1
|
Khorsand FR, Dabirmanesh B, Khajeh K. Therapeutic Potential of Flavonoids Against α-Synuclein Aggregation in Parkinson's Disease: Integrative In Silico and In Vitro Analysis''. Eur J Pharmacol 2025:177829. [PMID: 40490169 DOI: 10.1016/j.ejphar.2025.177829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/31/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Amyloidogenic protein aggregation is the key factor in neurodegenerative diseases. Due to the cost-effectiveness and low side effects, attention to herbal medicines has been recently increased. Flavonoids are a group of plant compounds with high potential for reducing the accumulation of amyloidogenic proteins. This research aims to identify the most effective flavonoids for inhibiting the fibrillation of α-synuclein (α-syn). For this purpose, 98 flavonoids from different databases were selected for analysis. The pharmacokinetic properties of these flavonoids were evaluated using OSIRIS and Swiss-ADME web tools. The interaction of α-syn and flavonoids was investigated in the positions predicted via DoGSiteScorer and CASTp web servers. Subsequently, luteolin and baicalein, the flavonoids with the most negative binding energy and interaction with the amino acids of α-syn amyloidogenic regions, were selected for further in vitro studies. In this phase, α-syn was incubated under fibrillation conditions in the presence and absence of flavonoid treatment. Results from the thioflavin T (ThT) fluorescence assay, atomic force microscopy (AFM), and proteinase K (PK) enzymatic digestion assay showed that baicalein and luteolin significantly inhibited α-syn fibril formation. Fourier transform infrared spectroscopy (FTIR) demonstrated a decrease in β-sheet content and confirmed the inhibitory effect of baicalein and luteolin. In addition, cell culture analysis also showed that luteolin could increase the viability of SH-SY5Y cells exposed to α-syn fibrils by destabilizing toxic fibrils and converting them into non-toxic amorphous aggregates. These findings can be useful to develop flavonoid-based therapeutic strategies for synucleinopathies, such as Parkinson's disease (PD).
Collapse
Affiliation(s)
- Fereshteh Ramezani Khorsand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran.
| |
Collapse
|
2
|
Li Z, Wang X, Tasich K, Hike D, Schumacher JG, Zhou Q, Man W, Huang Y. Eupatilin unveiled: An in-depth exploration of research advancements and clinical therapeutic prospects. J Transl Int Med 2025; 13:104-117. [PMID: 40443403 PMCID: PMC12116271 DOI: 10.1515/jtim-2025-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Eupatilin, a flavonoid found in Artemisia argyi (Compositae) leaves, exhibits robust anti-inflammatory, antioxidant, and anti-tumor properties. Numerous investigations have demonstrated remarkable efficacy of eupatilin across various disease models, spanning digestive, respiratory, nervous, and dermatological conditions. This review aims to provide an overview of recent studies elucidating the mechanistic actions of eupatilin across a spectrum of disease models and evaluate its clinical applicability. The findings herein provide valuable insights for advancing the study of novel Traditional Chinese Medicine compounds and their clinical utilization.
Collapse
Affiliation(s)
- Zheng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Ksenija Tasich
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Hike
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jackson G. Schumacher
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Psychology and Neuroscience, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Qingju Zhou
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Zhao B, Chen Z, Li T, Yao H, Wang Z, Liao Y, Guo H, Fu D, Ji Y, Du M. Eupatilin suppresses osteoclastogenesis and periodontal bone loss by inhibiting the MAPKs/Siglec-15 pathway. Int Immunopharmacol 2024; 139:112720. [PMID: 39047450 DOI: 10.1016/j.intimp.2024.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Periodontitis is a widely prevalent oral disease around the world characterized by the disruption of the periodontal ligament and the subsequent development of periodontal pockets, as well as the loss of alveolar bone, and may eventually lead to tooth loss. This research aims to assess the suppressive impact of Eupatilin, a flavone obtained from Artemisia argyi, on osteoclastogenesis in vitro and periodontitis in vivo. We found that Eupatilin can efficiently obstruct the differentiation of Raw264.7 and bone marrow-derived macrophages (BMDMs) induced by RANKL, leading to the formation of mature osteoclasts. Consistently, bone slice resorption assay showed that Eupatilin significantly inhibited osteoclast-mediated bone resorption in a dose-dependent manner. Eupatilin also downregulated the expression of osteoclast-specific genes and proteins in Raw264.7 and BMDMs. RNA sequencing showed that Eupatilin notably downregulated the expression of Siglec-15. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified significantly enriched pathways in DEGs, including MAPK signaling pathway. And further mechanistic investigations confirmed that Eupatilin repressed MAPKs/NF-κBsignaling pathways. It was found that Siglec-15 overexpression reversed the inhibitory impact of Eupatilin on the differentiation of osteoclasts. Furthermore, activating MAPK signaling pathway reversed the downregulation of Siglec-15 and the inhibition of osteoclastogenesis by Eupatilin. To sum up, Eupatilin reduced the expression of Siglec-15 by suppressing MAPK signaling pathway, ultimately leading to the inhibition of osteoclastogenesis. Meanwhile, Eupatilin suppressed the alveolar bone resorption caused by experimentalperiodontitis in vivo. Eupatilin exhibits potential therapeutic effects in the treatment of periodontitis, rendering it a promising pharmaceutical agent.
Collapse
Affiliation(s)
- Boxuan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhiyong Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haiying Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minquan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Kisielewska M, Filipski M, Sebastianka K, Karaś D, Molik K, Choromańska A. Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors. Int J Mol Sci 2024; 25:7725. [PMID: 39062967 PMCID: PMC11277127 DOI: 10.3390/ijms25147725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Nature provides us with a rich source of compounds with a wide range of applications, including the creation of innovative drugs. Despite advancements in chemically synthesized therapeutics, natural compounds are increasingly significant, especially in cancer treatment, a leading cause of death globally. One promising approach involves the use of natural inhibitors of checkpoint kinase 2 (Chk2), a critical regulator of DNA repair, cell cycle arrest, and apoptosis. Chk2's activation in response to DNA damage can lead to apoptosis or DNA repair, influencing glycolysis and mitochondrial function. In cancer therapy, inhibiting Chk2 can disrupt DNA repair and cell cycle progression, promoting cancer cell death and enhancing the efficacy of radiotherapy and chemotherapy. Additionally, Chk2 inhibitors can safeguard non-cancerous cells during these treatments by inhibiting p53-dependent apoptosis. Beyond oncology, Chk2 inhibition shows potential in treating hepatitis C virus (HCV) infections, as the virus relies on Chk2 for RNA replication in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), in which DNA damage plays a crucial role. Plant-derived Chk2 inhibitors, such as artemetin, rhamnetin, and curcumin, offer a promising future for treating various diseases with potentially milder side effects and broader metabolic impacts compared to conventional therapies. The review aims to underscore the immense potential of natural Chk2 inhibitors in various therapeutic contexts, particularly in oncology and the treatment of other diseases involving DNA damage and repair mechanisms. These natural Chk2 inhibitors hold significant promise for revolutionizing the landscape of cancer treatment and other diseases. Further research into these compounds could lead to the development of innovative therapies that offer hope for the future with fewer side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Kamil Sebastianka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Dobrawa Karaś
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Cao H, Tian Q, Chu L, Gao Q. Effects of polyphenol on motor function in mice with Parkinson's disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024; 65:2859-2879. [PMID: 40346822 DOI: 10.1080/10408398.2024.2352541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Polyphenols have been reported to have a multi-targeted neuroprotective effect on Parkinson's disease (PD). However, there has been no comprehensive analysis of the effect of polyphenol therapy on improving motor symptoms in PD. We used keywords to search the electronic databases PubMed, Scopus, EBSCO, SpringerLink, China National Knowledge Infrastructure (CNKI), Wan Fang and Web of Science from the establishment of the database to April 2023. A randomized effects model systematic review and meta-analysis of 83 included studies were conducted to investigate the ameliorative effects of polyphenols on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in a rodent model of PD. The results showed that compared with PD control group, polyphenols significantly improved balance, exploration, vertical crawling, horizontal crawling, muscle strength and sensorimotor function motor dysfunction of rodents. Subgroup analysis showed that the types of polyphenols had different recovery effects on motor symptoms of PD. Oral polyphenol intervention was superior to intraperitoneal and intravenous administration. This meta-analysis provides comprehensive evidence for the prevention or treatment of Parkinson's motor symptoms with polyphenols and expands the idea of future clinical application of polyphenols.
Collapse
Affiliation(s)
- Hongdou Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwen Chu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Tao X, Zhang W, Chen C, Tao Y, Tao Y, Chen Z, Zhang G. miR-101a-3p/ROCK2 axis regulates neuronal injury in Parkinson's disease models. Aging (Albany NY) 2024; 16:8732-8746. [PMID: 38775730 PMCID: PMC11164493 DOI: 10.18632/aging.205836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenfei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, Hubei 430060, China
| | - Yang Tao
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yun Tao
- Department of Stomatology, Wuhan Central Hospital, Wuhan, Hubei 430060, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
7
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
8
|
Fu X, Qu L, Xu H, Xie J. Ndfip1 protected dopaminergic neurons via regulating mitochondrial function and ferroptosis in Parkinson's disease. Exp Neurol 2024; 375:114724. [PMID: 38365133 DOI: 10.1016/j.expneurol.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Increasing evidence has shown that mitochondrial dysfunction and iron accumulation contribute to the pathogenesis of Parkinson's disease (PD). Nedd4 family interacting protein 1 (Ndfip1) is an adaptor protein of the Nedd4 E3 ubiquitin ligases. We have previously reported that Ndfip1 showed a neuroprotective effect in cell models of PD. However, whether Ndfip1 could protect dopaminergic neurons in PD animal models in vivo and the possible mechanisms are not known. Here, our results showed that the expression of Ndfip1 decreased in the substantia nigra (SN) of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mouse model. Overexpression of Ndfip1 could improve MPTP-induced motor dysfunction significantly and antagonize the loss of dopaminergic neurons in the SN of MPTP-induced mice. Further study showed that overexpression of Ndfip1 might protect against MPTP-induced neurotoxicity through regulation of voltage-dependent anion-selective channel (VDAC). In addition, we observed the downregulation of Ndfip1 and upregulation of VDAC1/2 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. Furthermore, high expression of Ndfip1 in SH-SY5Y cells inhibited MPP+-induced increase of VDAC1/2 and restored MPP+-induced mitochondrial dysfunction. Furthermore, Ndfip1 prevented MPP+-induced increase in the expression of long-chain acyl-CoA synthetase 4 (ACSL4), suggesting the possible role of Ndfip1 in regulating ferroptosis. Our results provide new evidence for the neuroprotective effect of Ndfip1 on dopaminergic neurons in PD animal models and provide promising targets for the treatment of iron-related diseases, including PD.
Collapse
Affiliation(s)
- Xiaomin Fu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China
| | - Le Qu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China
| | - Huamin Xu
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
9
|
Lu Y, Min Q, Zhao X, Li L, Zhao G, Dong J. Eupatilin attenuates doxorubicin-induced cardiotoxicity by activating the PI3K-AKT signaling pathway in mice. Mol Cell Biochem 2024; 479:869-880. [PMID: 37222879 DOI: 10.1007/s11010-023-04769-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Eupatilin is a pharmacologically active flavonoid with a variety of biological activities, such as anticancer, anti-inflammatory, antioxidant, neuroprotective, anti-allergic and cardioprotective effects. However, whether eupatilin has protective effects on doxorubicin-induced cardiotoxicity remains unknown. Thus, this study aimed to investigate the role of eupatilin in doxorubicin-induced cardiotoxicity. Mice were exposed to a single dose of doxorubicin (15 mg/kg) to generate doxorubicin-induced cardiotoxicity or normal saline as a control. To explore the protective effects, mice were intraperitoneally injected with eupatilin daily for 7 days. Then, we examined the changes in cardiac function, inflammation, apoptosis, and oxidative stress to evaluate the effects of eupatilin on doxorubicin-induced cardiotoxicity. Additionally, RNA-seq analysis was introduced to explore the potential molecular mechanisms. Eupatilin ameliorated doxorubicin-induced cardiotoxicity by attenuating inflammation, oxidative stress, and cardiomyocyte apoptosis and ameliorated doxorubicin-induced cardiac dysfunction. Mechanistically, eupatilin activated the PI3K-AKT signaling pathway, as evidenced by RNA-seq analysis and Western blot analysis. This study provides the first evidence that eupatilin ameliorates doxorubicin-induced cardiotoxicity by attenuating inflammation, oxidative stress, and apoptosis. Pharmacotherapy with eupatilin provides a novel therapeutic regimen for doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanyu Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian Min
- Department of medicine, JingGangshan University, Ji'an, Jiangxi province, China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Li Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guojun Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
10
|
Gong H, Lyu X, Liu Y, Peng N, Tan S, Dong L, Zhang X. Eupatilin inhibits pulmonary fibrosis by activating Sestrin2/PI3K/Akt/mTOR dependent autophagy pathway. Life Sci 2023; 334:122218. [PMID: 37918625 DOI: 10.1016/j.lfs.2023.122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive chronic inflammatory disease with poor clinical outcomes and ineffective drug treatment options. Eupatilin is a major component extracted from the traditional herbal medicine Artemisia asiatica Nakai. Notably, it was demonstrated to have an anti-fibrosis effect in endometrial fibrosis, vocal fold, and hepatic fibrosis. Its role and mechanism in IPF remain unclear. METHODS This study used the TGF-β1-induced human embryonic lung fibroblasts (MRC-5) activation, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model. Western blot, immunofluorescence staining, quantitative real time-PCR, hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry were used to evaluate the effects of eupatilin on fibroblast activation, pulmonary fibrosis, and autophagy. The autophagosomes were observed with a transmission electron microscope (TEM). RNA sequencing was used to determine the signaling pathway and key regulator related to autophagy. RESULTS Eupatilin significantly decreased the expression of Col1A1, fibronectin, α-SMA, and SQSTM1/p62. In contrast, it increased the expression of LC3B II/I and the number of autophagosomes in TGF-β1 treated MRC-5, IPF lung fibroblasts, and bleomycin-induced lung fibrosis mice model; it also alleviated bleomycin-induced lung fibrosis. The KEGG pathway mapping displayed that PI3K/Akt and Sestrin2 were associated with the enhanced fibrogenic process. Eupatilin suppressed the phosphorylation of PI3K/Akt/mTOR. Autophagy inhibitor 3-methyladenine (3-MA) and Akt activator SC-79 abrogated the anti-fibrotic effect of eupatilin. Sestrin2 expression was also downregulated in TGF-β1 treated lung fibroblasts and lung tissues of the bleomycin-induced pulmonary fibrosis mice model. Furthermore, eupatilin promoted Sestrin2 expression, and the knockdown of Sestrin2 significantly aggravated the degree of fibrosis, increased the phosphorylation of PI3K/Akt/mTOR, and decreased autophagy. CONCLUSION These findings indicate that eupatilin ameliorates pulmonary fibrosis through Sestrin2/PI3K/Akt/mTOR-dependent autophagy pathway.
Collapse
Affiliation(s)
- Hui Gong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Naling Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Human Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Kim K, Hong HL, Kim GM, Leem J, Kwon HH. Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice. Curr Issues Mol Biol 2023; 45:7027-7042. [PMID: 37754228 PMCID: PMC10530142 DOI: 10.3390/cimb45090444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis. Eupatilin (EUP) is a natural flavone with multiple biological activities and has beneficial effects against various inflammatory disorders. However, whether EUP has a favorable effect on septic AKI remains unknown. Here, we examined the effect of EUP on lipopolysaccharide (LPS)-evoked AKI in mice. LPS-evoked renal dysfunction was attenuated by EUP, as reflected by reductions in serum creatinine and blood urea nitrogen levels. LPS injection also induced structural damage such as tubular cell detachment, tubular dilatation, brush border loss of proximal tubules, and upregulation of tubular injury markers. However, EUP significantly ameliorated this structural damage. EUP decreased serum and renal cytokine levels, prevented macrophage infiltration, and inhibited mitogen-activated protein kinase and NF-κB signaling cascades. Lipid peroxidation and DNA oxidation were increased after LPS treatment. However, EUP mitigated LPS-evoked oxidative stress through downregulation of NPDPH oxidase 4 and upregulation of antioxidant enzymes. EUP also inhibited p53-mediated apoptosis in LPS-treated mice. Therefore, these results suggest that EUP ameliorates LPS-evoked AKI through inhibiting inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Hyo-Lim Hong
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Gyun Moo Kim
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| |
Collapse
|
12
|
Martinez-Vega MV, Galván-Menéndez-Conde S, Freyre-Fonseca V. Possible Signaling Pathways in the Gut Microbiota-Brain Axis for the Development of Parkinson's Disease Caused by Chronic Consumption of Food Additives. ACS Chem Neurosci 2023. [PMID: 37171224 DOI: 10.1021/acschemneuro.3c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
It is well-known that consumption of synthetic and natural food additives has both positive and negative effects in the human body. However, it is not clear yet how food additives are related to the development of Parkinson's disease. Therefore, in this review work, the food additive effects related to the gut microbiota-brain axis and the processes that are carried out to develop Parkinson's disease are studied. To this end, a systematic literature analysis is performed with the selected keywords and the food additive effects are studied to draw possible routes of action. This analysis leads to the proposition of a model that explains the pathways that relate the ingestion of food additives to the development of Parkinson's disease. This work motivates further research that ponders the safety of food additives by measuring their impacts over the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Melanie Verónica Martinez-Vega
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Av. Universidad Anahuac 46, Naucalpan de Juarez 52786, Mexico
| | | | - Verónica Freyre-Fonseca
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Campus Norte, Huixquilucan, Estado de México 52786, Mexico
| |
Collapse
|
13
|
Hong Y, He S, Zou Q, Li C, Wang J, Chen R. Eupatilin alleviates inflammatory response after subarachnoid hemorrhage by inhibition of TLR4/MyD88/NF-κB axis. J Biochem Mol Toxicol 2023; 37:e23317. [PMID: 36872850 DOI: 10.1002/jbt.23317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Early brain injury (EBI) is associated with the adverse prognosis of subarachnoid hemorrhage (SAH) patients. The key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai (Asteraceae) is eupatilin. Recent research reports that eupatilin suppresses inflammatory responses induced by intracranial hemorrhage. This work is performed to validate whether eupatilin can attenuate EBI and deciphers its mechanism. A SAH rat model was established by intravascular perforation in vivo. At 6 h after SAH in rats, 10 mg/kg eupatilin was injected into the rats via the caudal vein. A Sham group was set as the control. In vitro, BV2 microglia was treated with 10 μM Oxyhemoglobin (OxyHb) for 24 h, followed by 50 μM eupatilin treatment for 24 h. The SAH grade, brain water content, neurological score, and blood-brain barrier (BBB) permeability of the rats were measured 24 h later. The content of proinflammatory factors was detected via enzyme-linked immunosorbent assay. Western blot analysis was conducted to analyze the expression levels of TLR4/MyD88/NF-κB pathway-associated proteins. In vivo, eupatilin administration alleviated neurological injury, and decreased brain edema and BBB injury after SAH in rats. Eupatilin markedly reduced the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), and suppressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in the SAH rats' cerebral tissues. Eupatilin treatment also reduced the levels of IL-1β, IL-6, and TNF-α, and repressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in OxyHb-induced BV2 microglia. Additionally, pyrrolidine dithiocarbamate or resatorvid enhanced the suppressive effects of eupatilin on OxyHb-induced inflammatory responses in BV2 microglia. Eupatilin ameliorates SAH-induced EBI via modulating the TLR4/MyD88/NF-κB pathway in rat model.
Collapse
Affiliation(s)
- Yu Hong
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shiqing He
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Zou
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chong Li
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianpeng Wang
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Peng Q, Zhang G, Guo X, Dai L, Xiong M, Zhang Z, Chen L, Zhang Z. Galectin-9/Tim-3 pathway mediates dopaminergic neurodegeneration in MPTP-induced mouse model of Parkinson's disease. Front Mol Neurosci 2022; 15:1046992. [PMID: 36479526 PMCID: PMC9719949 DOI: 10.3389/fnmol.2022.1046992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024] Open
Abstract
Galectin-9 (Gal-9) is a crucial immunoregulatory mediator in the central nervous system. Microglial activation and neuroinflammation play a key role in the degeneration of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). However, it remains unknown whether Gal-9 is involved in the pathogenesis of PD. We found that MPP+ treatment promoted the expression of Gal-9 and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and MIP-1α) in a concentration-dependent manner in BV2 cells. Gal-9 enhanced neurodegeneration and oxidative stress induced by MPP+ in SH-SY5Y cells and primary neurons. Importantly, deletion of Gal-9 or blockade of Tim-3 ameliorated microglial activation, reduced dopaminergic neuronal loss, and improved motor performance in an MPTP-induced mouse model of PD. These observations demonstrate a pathogenic role of the Gal-9/Tim-3 pathway in exacerbating microglial activation, neuroinflammation, oxidative stress, and dopaminergic neurodegeneration in the pathogenesis of PD.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaodi Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Lu CW, Wu CC, Chiu KM, Lee MY, Lin TY, Wang SJ. Inhibition of Synaptic Glutamate Exocytosis and Prevention of Glutamate Neurotoxicity by Eupatilin from Artemisia argyi in the Rat Cortex. Int J Mol Sci 2022; 23:13406. [PMID: 36362193 PMCID: PMC9657139 DOI: 10.3390/ijms232113406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 01/03/2024] Open
Abstract
The inhibition of synaptic glutamate release to maintain glutamate homeostasis contributes to the alleviation of neuronal cell injury, and accumulating evidence suggests that natural products can repress glutamate levels and associated excitotoxicity. In this study, we investigated whether eupatilin, a constituent of Artemisia argyi, affected glutamate release in rat cortical nerve terminals (synaptosomes). Additionally, we evaluated the effect of eupatilin in an animal model of kainic acid (KA) excitotoxicity, particularly on the levels of glutamate and N-methyl-D-aspartate (NMDA) receptor subunits (GluN2A and GluN2B). We found that eupatilin decreased depolarization-evoked glutamate release from rat cortical synaptosomes and that this effect was accompanied by a reduction in cytosolic Ca2+ elevation, inhibition of P/Q-type Ca2+ channels, decreased synapsin I Ca2+-dependent phosphorylation and no detectable effect on the membrane potential. In a KA-induced glutamate excitotoxicity rat model, the administration of eupatilin before KA administration prevented neuronal cell degeneration, glutamate elevation, glutamate-generating enzyme glutaminase increase, excitatory amino acid transporter (EAAT) decrease, GluN2A protein decrease and GluN2B protein increase in the rat cortex. Taken together, the results suggest that eupatilin depresses glutamate exocytosis from cerebrocortical synaptosomes by decreasing P/Q-type Ca2+ channels and synapsin I phosphorylation and alleviates glutamate excitotoxicity caused by KA by preventing glutamatergic alterations in the rat cortex. Thus, this study suggests that eupatilin can be considered a potential therapeutic agent in the treatment of brain impairment associated with glutamate excitotoxicity.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chia-Chan Wu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
16
|
Jiao L, Su LY, Liu Q, Luo R, Qiao X, Xie T, Yang LX, Chen C, Yao YG. GSNOR deficiency attenuates MPTP-induced neurotoxicity and autophagy by facilitating CDK5 S-nitrosation in a mouse model of Parkinson's disease. Free Radic Biol Med 2022; 189:111-121. [PMID: 35918012 DOI: 10.1016/j.freeradbiomed.2022.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
The S-nitrosoglutathione reductase (GSNOR) is a key denitrosating enzyme that regulates protein S-nitrosation, a process which has been found to be involved in the pathogenesis of Parkinson's disease (PD). However, the physiological function of GSNOR in PD remains unknown. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that GSNOR expression was significantly increased and accompanied by autophagy mediated by MPTP-induced cyclin dependent kinase 5 (CDK5), behavioral dyskinesias and dopaminergic neuron loss. Whereas, knockout of GSNOR, or treatment with the GSNOR inhibitor N6022, alleviated MPTP-induced PD-like pathology and neurotoxicity. Mechanistically, deficiency of GSNOR inhibited MPTP-induced CDK5 kinase activity and CDK5-mediated autophagy by increasing S-nitrosation of CDK5 at Cys83. Our study indicated that GSNOR is a key regulator of CDK5 S-nitrosation and is actively involved in CDK5-mediated autophagy induced by MPTP.
Collapse
Affiliation(s)
- Lijin Jiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu-Xiu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
18
|
Castañeda R, Cáceres A, Velásquez D, Rodríguez C, Morales D, Castillo A. Medicinal plants used in traditional Mayan medicine for the treatment of central nervous system disorders: An overview. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114746. [PMID: 34656668 DOI: 10.1016/j.jep.2021.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For thousands of years, different cultural groups have used and transformed natural resources for medicinal purposes focused on psychological or neurological conditions. Some of these are recognized as central nervous system (CNS) disorders and diseases, whereas other ethnopsychiatric interpretations are explained in culture-specific terms. In traditional Mayan medicine, several herbs have been part of treatments and rituals focused on cultural and ethnomedical concepts. AIM OF REVIEW This study aims to provide a comprehensive overview of the medicinal plants used in Mesoamerica by traditional healers and Mayan groups to CNS disorders and associate the traditional use with demonstrated pharmacological evidence to establish a solid foundation for directing future research. METHODS A systematic search for primary sources of plant use reports for traditional CNS-related remedies of Mesoamerica were obtained from library catalogs, thesis and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct), and entered in a database with data analyzed in terms of the usage frequency, use by ethnic groups, plant endemism, and pharmacological investigation. RESULTS A total of 155 plants used for ethnopsychiatric conditions in Mesoamerica by Mayan groups were found, encompassing 127 native species. Of these, only 49 native species have reported in vitro or in vivo pharmacological analyses. The most commonly reported ethnopsychiatric conditions are related to anxiety, depression, memory loss, epilepsy, and insomnia. The extent of the scientific evidence available to understand the pharmacological application for their use against CNS disorders varied between different plant species, with the most prominent evidence shown by Annona cherimola, Justicia pectoralis, J. spicigera, Mimosa pudica, Persea americana, Petiveria alliacea, Piper amalago, Psidium guajava, Tagetes erecta and T. lucida. CONCLUSION Available pharmacological data suggest that different plant species used in traditional Mayan medicine may target the CNS, mainly related to GABA, serotonin, acetylcholine, or neuroprotective pathways. However, more research is required, given the limited data regarding mechanism of action at the preclinical in vivo level, identification of active compounds, scarce number of clinical studies, and the dearth of peer-reviewed studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Diana Velásquez
- School of Biology, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Cesar Rodríguez
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - David Morales
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Andrea Castillo
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| |
Collapse
|
19
|
Novel Application of Eupatilin for Effectively Attenuating Cisplatin-Induced Auditory Hair Cell Death via Mitochondrial Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1090034. [PMID: 35082962 PMCID: PMC8786471 DOI: 10.1155/2022/1090034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone) is a pharmacologically active flavone that has been isolated from a variety of medicinal plants and possesses a number of pharmacological properties. This study evaluates the antioxidant and antiapoptotic effects of eupatilin on cisplatin-induced ototoxicity using in vitro and in vivo models including HEI-OC1 cells, cochlear hair cells, and zebrafish. Employing a CCK8 assay and Annexin V-FITC/PI double staining, we found that eupatilin significantly alleviated cisplatin-induced apoptosis and increased hair cell viability. The level of reactive oxygen species (ROS) was evaluated by CellROX green and MitoSOX Red staining. The results showed that eupatilin possesses antioxidant activity. MitoTracker Red staining indicated that eupatilin remarkably decreased mitochondrial damage. Furthermore, we demonstrated that eupatilin protects hair cells from cisplatin-induced damage. Mechanistic studies in cisplatin-induced HEI-OC1 cells revealed that eupatilin promoted Bcl-2 expression, downregulated Bax expression, reversed the increase in caspase-3 and PARP activity, and reduced the expression of phosphorylated p38 and JNK. Our data suggest a novel role for eupatilin as a protective agent against ototoxic drug-induced hair cell apoptosis by inhibiting ROS generation and modulating mitochondrial-related apoptosis.
Collapse
|
20
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
21
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
22
|
Liu C, Wang W, Li H, Liu J, Zhang P, Cheng Y, Qin X, Hu Y, Wei Y. The neuroprotective effects of isoquercitrin purified from apple pomace by high-speed countercurrent chromatography in the MPTP acute mouse model of Parkinson's disease. Food Funct 2021; 12:6091-6101. [PMID: 34047315 DOI: 10.1039/d1fo00843a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disease. Researchers have shown that oxidative stress and apoptosis play an important role in the Parkinson's disease process. Isoquercitrin (quercetin-3-O-β-d-glucopyranoside) is a natural flavonol compound and one of the main active ingredients of agricultural waste apple pomace. Increasing evidence indicates that this compound possesses anti-oxidation, anti-aging, and anti-inflammation properties. In this study, isoquercitrin was purified from apple pomace by high-speed countercurrent chromatography and its neuroprotective effect on Parkinson's disease was investigated in MPTP-induced acute mouse models. It was found that isoquercitrin ameliorated the animal behaviors against MPTP-induced neurotoxicity, mitigated the loss of dopamine neurons induced by MPTP, increased tyrosine hydroxylase and dopamine transporter expression, reduced the pro-apoptotic signaling molecule bax expression and inhibited MPTP-triggered oxidative stress. Our results demonstrated that isoquercitrin has protective effects on the MPTP subacute model mouse, which might be partially mediated through the actions of anti-oxidation and anti-apoptosis. Isoquercitrin might be a new promising protective drug for the improvement of Parkinson's disease.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wenjuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Peng Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaoyan Qin
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yang Hu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
23
|
Borgo J, Laurella LC, Martini F, Catalán CAN, Sülsen VP. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021; 26:2733. [PMID: 34066562 PMCID: PMC8125113 DOI: 10.3390/molecules26092733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cesar A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina;
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
24
|
Islas-Cortez M, Rios C, Rubio-Osornio M, Zamudio S, Orozco-Suarez S, Mendez-Armenta M, Nava-Ruiz C, Diaz-Ruiz A. Characterization of the antiapoptotic effect of copper sulfate on striatal and midbrain damage induced by MPP + in rats. Neurotoxicology 2020; 82:18-25. [PMID: 33127410 DOI: 10.1016/j.neuro.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023]
Abstract
1-Methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity produces cellular damage resembling that encountered in Parkinson's disease. The mechanisms of cellular death after MPP+ include the participation of oxidative stress in the loss of dopaminergic neurons. Among the mechanisms of defense against oxidative stress, several copper-dependent proteins have been implicated: Cu/Zn-SOD, ceruloplasmin, and metallothionein. Another important mechanism of damage, is MPP + interference with mitochondrial respiration. Both, oxidative stress and inhibition of mitochondrial respiration may trigger apoptosis in the neurons after MPP+. The aim of the present study was to characterize the time-course of apoptosis induced by MPP+ to determine if copper sulfate pretreatment is able to prevent the activation of caspases and decreased the neuronal apoptosis. MPP+ was microinjected into rat striatum using a stereotactic frame. The results showed increased activities of caspases 8, 9 and 3, between 72-120 hours after administration of MPP+, both in striatum and midbrain. After this study, we tested the effect of CuSO4 on MPP+ neurotoxicity, showing a diminution of the apoptotic damage induced by MPP+, decreased levels of enzymatic activity of caspases: 8 (-34 and -25 %), 9 (-25 and -42 %) and 3 (-40 and -29 %) in striatum and midbrain, respectively. Finally, we performed an immunohistochemical analysis, evidencing a decreased number of apoptotic cells in the groups pretreated with copper sulfate pretreatment compared to the control group. With these findings, it is concluded that pretreatment with copper sulfate may be a good alternative to prevent MPP+-induced apoptosis.
Collapse
Affiliation(s)
- Marcela Islas-Cortez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico; Departamento de Fisiología, Laboratorio de Neurociencia Conductual, Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, Mexico
| | - Camilo Rios
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico; Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, Mexico
| | - Moisés Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Sergio Zamudio
- Departamento de Fisiología, Laboratorio de Neurociencia Conductual, Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México, Mexico
| | - Marisela Mendez-Armenta
- Departamento de Neuropatología Experimental Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Concepción Nava-Ruiz
- Departamento de Neuropatología Experimental Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, Mexico.
| |
Collapse
|