1
|
Wang LN, Ren L, Li L, Liu SL, Lu HJ, Guo ML, Niu XM, Vinita S, Ning S, Han LP. Role of SMOC2 in adenomyosis: implications for ECM remodeling and EMT pathogenesis. BMC Womens Health 2025; 25:155. [PMID: 40181364 PMCID: PMC11969827 DOI: 10.1186/s12905-025-03700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Adenomyosis is a common gynecological disorder characterized by the invasion of endometrial tissue into the myometrium, resulting in severe dysmenorrhea and menorrhagia. This study aimed to explore the role of SMOC2 (SPARC related modular calcium binding 2), an extracellular matrix (ECM) -associated protein, in the pathogenesis of adenomyosis and its potential as a therapeutic target. METHODS We conducted a clinical study involving 35 patients diagnosed with adenomyosis and 30 controls. Ectopic endometrial tissue samples were collected and analyzed using immunohistochemistry (IHC), Masson staining, and cell culture techniques. The proliferative effect of SMOC2 on cells was evaluated using CCK- 8 assay, while the expression of SMOC2 and epithelial-mesenchymal transition (EMT) was assessed using real-time PCR and western blot analysis. RESULTS SMOC2 expression was significantly higher in the ectopic endometrial tissue of adenomyosis patients compared to controls. SMOC2 could promote cell proliferation. Overexpression of SMOC2 significantly upregulated mesenchymal markers N-cadherin and α-SMA, and downregulated epithelial marker E-cadherin. Conversely, knocking down SMOC2 with siRNA reversed these effects. These findings indicate that SMOC2 promotes EMT in adenomyotic stromal cells. Additionally, SMOC2 also activated the MMP9 signaling pathway, which plays a crucial role in the extracellular matrix (ECM) remodeling. CONCLUSIONS SMOC2 appears to be a key regulator in the pathogenesis of adenomyosis, promoting ECM remodeling and EMT, both of which are characteristic of the disease. Targeting SMOC2 may provide a novel therapeutic strategy for the treatment of adenomyosis.
Collapse
Affiliation(s)
- Lei-Na Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian-She East Road, Zhengzhou, Henan Province, 450052, People's Republic of China.
- Department of Medicine, Luoyang Polytechnic, Luoyang, 471000, China.
| | - Li Ren
- Department of Gynecology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, China
| | - Lin Li
- Department of Obstetrics and Gynecology, The Third People's Hospital of Luoyang, Luoyang, 471000, China
| | - Shu-Lian Liu
- Department of Medicine, Luoyang Polytechnic, Luoyang, 471000, China
| | - Hua-Jie Lu
- Department of Medicine, Luoyang Polytechnic, Luoyang, 471000, China
| | - Meng-Lan Guo
- Department of Medicine, Luoyang Polytechnic, Luoyang, 471000, China
| | - Xiao-Min Niu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian-She East Road, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Shiwali Vinita
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian-She East Road, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Shuang Ning
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian-She East Road, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Ping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian-She East Road, Zhengzhou, Henan Province, 450052, People's Republic of China.
| |
Collapse
|
2
|
Ye Y, Liang Y, Huang L, Cao X, Xia Z, Liang S. Daptomycin alleviates collagen-induced arthritis via suppressing inflammatory cytokines and NF-κB pathway. Int Immunopharmacol 2025; 144:113648. [PMID: 39571268 DOI: 10.1016/j.intimp.2024.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease, and its pathogenic factors include bacterial infection and immune inflammation. Daptomycin (DAP) is a cyclic lipopeptide that has been approved to treat skin infections, bacteremia and right-sided endocarditis due to its effective antibacterial effects against most Gram-positive pathogenic bacteria. Herein, we focus on whether DAP exerts anti-inflammatory activity on RA to expand DAP drug indications. Our studies are first time to evaluate anti-inflammatory effect and reveal its molecular pharmacological mechanism of DAP on lipopolysaccharide-activated macrophage and collagen-induced arthritis (CIA) mice. In vitro cytological studies show that 10 µg/mL DAP inhibits secretion of IL-1β, IL-6 and TNF-α to alleviate cell inflammation, and the phosphorylation level of p65 (p-p65) of RAW 264.7 cells is decreased under DAP exposure. Administration with 10 mg/kg/2d DAP via intravenous injection on CIA mice significantly reduces arthritis symptom by inhibiting p-p65 level and decreasing serum level of IL-6, IL-1β and TNF-α. Moreover, our study is the first time to reveal new immunomodulatory effects of DAP on RA, which provides a pharmacological basis for new clinical applications of DAP for other immune-related diseases except to bacterial infections.
Collapse
Affiliation(s)
- Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, PR China
| | - Yue Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, PR China
| | - Lan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, PR China
| | - Xu Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, PR China
| | - Zijing Xia
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Wei J, Zhou S, Chen G, Chen T, Wang Y, Zou J, Zhou F, Liu J, Gong Q. GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression. Br J Cancer 2024; 131:1529-1542. [PMID: 39317702 PMCID: PMC11519369 DOI: 10.1038/s41416-024-02830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis. METHODS We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis. RESULTS The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway. CONCLUSIONS Our insights suggest GFPT2's potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.
Collapse
Affiliation(s)
- Jia Wei
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Chen
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Qixing Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Gao Q, Weng Z, Feng Y, Gong T, Zheng X, Zhang G, Gong L. KPNA2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus envelope protein through selective autophagy. J Virol 2023; 97:e0011523. [PMID: 38038431 PMCID: PMC10734479 DOI: 10.1128/jvi.00115-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Porcine epidemic diarrhea, characterized by vomiting, dehydration, and diarrhea, is an acute and highly contagious enteric disease caused by porcine epidemic diarrhea virus (PEDV) in neonatal piglets. This disease has caused large economic losses to the porcine industry worldwide. Thus, identifying the host factors involved in PEDV infection is important to develop novel strategies to control PEDV transmission. This study shows that PEDV infection upregulates karyopherin α 2 (KPNA2) expression in Vero and intestinal epithelial (IEC) cells. KPNA2 binds to and degrades the PEDV E protein via autophagy to suppress PEDV replication. These results suggest that KPNA2 plays an antiviral role against PEDV. Specifically, knockdown of endogenous KPNA2 enhances PEDV replication, whereas its overexpression inhibits PEDV replication. Our data provide novel KPNA2-mediated viral restriction mechanisms in which KPNA2 suppresses PEDV replication by targeting and degrading the viral E protein through autophagy. These mechanisms can be targeted in future studies to develop novel strategies to control PEDV infection.
Collapse
Affiliation(s)
- Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Vaccine Development, Guangzhou, China
| | - Zhijun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Vaccine Development, Guangzhou, China
| | - Yongzhi Feng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Vaccine Development, Guangzhou, China
| | - Ting Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Jia Y, Wang Q, Liang M, Huang K. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation. J Transl Med 2022; 20:627. [PMID: 36578083 PMCID: PMC9798605 DOI: 10.1186/s12967-022-03841-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Angiogenesis is involved in many pathological and physiological processes and is mainly driven by hypoxia. Karyopherin subunit alpha 2 (KPNA2), a member of the nuclear transport protein family, was recently shown to be induced by hypoxia in various types of tumours, so we aimed to investigate the role and mechanism of KPNA2 in angiogenesis under hypoxia. MATERIALS AND METHODS After overexpression or knockdown of KPNA2 in human umbilical vein endothelial cells (HUVEC) by adenovirus vector infection, the tube formation, proliferation and migration of HUVEC under hypoxia were detected by tubule formation assay, 5-ethynyl-2'-deoxyuridine (EdU) staining and Transwell assay, respectively. After overexpression or knockdown of KPNA2 in a murine hindlimb ischemia model by local injection of purified adenovirus vector into the gastrocnemius muscle, blood flow changes were examined with a laser Doppler system. Changes in KPNA2-binding proteins under hypoxia were detected by immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP). The effect of KPNA2 on signal transducer and activator of transcription 3 (STAT3) was detected by Western blotting and quantitative RT‒PCR. RESULTS KPNA2 was upregulated in the HUVEC hypoxia model and murine hindlimb ischemia model. Overexpression of KPNA2 increased the proliferation, migration and tube formation of HUVEC under hypoxia, while knockdown of KPNA2 reduced the proliferation, migration and tube formation of HUVEC. Overexpression of KPNA2 promoted the restoration of blood flow in the murine hindlimb ischemia model, while knockout of KPNA2 inhibited the restoration of blood flow in the murine hindlimb ischemia model. Mechanistically, hypoxia promoted the binding of STAT3 to KPNA2. Overexpression of KPNA2 promoted STAT3 phosphorylation and then upregulated vascular endothelial growth factor (VEGF) and angiopoietin 2(ANGPT2), whereas knockdown of KPNA2 inhibited STAT3 phosphorylation and then downregulated VEGF and ANGPT2. CONCLUSION Our study demonstrates that hypoxia promotes the binding of STAT3 to KPNA2 and KPNA2 promotes angiogenesis under hypoxia by promoting the binding of STAT3 and JAK1 and regulating STAT3 phosphorylation.
Collapse
Affiliation(s)
- Yujie Jia
- grid.33199.310000 0004 0368 7223Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qi Wang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Minglu Liang
- grid.33199.310000 0004 0368 7223Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Huang
- grid.33199.310000 0004 0368 7223Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
6
|
Albrecht LJ, Höwner A, Griewank K, Lueong SS, von Neuhoff N, Horn PA, Sucker A, Paschen A, Livingstone E, Ugurel S, Zimmer L, Horn S, Siveke JT, Schadendorf D, Váraljai R, Roesch A. Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. Clin Transl Med 2022; 12:e1090. [PMID: 36320118 PMCID: PMC9626658 DOI: 10.1002/ctm2.1090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.
Collapse
Affiliation(s)
- Lea Jessica Albrecht
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Anna Höwner
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Klaus Griewank
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Smiths S. Lueong
- Bridge Institute of Experimental Tumor TherapyWest German Cancer CenterUniversity Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research CenterDKFZHeidelbergGermany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and OncologyDepartment for Pediatrics IIIUniversity Hospital of EssenEssenGermany
| | - Peter A. Horn
- Institute for Transfusion MedicineUniversity Hospital of EssenEssenGermany
| | - Antje Sucker
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Annette Paschen
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Elisabeth Livingstone
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Selma Ugurel
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Lisa Zimmer
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Susanne Horn
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
- Faculty Rudolf‐Schönheimer‐Institute for BiochemistryUniversity of LeipzigLeipzigGermany
| | - Jens T. Siveke
- Bridge Institute of Experimental Tumor TherapyWest German Cancer CenterUniversity Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research CenterDKFZHeidelbergGermany
| | - Dirk Schadendorf
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Renáta Váraljai
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| | - Alexander Roesch
- Department of DermatologyUniversity Hospital of EssenWest German Cancer CenterUniversity Duisburg‐Essen and the German Cancer Consortium (DKTK)EssenGermany
| |
Collapse
|
7
|
Lan X, Zhao L, Zhang J, Shao Y, Qv Y, Huang J, Cai L. Comprehensive analysis of karyopherin alpha family expression in lung adenocarcinoma: Association with prognostic value and immune homeostasis. Front Genet 2022; 13:956314. [PMID: 35991543 PMCID: PMC9382304 DOI: 10.3389/fgene.2022.956314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Karyopherin alpha (KPNA), a nuclear transporter, has been implicated in the development as well as the progression of many types of malignancies. Immune homeostasis is a multilevel system which regulated by multiple factors. However, the functional significance of the KPNA family in the pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune homeostasis are not well characterized. Methods: In this study, by integrating the TCGA-LUAD database and Masked Somatic Mutation, we first conducted an investigation on the expression levels and mutation status of the KPNA family in patients with LUAD. Then, we constructed a prognostic model based on clinical features and the expression of the KPNA family. We performed functional enrichment analysis and constructed a regulatory network utilizing the differential genes in high-and low-risk groups. Lastly, we performed immune infiltration analysis using CIBERSORT. Results: Analysis of TCGA datasets revealed differential expression of the KPNA family in LUAD. Kaplan-Meier survival analyses indicated that the high expression of KPNA2 and KPNA4 were predictive of inferior overall survival (OS). In addition, we constructed a prognostic model incorporating clinical factors and the expression level of KPNA4 and KPNA5, which accurately predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the high-risk group showed a poor prognosis. Functional enrichment analysis exhibited remarkable enrichment of transcriptional dysregulation in the high-risk group. On the other hand, gene set enrichment analysis (GSEA) displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic in the high-risk group. Finally, analysis of immune infiltration revealed significant differences between the high-and low-risk groups. Further, the high-risk group was more prone to immune evasion while the inflammatory response was strongly associated with the low-risk group. Conclusions: the KPNA family-based prognostic model reflects many biological aspects of LUAD and provides potential targets for precision therapy in LUAD.
Collapse
Affiliation(s)
- Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingchun Shao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunmeng Qv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | | | - Li Cai
- *Correspondence: Jian Huang, ; Li Cai,
| |
Collapse
|
8
|
Liang L, Mai S, Mai G, Chen Y, Liu L. DNA damage repair-related gene signature predicts prognosis and indicates immune cell infiltration landscape in skin cutaneous melanoma. Front Endocrinol (Lausanne) 2022; 13:882431. [PMID: 35957812 PMCID: PMC9361349 DOI: 10.3389/fendo.2022.882431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND DNA damage repair plays an important role in the onset and progression of cancers and its resistance to treatment therapy. This study aims to assess the prognostic potential of DNA damage repair markers in skin cutaneous melanoma (SKCM). METHOD In this study, we have analyzed the gene expression profiles being downloaded from TCGA, GTEx, and GEO databases. We sequentially used univariate and LASSO Cox regression analyses to screen DNA repair genes associated with prognosis. Then, we have conducted a multivariate regression analysis to construct the prognostic profile of DNA repair-related genes (DRRGs). The risk coefficient is used to calculate the risk scores and divide the patients into two cohorts. Additionally, we validated our prognosis model on an external cohort as well as evaluated the link between immune response and the DRRGs prognostic profiles. The risk signature is compared to immune cell infiltration, chemotherapy, and immune checkpoint inhibitors (ICIs) treatment. RESULTS An analysis using LASSO-Cox stepwise regression established a prognostic signature consisting of twelve DRRGs with strong predictive ability. Disease-specific survival (DSS) is found to be lower among high-risk patients group as compared to low-risk patients. The signature may be employed as an independent prognostic predictor after controlling for clinicopathological factors, as demonstrated by validation on one external GSE65904 cohort. A strong correlation is also found between the risk score and the immune microenvironment, along with the infiltrating immune cells, and ICIs key molecules. The gene enrichment analysis results indicate a wide range of biological activities and pathways to be exhibited by high-risk groups. Furthermore, Cisplatin exhibited a considerable response sensitivity in low-risk groups as opposed to the high-risk incidents, while docetaxel exhibited a considerable response sensitivity in high-risk groups. CONCLUSIONS Our findings provide a thorough investigation of DRRGs to develop an DSS-related prognostic indicator which may be useful in forecasting SKCM progression and enabling more enhanced clinical benefits from immunotherapy.
Collapse
Affiliation(s)
- Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
9
|
Huang CH, Han W, Wu YZ, Shen GL. Identification of aberrantly methylated differentially expressed genes and pro-tumorigenic role of KIF2C in melanoma. Front Genet 2022; 13:817656. [PMID: 35991567 PMCID: PMC9387026 DOI: 10.3389/fgene.2022.817656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive malignant cancer, which could be directly derived from melanocytic nevi. However, the molecular mechanisms underlying the malignant transformation of melanocytes and melanoma tumor progression still remain unclear. Increasing research showed significant roles of epigenetic modifications, especially DNA methylation, in melanoma. This study focused on the identification and analysis of methylation-regulated differentially expressed genes (MeDEGs) between melanocytic nevus and malignant melanoma in genome-wide profiles.Methods: The gene expression profiling datasets (GSE3189 and GSE114445) and gene methylation profiling datasets (GSE86355 and GSE120878) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified via GEO2R. MeDEGs were obtained by integrating the DEGs and DMGs. Then, a functional enrichment analysis of MeDEGs was performed. STRING and Cytoscape were used to describe the protein-protein interaction (PPI) network. Furthermore, survival analysis was implemented to select the prognostic hub genes. Next, we conducted gene set enrichment analysis (GSEA) of hub genes. To validate, SKCM cell culture and lentivirus infection was performed to reveal the expression and behavior pattern of KIF2C. Patients and specimens were collected and then immunohistochemistry (IHC) staining was conducted.Results: We identified 237 hypomethylated, upregulated genes and 182 hypermethylated, downregulated genes. Hypomethylation-upregulated genes were enriched in biological processes of the oxidation-reduction process, cell proliferation, cell division, phosphorylation, extracellular matrix disassembly and protein sumoylation. Pathway enrichment showed selenocompound metabolism, small cell lung cancer and lysosome. Hypermethylation-downregulated genes were enriched in biological processes of positive regulation of transcription from RNA polymerase II promoter, cell adhesion, cell proliferation, positive regulation of transcription, DNA-templated and angiogenesis. The most significantly enriched pathways involved the transcriptional misregulation in cancer, circadian rhythm, tight junction, protein digestion and absorption and Hippo signaling pathway. After PPI establishment and survival analysis, seven prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F targets, G2M checkpoint and mitotic spindle. Importantly, among the 7 hub genes, we found that down-regulated level of KIF2C expression significantly inhibited the proliferative ability of SKCM cells and suppressed the metastasis capacity of SKCM cells.Conclusions: Our study identified potential aberrantly methylated-differentially expressed genes participating in the process of malignant transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and FBL provided clues of aberrantly methylation-based biomarkers, which might improve the development of precision medicine. KIF2C plays a pro-tumorigenic role and potentially inhibited the proliferative ability in SKCM.
Collapse
Affiliation(s)
- Chun-Hui Huang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgery, Soochow University, Suzhou, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Yi-Zhu Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgery, Soochow University, Suzhou, China
| | - Guo-Liang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Surgery, Soochow University, Suzhou, China
- *Correspondence: Guo-Liang Shen,
| |
Collapse
|
10
|
Ding J, He X, Luo W, Zhou W, Chen R, Cao G, Chen B, Xiong M. Development and Validation of a Pyroptosis-Related Signature for Predicting Prognosis in Hepatocellular Carcinoma. Front Genet 2022; 13:801419. [PMID: 35140750 PMCID: PMC8818951 DOI: 10.3389/fgene.2022.801419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a primary health problem and threat to global mortality, especially in China. Since pyroptosis as a new field for HCC prognosis is not well studied, it is important to open a specific prognostic model. In this study, consensus clustering method for 42 pyroptosis-related genes to classify 374 HCC patients in the TCGA database. After cox regression analysis of the differentially expressed genes between the two clusters, LASSO-Cox analysis was then performed to construct a pyroptosis-related prognostic model with 11 genes including MMP1, KPNA2, LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A. The ICGC dataset was served as the validation cohort. Patients in the high-risk group had significantly lower overall survival (OS) rates than those in the low-risk group (p < 0.05). COX regression analysis showed that our model could be used as an independent prognostic factor to predict prognosis of patients and was significantly correlated with clinicopathological characteristics. Nomogram showing the stability of the model predicting the 1, 3, 5 year survival probability of patients. In addition, based on the risk model, ssGSEA analysis revealed significant differences in the level of immune cell infiltration and activation of immune-related functional pathways between high and low-risk groups, and patients with the high-risk score may benefit more from treatment with immune checkpoint inhibitors. Furthermore, patients in the high-risk group were more tend to develop chemoresistance. Overall, we identified a novel pyroptosis-related risk signature for prognosis prediction in HCC patients and revealed the overall immune response intensity of the tumor microenvironment. All these findings make the pyroptosis signature shed light upon a latent therapeutic strategy aimed at the treatment and prevention of cancers.
Collapse
Affiliation(s)
- Jianfeng Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Luo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiguo Zhou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Chen
- Department of General Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Bo Chen, ; Maoming Xiong,
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Bo Chen, ; Maoming Xiong,
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Guodong Cao, ; Bo Chen, ; Maoming Xiong,
| |
Collapse
|
11
|
Borden ES, Adams AC, Buetow KH, Wilson MA, Bauman JE, Curiel-Lewandrowski C, Chow HHS, LaFleur BJ, Hastings KT. Shared Gene Expression and Immune Pathway Changes Associated with Progression from Nevi to Melanoma. Cancers (Basel) 2021; 14:cancers14010003. [PMID: 35008167 PMCID: PMC8749980 DOI: 10.3390/cancers14010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a deadly skin cancer, and the incidence of melanoma is rising. Chemoprevention, using small molecule drugs to prevent the development of cancer, is a key strategy that could reduce the burden of melanoma on society. The long-term goal of our study is to develop a gene signature biomarker of progression from nevi to melanoma. We found that a small number of genes can distinguish nevi from melanoma and identified shared genes and immune-related pathways that are associated with progression from nevi to melanoma across independent datasets. This study demonstrates (1) a novel approach to aid melanoma chemoprevention trials by using a gene signature as a surrogate endpoint and (2) the feasibility of determining a gene signature biomarker of melanoma progression. Abstract There is a need to identify molecular biomarkers of melanoma progression to assist the development of chemoprevention strategies to lower melanoma incidence. Using datasets containing gene expression for dysplastic nevi and melanoma or melanoma arising in a nevus, we performed differential gene expression analysis and regularized regression models to identify genes and pathways that were associated with progression from nevi to melanoma. A small number of genes distinguished nevi from melanoma. Differential expression of seven genes was identified between nevi and melanoma in three independent datasets. C1QB, CXCL9, CXCL10, DFNA5 (GSDME), FCGR1B, and PRAME were increased in melanoma, and SCGB1D2 was decreased in melanoma, compared to dysplastic nevi or nevi that progressed to melanoma. Further supporting an association with melanomagenesis, these genes demonstrated a linear change in expression from benign nevi to dysplastic nevi to radial growth phase melanoma to vertical growth phase melanoma. The genes associated with melanoma progression showed significant enrichment of multiple pathways related to the immune system. This study demonstrates (1) a novel application of bioinformatic approaches to aid clinical trials of melanoma chemoprevention and (2) the feasibility of determining a gene signature biomarker of melanomagenesis.
Collapse
Affiliation(s)
- Elizabeth S. Borden
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Anngela C. Adams
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Kenneth H. Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (K.H.B.); (M.A.W.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (K.H.B.); (M.A.W.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Julie E. Bauman
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - H.-H. Sherry Chow
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-602-827-2106
| |
Collapse
|
12
|
Burgers LD, Luong B, Li Y, Fabritius MP, Michalakis S, Reichel CA, Müller R, Fürst R. The natural product vioprolide A exerts anti-inflammatory actions through inhibition of its cellular target NOP14 and downregulation of importin-dependent NF-ĸB p65 nuclear translocation. Biomed Pharmacother 2021; 144:112255. [PMID: 34607110 DOI: 10.1016/j.biopha.2021.112255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 01/21/2023] Open
Abstract
Chronic inflammation is characterized by persisting leukocyte infiltration of the affected tissue, which is enabled by activated endothelial cells (ECs). Chronic inflammatory diseases remain a major pharmacotherapeutic challenge, and thus the search for novel drugs and drug targets is an ongoing demand. We have identified the natural product vioprolide A (vioA) to exert anti-inflammatory actions in vivo and in ECs in vitro through inhibition of its cellular target nucleolar protein 14 (NOP14). VioA attenuated the infiltration of microglia and macrophages during laser-induced murine choroidal neovascularization and the leukocyte trafficking through the vascular endothelium in the murine cremaster muscle. Mechanistic studies revealed that vioA downregulates EC adhesion molecules and the tumor necrosis factor receptor (TNFR) 1 by decreasing the de novo protein synthesis in ECs. Most importantly, we found that inhibition of importin-dependent NF-ĸB p65 nuclear translocation is a crucial part of the action of vioA leading to reduced NF-ĸB promotor activity and inflammatory gene expression. Knockdown experiments revealed a causal link between the cellular target NOP14 and the anti-inflammatory action of vioA, classifying the natural product as unique drug lead for anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Betty Luong
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Yanfen Li
- Department of Ophthalmology, University Hospital, LMU Munich, Munich, Germany
| | - Matthias P Fabritius
- Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Clinical Centre of LMU Munich, Munich, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Christoph A Reichel
- Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Clinical Centre of LMU Munich, Munich, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany.
| |
Collapse
|
13
|
Wang Y, Liu R, Liao J, Jiang L, Jeong GH, Zhou L, Polite M, Duong D, Seyfried NT, Wang H, Kiyokawa H, Yin J. Orthogonal ubiquitin transfer reveals human papillomavirus E6 downregulates nuclear transport to disarm interferon-γ dependent apoptosis of cervical cancer cells. FASEB J 2021; 35:e21986. [PMID: 34662469 DOI: 10.1096/fj.202101232rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
The E6 protein of the human papillomavirus (HPV) underpins important protein interaction networks between the virus and host to promote viral infection. Through its interaction with E6AP, a host E3 ubiquitin (UB) ligase, E6 stirs the protein ubiquitination pathways toward the oncogenic transformation of the infected cells. For a systematic measurement of E6 reprogramming of the substrate pool of E6AP, we performed a proteomic screen based on "orthogonal UB transfer (OUT)" that allowed us to identify the ubiquitination targets of E6AP dependent on the E6 protein of HPV-16, a high-risk viral subtype for the development of cervical cancer. The OUT screen identified more than 200 potential substrates of the E6-E6AP pair based on the transfer of UB from E6AP to the substrate proteins. Among them, we verified that E6 would induce E6AP-catalyzed ubiquitination of importin proteins KPNA1-3, protein phosphatase PGAM5, and arginine methyltransferases CARM1 to trigger their degradation by the proteasome. We further found that E6 could significantly reduce the cellular level of KPNA1 that resulted in the suppression of nuclear transport of phosphorylated STAT1 and the inhibition of interferon-γ-induced apoptosis in cervical cancer cells. Overall, our work demonstrates OUT as a powerful proteomic platform to probe the interaction of E6 and host cells through protein ubiquitination and reveals a new role of E6 in down-regulating nuclear transport proteins to attenuate tumor-suppressive signaling.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Ruochuan Liu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Geon H Jeong
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Monica Polite
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Yang LX, Guo HB, Liu SY, Feng HP, Shi J. ETS1 promoted cell growth, metastasis and epithelial-mesenchymal transition process in melanoma by regulating miR-16-mediated SOX4 expression. Melanoma Res 2021; 31:298-308. [PMID: 34039939 DOI: 10.1097/cmr.0000000000000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma is a malignant tumor with high metastasis and mortality. Epithelial-mesenchymal transition (EMT) was reported to be involved in the growth and metastasis of melanoma. To investigate these sections further, we showed that E26 transformation specific 1 (ETS1) could regulate growth, metastasis and EMT process of melanoma by regulating microRNA(miR)-16/SRY-related HMG box (SOX) 4 expression. MiR-16, ETS1, SOX4 and nuclear factor κB (NF-κB) expression levels in melanoma cells were examined using qPCR. ETS1, SOX4, EMT-related proteins and NF-κB signaling pathway-related proteins were examined using western blot. Cell counting kit-8 assay, transwell assay were applied to evaluate the cell proliferation, migration and invasion of melanoma cells, respectively. Besides, a dual-luciferase reporter assay was employed to verify the binding relationship between ETS1 and miR-16, miR-16 and SOX4, miR-16 and NF-κB1. We showed that ETS1 and SOX4 were upregulated in melanoma cells, while miR-16 was downregulated. MiR-16 overexpression suppressed growth, metastasis and EMT process of melanoma. We found ETS1 could bind to the promoter region of miR-16 and inhibited its transcription. ETS1 silence could inhibit growth, metastasis and EMT process of melanoma, and inhibition of miR-16 could reverse the effects. Besides, miR-16 is directly bound to SOX4 and downregulated its expression. Rescued experiments confirmed that SOX4 overexpression abolished the inhibition effect of miR-16 mimics on growth, metastasis and EMT process of melanoma. Finally, NF-κB1 as the target of miR-16 mediated downstream biological responses. ETS1 activated NF-κB signaling pathway through miR-16 via targeting SOX4, thus promoting growth, metastasis and EMT of melanoma.
Collapse
Affiliation(s)
| | - Hu-Bing Guo
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu Province, P.R. China
| | | | | | | |
Collapse
|
15
|
Cui X, Wang H, Wu X, Huo K, Jing X. Increased expression of KPNA2 predicts unfavorable prognosis in ovarian cancer patients, possibly by targeting KIF4A signaling. J Ovarian Res 2021; 14:71. [PMID: 34034774 PMCID: PMC8152344 DOI: 10.1186/s13048-021-00818-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Karyopherin α-2 (KPNA2) is a member of karyopherin family, which is proved to be responsible for the import or export of cargo proteins. Studies have determined that KPNA2 is associated with the development and prognosis of various cancers, yet the role of KPNA2 in ovarian carcinoma and its potential molecular mechanisms remains unclear. Materials and methods The expression and prognosis of KPNA2 in ovarian cancer was investigated using GEPIA and Oncomine analyses. Mutations of KPNA2 in ovarian cancer were analyzed by cBioPortal database. The prognostic value of KPNA2 expression was evaluated by our own ovarian carcinoma samples using RT-qPCR. Subsequently, the cell growth, migration and invasion of ovarian cancer cells were investigated by CCK-8 and transwell assay, respectively. The protein levels of KPNA2 and KIF4A were determined by western blot. Results We obtained the following important results. (1) KPNA2 and KIF4A wereoverexpressed in ovairan cancer tissues and cells. (2) Among patients with ovarian cancer, overexpressed KPNA2 was associated with lower survival rate. (3) Mutations (R197* and S140F) in KPNA2 will have some influences on protein structure, and then may cause protein function abnormal. (4) KPNA2 konckdown inhibited proliferation, migration, invasion, as well as the expression of KIF4A. Conclusion KPNA2, as a tumorigenic gene in ovarian cancer, accelerated tumor progression by up-regulating KIF4A, suggesting that KPNA2 might be a hopeful indicator of treatment and poor prognosis.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030001, China
| | - Honghong Wang
- Gynaecology and Obstetrics Department, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030001, China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030001, China
| | - Kai Huo
- Breast Surgery Department, Tumor Hospital of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030000, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Prov. People's Hospital, Affiliated of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|