106579 PMCID: PMC10719601 DOI: 10.1016/j.ekir.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Alport syndrome (AS) is a hereditary type IV collagen disease. It starts shortly after birth, without clinical symptoms, and progresses to end-stage kidney disease early in life. The earlier therapy starts, the more effectively end-stage kidney disease can be delayed. Clearly then, to ensure preemptive therapy, early diagnosis is an essential prerequisite. Methods To provide early diagnosis, we searched for protein biomarkers (BMs) by mass spectrometry in dogs with AS stage 0. At this very early stage, we identified 74 candidate BMs. Of these, using commercial enzyme-linked immunosorbent assays (ELISAs), we evaluated 27 in dogs and 28 in children, 50 with AS and 104 healthy controls. Results Most BMs from blood appeared as fractions of multiple variants of the same protein, as shown by their chromatographic distribution before mass spectrometry. Blood samples showed only minor differences because ELISAs rarely detect disease-specific variants. However, in urine , several proteins, individually or in combination, were promising indicators of very early and preclinical kidney injury. The BMs with the highest sensitivity and specificity were collagen type XIII, hyaluronan binding protein 2 (HABP2), and complement C4 binding protein (C4BP). Conclusion We generated very strong candidate BMs by our approach of first examining preclinical AS in dogs and then validating these BMs in children at early stages of disease. These BMs might serve for screening purposes for AS before the onset of kidney damage and therefore allow preemptive therapy.
Collapse
Affiliation(s)
- Heidrun Rhode
- Institute of Biochemistry I, Jena University Hospital, Jena, Germany
| | - Alexandra Lüse
- Institute of Biochemistry I, Jena University Hospital, Jena, Germany
| | - Bärbel Tautkus
- Institute of Biochemistry I, Jena University Hospital, Jena, Germany
| | - Mary Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
| | | | | | - Axel Dost
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Julia Schitke
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Oliver Metzing
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Jan Böckhaus
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Diana Rubel
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Oliver Gross
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Huang J, Yang R, Jiao J, Li Z, Wang P, Liu Y, Li S, Chen C, Li Z, Qu G, Chen K, Wu X, Chi B, Ren J. A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing. Nat Commun 2023; 14:7856. [PMID: 38030636 PMCID: PMC10687272 DOI: 10.1038/s41467-023-43364-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglutamic acid, glycidyl methacrylate-conjugated γ-polyglutamic acid, and thiolated arginine-glycine-aspartate sequences. Vascular endothelial growth factor 165-overexpressed human umbilical vein endothelial cells are printed using this platform, hence fabricating a living material with high cell viability and precise cell spatial distribution control. This cell-laden hydrogel platform accelerates the diabetic wound healing of rats based on the unabated vascular endothelial growth factor 165 release, which promotes angiogenesis and alleviates damages on vascular endothelial mitochondria, thereby reducing tissue hypoxia, downregulating inflammation, and facilitating extracellular matrix remodeling. Together, this study offers a promising strategy for fabricating tissue-friendly, high-efficient, and accurate 3D printed all-peptide hydrogel platform for cell delivery and self-renewable growth factor therapy.
Collapse
Affiliation(s)
- Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiao Jiao
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
34
|
Li Q, Zhang H. Bioinformatics analysis to identify potential biomarkers for the pulmonary artery hypertension associated with the basement membrane. Open Life Sci 2023; 18:20220730. [PMID: 37772261 PMCID: PMC10523280 DOI: 10.1515/biol-2022-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressing cardiopulmonary disease. It is characterized by increased pulmonary artery pressure and vascular resistance. The most notable histopathological characteristic is vascular remodeling. The changes in the basement membrane (BM) are believed to be related to vascular remodeling. It is crucial to identify potential biomarkers associated with the BM in PAH, to guide its treatment. The microarray datasets GSE117261 and GSE113439 were downloaded from the Gene Expression Omnibus. Two data sets were examined to identify genes associated with the BM by analyzing gene expression changes. Next, we analyzed the relevant genes in the Kyoto Encyclopedia of Genes and Genomes using Gene Ontology and Disease Ontology annotationand conducted pathway enrichment analysis. We conducted a protein-protein interaction network analysis on the genes related to BMs and used the cell cytoHubba plug-in to identify the hub genes. Furthermore, we conducted an immune infiltration analysis and implemented a histogram model. Finally, we predicted and analyzed potential therapeutic drugs for PAH and set up a miRNA network of genetic markers. Six candidate genes related to BMs, namely Integrin Subunit Alpha V, Integrin Subunit Alpha 4, ITGA2, ITGA9, Thrombospondin 1, and Collagen Type IV Alpha 3 Chain, were identified as potential modulators of the immune process in PAH. Furthermore, ginsenoside Rh1 was found to significantly impact drug targeting based on its interactions with the six BM-related genes identified earlier. A novel biomarker related to the BM, which plays a crucial role in the development of PAH, has been identified.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| | - Hu Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| |
Collapse
|
35
|
Yang Y, Li B, Wang M, Pan S, Wang Y, Gu J. Effect of natural polymer materials on skin healing based on internal wound microenvironment: a review. Front Chem 2023; 11:1257915. [PMID: 37731458 PMCID: PMC10507733 DOI: 10.3389/fchem.2023.1257915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
The concept of wound microenvironment has been discussed for a long time. However, the mechanism of the internal microenvironment is relatively little studied. Here, we present a systematic discussion on the mechanism of natural polymer materials such as chitosan, cellulose, collagen and hyaluronic acid through their effects on the internal wound microenvironment and regulation of wound healing, in order to more comprehensively explain the concept of wound microenvironment and provide a reference for further innovative clinical for the preparation and application of wound healing agents.
Collapse
Affiliation(s)
- Ying Yang
- The People’s Hospital of SND, Suzhou, Jiangsu, China
| | - Bingbing Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengxin Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shicong Pan
- Guzhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Wang
- The People’s Hospital of SND, Suzhou, Jiangsu, China
| | - Jinhui Gu
- Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Park HN, Song MJ, Choi YE, Lee DH, Chung JH, Lee ST. LRG1 Promotes ECM Integrity by Activating the TGF-β Signaling Pathway in Fibroblasts. Int J Mol Sci 2023; 24:12445. [PMID: 37569820 PMCID: PMC10418909 DOI: 10.3390/ijms241512445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Leucine-rich alpha-2-glycoprotein 1 (LRG1) mediates skin repair and fibrosis by stimulating the transforming growth factor-beta (TGF-β) signaling pathway. In the present study, we investigated the effect of LRG1 on extracellular matrix (ECM) integrity in fibroblasts, as well as on skin aging. The treatment of dermal fibroblasts with purified recombinant human LRG1 increased type I collagen secretion and decreased matrix metalloproteinase-1 secretion. Additionally, LRG1 promoted SMAD2/SMAD3 phosphorylation in a pattern similar to that of TGF-β1 treatment. An inhibitor of TGF-β receptor 1 abolished LRG1-induced SMAD2 phosphorylation. RNA sequencing identified "extracellular region", "extracellular space", and "extracellular matrix" as the main Gene Ontology terms in the differentially expressed genes of fibroblasts treated with or without LRG1. LRG1 increased TGF-β1 mRNA levels, suggesting that LRG1 partially transactivates the expression of TGF-β1. Furthermore, an increased expression of type I collagen was also observed in fibroblasts grown in three-dimensional cultures on a collagen gel mimicking the dermis. LRG1 mRNA and protein levels were significantly reduced in elderly human skin tissues with weakened ECM integrity compared to in young human skin tissues. Taken together, our results suggest that LRG1 could retard skin aging by activating the TGF-β signaling pathway, increasing ECM deposition while decreasing its degradation.
Collapse
Affiliation(s)
- Han Na Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (H.N.P.); (Y.E.C.)
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (D.H.L.); (J.H.C.)
| | - Young Eun Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (H.N.P.); (Y.E.C.)
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (H.N.P.); (Y.E.C.)
| |
Collapse
|
37
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
38
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
39
|
Lee DH, Bhang SH. Development of Hetero-Cell Type Spheroids Via Core-Shell Strategy for Enhanced Wound Healing Effect of Human Adipose-Derived Stem Cells. Tissue Eng Regen Med 2023; 20:581-591. [PMID: 36708468 PMCID: PMC10313618 DOI: 10.1007/s13770-022-00512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Stem cell-based therapies have been developed to treat various types of wounds. Human adipose-derived stem cells (hADSCs) are used to treat skin wounds owing to their outstanding angiogenic potential. Although recent studies have suggested that stem cell spheroids may help wound healing, their cell viability and retention rate in the wound area require improvement to enhance their therapeutic efficacy. METHODS We developed a core-shell structured spheroid with hADSCs in the core and human dermal fibroblasts (hDFs) in the outer part of the spheroid. The core-shell structure was formed by continuous centrifugation and spheroid incubation. After optimizing the method for inducing uniform-sized core-shell spheroids, cell viability, cell proliferation, migration, and therapeutic efficacy were evaluated and compared to those of conventional spheroids. RESULTS Cell proliferation, migration, and involucrin expression were evaluated in keratinocytes. Tubular assays in human umbilical vein endothelial cells were used to confirm the improved skin regeneration and angiogenic efficacy of core-shell spheroids. Core-shell spheroids exhibited exceptional cell viability under hypoxic cell culture conditions that mimicked the microenvironment of the wound area. CONCLUSION The improvement in retention rate, survival rate, and angiogenic growth factors secretion from core-shell spheroids may contribute to the increased therapeutic efficacy of stem cell treatment for skin wounds.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea.
| |
Collapse
|
40
|
Farzamfar S, Elia E, Richer M, Chabaud S, Naji M, Bolduc S. Extracellular Matrix-Based and Electrospun Scaffolding Systems for Vaginal Reconstruction. Bioengineering (Basel) 2023; 10:790. [PMID: 37508817 PMCID: PMC10376078 DOI: 10.3390/bioengineering10070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital vaginal anomalies and pelvic organ prolapse affect different age groups of women and both have significant negative impacts on patients' psychological well-being and quality of life. While surgical and non-surgical treatments are available for vaginal defects, their efficacy is limited, and they often result in long-term complications. Therefore, alternative treatment options are urgently needed. Fortunately, tissue-engineered scaffolds are promising new treatment modalities that provide an extracellular matrix (ECM)-like environment for vaginal cells to adhere, secrete ECM, and be remodeled by host cells. To this end, ECM-based scaffolds or the constructs that resemble ECM, generated by self-assembly, decellularization, or electrospinning techniques, have gained attention from both clinicians and researchers. These biomimetic scaffolds are highly similar to the native vaginal ECM and have great potential for clinical translation. This review article aims to discuss recent applications, challenges, and future perspectives of these scaffolds in vaginal reconstruction or repair strategies.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1666677951, Iran
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
41
|
Liu J, Xu Y, Huang Y, Sun X, Peng Y, Song W, Yuan J, Ren L. Collagen membrane loaded with doxycycline through hydroxypropyl chitosan microspheres for the early reconstruction of alkali-burned cornea. Int J Biol Macromol 2023:125188. [PMID: 37270120 DOI: 10.1016/j.ijbiomac.2023.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Corneal alkali burn is one of the most devastating ophthalmic emergencies correlated with remarkable morbidity resulting in severe visual impairment. Appropriate intervention in the acute phase determines the eventual outcome for later corneal restoration treatment. Since the epithelium plays an essential role in inhibiting inflammation and promoting tissue repair, sustained anti-matrix metalloproteinases (MMPs) and pro-epithelialization are the prior remedies during the first week. In this study, a drug-loaded collagen membrane (Dox-HCM/Col) that could be sutured to overlay the burned cornea was developed to accelerate the early reconstruction. Doxycycline (Dox), a specific inhibitor of MMPs, was encapsulated in collagen membrane (Col) through hydroxypropyl chitosan microspheres (HCM) to develop Dox-HCM/Col, affording a preferable pro-epithelialization microenvironment and an in-situ controlled release. Results showed that loading HCM into Col prolonged the release time to 7 days, and Dox-HCM/Col could significantly suppress the expression of MMP-9 and -13 in vitro and in vivo. Furthermore, the membrane accelerated the corneal complete re-epithelialization and promoted early reconstruction within the first week. Overall, Dox-HCM/Col was a promising biomaterial membrane for treating alkali-burned cornea in the early stage, and our attempt may provide a clinically feasible method for the ocular surface reconstruction.
Collapse
Affiliation(s)
- Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yongrui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Xiaomin Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangzhou Proud Seeing Biotechnology Co., Ltd, Guangzhou 510623, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
42
|
Popov A, Kozlovskaya E, Rutckova T, Styshova O, Vakhrushev A, Kupera E, Tekutyeva L. Antitumor Properties of Matrikines of Different Origins: Prospects and Problems of Their Application. Int J Mol Sci 2023; 24:ijms24119502. [PMID: 37298452 DOI: 10.3390/ijms24119502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Matrikines (MKs) can be a rich source of functional nutrition components and additional therapy, thereby contributing to human health care and reducing the risk of developing serious diseases, including cancer. Currently, functionally active MKs as products of enzymatic transformation by matrix metalloproteinases (MMPs) are used for various biomedical purposes. Due to the absence of toxic side effects, low species specificity, relatively small size, and presence of various targets at the cell membranes, MKs often exhibit antitumor properties and, therefore, are promising agents for antitumor combination therapy. This review summarizes and analyzes the current data on the antitumor activity of MKs of different origins, discusses the problems and prospects for their therapeutic use, and evaluates the experimental results of studying the antitumor properties of MKs from different echinoderm species generated with the help of a complex of proteolytic enzymes from red king crab Paralithodes camtschatica. Special attention is paid to the analysis of possible mechanisms of the antitumor action of various functionally active MKs, products of the enzymatic activity of various MMPs, and the existing problems for their use in antitumor therapy.
Collapse
Affiliation(s)
- Aleksandr Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia
| | - Tatyana Rutckova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia
| | - Olga Styshova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia
| | - Aleksey Vakhrushev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia
| | - Elena Kupera
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 159 Prospect 100-Letiya Vladivostoka, Vladivostok 690022, Russia
| | - Ludmila Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok 690922, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Volno-Nadezhdinskoye 692481, Russia
| |
Collapse
|
43
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
44
|
The neuroprotective and antidiabetic effects of trigonelline: A review of signaling pathways and molecular mechanisms. Biochimie 2023; 206:93-104. [PMID: 36257493 DOI: 10.1016/j.biochi.2022.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
The global epidemic of diabetes has brought heavy pressure on public health. New effective anti-diabetes strategies are urgently needed. Trigonelline is the main component of fenugreek, which has been proved to have a good therapeutic effect on diabetes and diabetic complications. Trigonelline achieves amelioration of diabetes, the mechanisms of which include the modulation of insulin secretion, a reduction in oxidative stress, and the improvement of glucose tolerance and insulin resistance. Besides, trigonelline has been reported to be a neuroprotective agent against many neurologic diseases including Alzheimer's disease, Parkinson's disease, stroke, and depression. Concerning the potential therapeutic effects of trigonelline, comprehensive clinical trials are warranted to evaluate this valuable molecule.
Collapse
|
45
|
Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels 2023; 9:gels9030185. [PMID: 36975634 PMCID: PMC10048510 DOI: 10.3390/gels9030185] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The repair of skin injury has always been a concern in the medical field. As a kind of biopolymer material with a special network structure and function, collagen-based hydrogel has been widely used in the field of skin injury repair. In this paper, the current research and application status of primal hydrogels in the field of skin repair in recent years are comprehensively reviewed. Starting from the structure and properties of collagen, the preparation, structural properties, and application of collagen-based hydrogels in skin injury repair are emphatically described. Meanwhile, the influences of collagen types, preparation methods, and crosslinking methods on the structural properties of hydrogels are emphatically discussed. The future and development of collagen-based hydrogels are prospected, which is expected to provide reference for the research and application of collagen-based hydrogels for skin repair in the future.
Collapse
|
46
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
47
|
Claridge B, Drack A, Pinto AR, Greening DW. Defining cardiac fibrosis complexity and regulation towards therapeutic development. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
Abstract
AbstractCardiac fibrosis is insidious, accelerating cardiovascular diseases, heart failure, and death. With a notable lack of effective therapies, advances in both understanding and targeted treatment of fibrosis are urgently needed. Remodelling of the extracellular matrix alters the biomechanical and biochemical cardiac structure and function, disrupting cell‐matrix interactions and exacerbating pathogenesis to ultimately impair cardiac function. Attempts at clinical fibrotic reduction have been fruitless, constrained by an understanding which severely underestimates its dynamic complexity and regulation. Integration of single‐cell sequencing and quantitative proteomics has provided new insights into cardiac fibrosis, including reparative or maladaptive processes, spatiotemporal changes and fibroblast heterogeneity. Further studies have revealed microenvironmental and intercellular signalling mechanisms (including soluble mediators and extracellular vesicles), and intracellular regulators including post‐translational/epigenetic modifications, RNA binding proteins, and non‐coding RNAs. This understanding of novel disease processes and molecular targets has supported the development of innovative therapeutic strategies. Indeed, targeted modulation of cellular heterogeneity, microenvironmental signalling, and intracellular regulation offer promising pre‐clinical therapeutic leads. Clinical development will require further advances in our mechanistic understanding of cardiac fibrosis and dissection of the molecular basis for fibrotic remodelling. This review provides an overview of the complexities of cardiac fibrosis, emerging regulatory mechanisms and therapeutic strategies, and highlights knowledge gaps and opportunities for further investigation towards therapeutic/clinical translation.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Alexander R. Pinto
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
- Baker Department of Cardiometabolic Health University of Melbourne Melbourne Australia
- Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
48
|
Meng Q, Zhang M. Clinical Significance of Serum Collagen Type IV and Procollagen Type III N-Peptide Levels in Diagnosis and Differential Diagnosis of Lymphedema. Lymphat Res Biol 2023; 21:8-14. [PMID: 35687386 DOI: 10.1089/lrb.2021.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Lymphatic endothelial cells production or modification were closely related to the extracellular matrix (ECM) molecules. The serum hyaluronic acid (HA), laminin (LN), procollagen type III N-peptide (PIIINP), and collagen type IV (CGIV) levels were researched to explore the clinical significance of serum ECM proteins in the diagnosis and differentiation of lymphedema. Methods: Fifty-five patients were enrolled. They were divided into primary lymphedema (PLE), secondary lymphedema (SLE), and venous edema (VE) groups. Twenty-two healthy controls were also recruited as normal control (NC). Serum HA, LN, PIIINP, and CGIV levels of all subjects were assessed using chemiluminescence immunoassay. Statistical analysis and receiver operating characteristic (ROC) curves were used to data analysis. Results: The serum levels of CGIV were significantly decreased in both PLE and SLE groups compared with those in the NC group. Reduced serum CGIV levels were associated with the severity of lymphedema. The serum levels of CGIV and PIIINP were identified decreased in both PLE and SLE groups compared with those in the VE group. However, the levels of serum HA and LN were not observed significantly changed in both PLE and SLE groups than those in NC or VE group. Furthermore, ROC curve indicated that serum CGIV and PIIINP were capable of providing good diagnostic and differential diagnostic efficacy at the most appropriate cutoff point value. Conclusion: The serum levels of CGIV may have clinical significance in the diagnosis of lymphedema. CGIV and PIIINP may play a role in the differentiation of lymphedema from VE.
Collapse
Affiliation(s)
- Qian Meng
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
49
|
Yuan B, Zheng X, Wu ML, Yang Y, Chen JW, Gao HC, Liu J. Platelet-Rich Plasma Gel-Loaded Collagen/Chitosan Composite Film Accelerated Rat Sciatic Nerve Injury Repair. ACS OMEGA 2023; 8:2931-2941. [PMID: 36713745 PMCID: PMC9878625 DOI: 10.1021/acsomega.2c05351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Peripheral nerve injury (PNI) is a common clinical disease caused by severe limb trauma, congenital malformations, and tumor resection, which may lead to significant functional impairment and permanent disability. Nerve conduit as a method for treating peripheral nerve injury shows good application prospects. In this work, the COL/CS composite films with different mass ratios of 1:0, 1:1, and 1:3 were fabricated by combining physical doping. Physicochemical characterization results showed that the COL/CS composite films possessed good swelling properties, ideal mechanical properties, degradability and suitable hydrophilicity, which could meet the requirements of nerve tissue engineering. In vitro cell experiments showed that the loading of platelet-rich plasma (PRP) gel on the surface of COL/CS composite films could significantly improve the biocompatibility of films and promote the proliferation of Schwann cells. In addition, a rat model of sciatic nerve defect was constructed to evaluate the effect of COL/CS composite films on peripheral nerve repair and the results showed that COL/CS composite films loaded with PRP gel could promote nerve regeneration and functional recovery in rats with sciatic nerve injury, indicating that the combination of PRP gel with the COL/CS composite film would be a potential approach for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Bo Yuan
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Xu Zheng
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Mo-Li Wu
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Yang Yang
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
| | - Jin-wei Chen
- South
China University of Technology School of Medicine, Guangzhou510006, China
| | - Hui-Chang Gao
- South
China University of Technology School of Medicine, Guangzhou510006, China
| | - Jia Liu
- Liaoning
Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical
Sciences, Dalian Medical University, Dalian116044, China
- South
China University of Technology School of Medicine, Guangzhou510006, China
| |
Collapse
|
50
|
Zhang X, Qi L, Chen X, Lai Y, Liu K, Xue K. Comparative study of alginate and type I collagen as biomaterials for cartilage stem/progenitor cells to construct tissue-engineered cartilage in vivo. Front Bioeng Biotechnol 2023; 10:1057199. [PMID: 36714619 PMCID: PMC9873961 DOI: 10.3389/fbioe.2022.1057199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
With the help of biomaterials, cartilage stem/progenitor cells (CSPCs) derived from cartilage tissue present a promising choice for cartilage regeneration. In our previous study, we investigated whether CSPCs could be ideal seeding cells for cartilage tissue regeneration. Biomaterials are fabricated to accelerate tissue regeneration, providing a suitable environment for cell attachment, proliferation, and differentiation. Among the biomaterials used in cartilage regeneration medicine, alginate and collagen are classified as natural biomaterials and are characterized by high biocompatibility, bioactivity, and non-toxic degradation products. However, it is unclear which material would have a competitive advantage in CSPC-based cartilage regeneration in vivo. In the present study, we employed alginate and type Ⅰ collagen as substrates for CSPCs and chondrocytes, which was made control group, to explore a more suitable biomaterials for CSPCs to fabricate tissue-engineered cartilage, in vivo. Hematoxylin and eosin (HE) staining, Safranin O, immunohistochemical assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate the tissue-engineered cartilage in vivo. Compared with the alginate group, collagen enhanced the expression of cartilage-specific genes, such as ACAN, SOX9, and COLII, more markedly. Furthermore, the marker genes of expression, dedifferentiation, and hypertrophy, COLI and COLX, were downregulated in the collagen group. The results demonstrated that collagen as a substrate was superior to alginate in increasing the accumulation of cartilage-like ECM for CSPCs in vivo. In summary, compared with alginate, collagen hydrogel is an effective biomaterial for CSPC-based cartilage regeneration.
Collapse
Affiliation(s)
- Xiaodie Zhang
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - XiaoGang Chen
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, Hainan Western Central Hospital, Shanghai, China
| |
Collapse
|